
Busting a Myth: Review of Agile Security Engineering Methods
Kalle Rindell

University of Turku
Turku, Finland FI-20014

kalle.rindell@utu.�

Sami Hyrynsalmi
Tampere University of Technology

Pori, Finland FI-28100
sami.hyrynsalmi@tut.�

Ville Leppänen
University of Turku

Turku, Finland FI-20014
ville.leppanen@utu.�

ABSTRACT
Engineering methods are essential in so�ware development, and
form a crucial element in the design and implementation of so�-
ware security. Security engineering processes and activities have
a long and well-standardized history of integration with so�ware
development methods. �e inception of iterative and incremental
so�ware development methods raised suspicions of an inherent in-
compatibility between the traditional non-agile security processes
and the new agile methods. �is suspicion still a�ects the a�itude
towards agile security. To examine and explore this myth, this
study presents a literature review of a selected set of agile secure
so�ware development methods. A systematic literature method
was used to �nd the de�nitive set of secure agile so�ware devel-
opment methods, of which a core set of 11 papers was selected for
analysis, and the security activities documented in the methods
were extracted. �e results show a wide and well-documented adap-
tation of security activities in agile so�ware development, with the
observed activities covering the whole security development life
cycle. Based on the analysis, the inherent insecurity of the agile
so�ware development methods can be declared to be a mere myth.

KEYWORDS
Agile So�ware Development, Mythology, Security Engineering,
So�ware Development Methods, Review

ACM Reference format:
Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen. 2017. Busting a Myth:
Review of Agile Security Engineering Methods. In Proceedings of ARES ’17,
Reggio Calabria, Italy, August 29-September 01, 2017, 10 pages.
DOI: 10.1145/3098954.3103170

1 INTRODUCTION
Importance of so�ware security has been dramatically alleviated
by the rise of the public awareness in the current post-Snowden era.
New, fresh so�ware development methodologies continue to be
presented, with the aim of guaranteeing a credible and acceptable
level of security. While the level and complexity of the requirements
is increased, the development process is expected to be faster and
more reactive in order to guarantee market success [21]. To cope
with these somewhat contradicting conditions, a series of so�ware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ARES ’17, Reggio Calabria, Italy
© 2017 ACM. 978-1-4503-5257-4/17/08. . .$15.00
DOI: 10.1145/3098954.3103170

development methods that combine practices from agile so�ware
development and secure development have been presented.

�e objective of this paper is to organize and map the existing
agile so�ware development methods that contain pronounced se-
curity engineering activities. Several such methods exist; however,
new methods have been continuously presented, based on the argu-
ment that agile does not suit well for secure so�ware development.
�is study contributes to the �eld of secure so�ware engineering
by mapping existing secure agile methods, showing the empirical
evidence supporting the methods, and collecting and pointing out
the agile security activities in each of them.

�e work is structured as follow: Section 2 presents the central
concept for this work in area of agile so�ware development. Sec-
tion 3 summarizes the used research process and it is followed by
descriptions of secure agile so�ware development methods, the em-
piric cases and the security activities used (Section 4). Summarized
results of the analysis are presented in Section 5, and the results
and �ndings are discussed in Section 6. Finally, Section 7 concludes
the study and proposes avenues for further research.

2 BACKGROUND
A new wave of lightweight so�ware development methods, dubbed
‘agile’, started to gain popularity in the end of the 1990’s. A remark-
able milestone in the �eld was in 2001 when the Agile Manifesto
with its twelve principles was published [1]. Since then, the agile
methods and practices have gained tremendous popularity both
as research subjects in the academia [8] as well as practices in the
industry [12].

In contrast to the process-oriented methodologies, agile methods
emphasize e.g., short-term planning and adaption to changes over
planning ahead and following strict processes. A series of agile
methods has been presented [cf. 1] since the Agile Manifesto, with
Scrum and its derivatives being currently the most widely adapted
[22]. Scrum is a simple process model where the so�ware is pro-
duced in short iterations lasting just a few weeks, and consisting of
well-de�ned ceremonies, roles and artifacts [1].

Extreme programming (XP) is one of the earliest agile methods,
and still the second most used [22]. In contrast to Scrum, it resem-
bles more a collection of tools and practices rather than a strict
process model. �e method does not, for example, de�ne roles for
the participants, as Scrum does. XP promotes for example prac-
tises of simple design, pair programming, continuous integration,
test-driven development and collective code ownership [1].

�e studies surveyed in this article also reference widely to Mi-
croso� Security Development Lifecycle, OWASP CLASP, Cigital
Touchpoints and ISO Common Criteria. �ese security processes
and models provide the basic security tools and activities, ready
to be adapted and integrated into the so�ware development meth-
ods. �e models have roots in security engineering practices that



ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy K. Rindell et al.

Table 1: Searches

Library Search term Result set size
ACM Digital Library agile AND so�ware AND security AND engineering 59
IEEE Explore agile AND so�ware AND security AND engineering 120
Springer Link agile AND so�ware AND ”security engineering” 101
Wiley agile AND so�ware AND ”security engineering” 32
ScienceDirect agile AND so�ware AND ”security engineering” 64
Total 376

predate the agile boom, leading to initial di�culties with adaption
to agile methods. A starting hypothesis for several works, cf. for
example [19], is that an agile method in itself is somehow perceived
to be incompatible with secure so�ware development. Despite
the di�culties, several examples of agile so�ware development
with integrated security engineering activities and processes have
been presented [e.g. 3, 19, 24]. However, the number of empirical
studies assessing and describing industrial cases is low. For exam-
ple, Rindell et al. [17] studied a case where Scrum was applied in
the development of a security-critical system. While they found
shortages in converting the security engineering processes into a
truly agile process, the project itself was deemed a success: the end
product was delivered on budget and on time, while meeting the
requirements of the security regulations that applied to the case.

Regulations represent, in agile terms, customer requirements
for security. �ey also help de�ning the level of ‘good enough’
or ‘minimum viable’ security. For these reasons, considerations
regarding compatibility with a security standard were taken as
one of the aspects for analysis when assessing the material. Also,
evidence of practical empiric application of security activities in
agile so�ware engineering was noted.

3 RESEARCH PROCESS
�e purpose and motivation of this study was to search the extant
literature for examples of agile so�ware development with security
engineering activities.

�e search was performed in �ve online computer science li-
braries: ACM Digital Library1, IEEE Explore2, SpringerLink digital
library3, Wiley Online Library4 and ScienceDirect5. �e search
was conducted using following general term, limiting the results to
the �eld of agile methods, related to �elds of so�ware and security
engineering:

agile AND software AND (security AND engineering)

�e library speci�c searches and the size of each result set are
presented in Table 1. ACM Digital Library search produced 59 re-
sults, IEEE Explore search 120, and SpringerLink 101 articles. Wiley
search was conducted in all �elds available for search, and pro-
duced 32 results, and ScienceDirect produced 64 results. Inclusion
of terms ‘security’ AND ‘engineering’, adjusted for each search
engine, was crucial in obtaining a manageable result set. A�er the
initial search, the result sets were scanned and articles which did

1h�p://dl.acm.org
2h�p://ieeexplore.ieee.org
3h�p://link.springer.com/
4h�p://onlinelibrary.wiley.com
5h�p://www.sciencedirect.com/

not explicitly concern an agile so�ware development method with
security engineering activities were dropped. SpringerLink and
IEEE result sets required a careful manual screening, while ACM
produced a readily more homogeneous result set. Five out of the
11 selected methods were selected from the ACM Digital Library.
�ree methods were selected from the Springer Link result set, two
from the IEEE Explore and one from ScienceDirect. None were
selected from Wiley.

A�er the library search, a manual screening and selection process
was performed, to ensure the validity of the �rst search round:

(1) Article describes use of an agile method, or use of an ex-
tension to an existing agile practice

(2) Article describes use of security engineering activities in
the agile se�ing

�e articles selected by this two-stage process were then re-
viewed and analysed, and the security activities described in the
articles were identi�ed. �ese activities were evaluated using the
principles of Common Criteria, which is the ISO standard to “permit
comparability between the results of independent security evalu-
ations”. It does so by providing a common set of requirements
for the security functions of IT products and systems and for as-
surance measures applied to them during a security evaluation”
[10]. Furthermore, each method was screened for any empirical
evidence provided, as were references to any security, quality or
safety standard.

Citation count was hypothesized to project industry or scienti�c
signi�cance. However, the citation count of individual articles
outside their respective research groups and direct a�liates was
found to be very low with the notable exception of [7]. One of the
papers [20], without any citations and certain noted shortcomings,
got selected for its merit in summarizing CLASP security process
from an agile point of view. �e selection of 11 studies is presented
and summarized in Table 2.

Based on the search result set it was observed that the use of ASD,
Crystal, DSDM, EVO, FDD and RUP appear to have been decreasing
rapidly: no examples of these methods got selected into this study.
XP is still a mainstay of the agile so�ware methodologies, although
Scrum-based methods have since gained more popularity. Kanban,
despite its popularity in the industry, appears to be less used for
security speci�c purposes. �ese observations echo the results from
surveyed industry agile practises, such as [22] and [12].

�e activities found in each study were placed into a life cycle
model, consisting of six distinct phases: Pre-requirement, Require-
ment, Design, Implementation, Testing and Release. �is generic
life cycle phase division is used by two of the selected articles [see
2, 4] and resembles closely the 7-stage life cycle model of the SDL:



Busting a Myth: Review of Agile Security Engineering Methods ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

Table 2: Studies selected for review

Topic summary Standards Empirical Cited Source
Security Engineering and XP Yes No 3 Wäyrynen et al. 2004 [24]
Towards Agile Security in Web Applications No No 5 Kongsli et al. 2006 [11]
XP Practices and Security Requirements Engineering No Yes 10 Boström et al. 2006 [5]
Agile Security Using an Incremental Security Architecture No No 4 Chivers et al. 2005 [6]
XP Security Practices No No 3 Ge et al. 2007 [9]
CLASP, SDL and Touchpoints compared No No 40 De Win et al. 2009 [7]
Integration of security activities into XP with No No 0 Sonia et al. 2014 [20]
Agile security management No No 6 Baca et al. 2011 [4]
Security Activities in Agile Projects Yes Yes 1 Ayalew et al. 2013 [2]
Extending agile methods with security No Yes 8 Othmane et al. 2014 [3]
So�ware Security Skills, Usage and Training Needs in Agile Yes Yes 1 Oyetoyan et al. 2016 [16]

the SDL model has an added maintenance’ phase a�er the �rst
six. In [7] the phase division is a even more elaborate, with nine
stages. �e model presented in that study is a combination of sev-
eral security processes: in addition to an added support stage, the
pre-requirement and design stages are each divided in two. How-
ever, the six-stage life cycle was deemed to resemble agile so�ware
development process with su�cient accuracy and clarity, and was
therefore selected.

4 REVIEWS
�e found methods, listed also in Table 2, are presented in forth-
coming subsections. For each method, we shortly summarize how it
enhances the existing methods and is there any empirical evidence
or support for the method. �e methods are organized primarily
by publication year, but by grouping articles from the same group
of authors together.

We review the key contributions of each study primarily from
the security activity point of view. Security activities were extracted
and placed into an activity matrix, summary of which is presented
in Table 3. In the few cases where the activities were found di�cult
to categorize, the categorization process is disclosed and discussed.

4.1 Security Engineering and eXtreme
Programming: An Impossible
Marriage? [24]

�e �rst and oldest of the selected articles by Wäyrynen, Bodén, and
Boström [24] concentrates on extreme programming. It provides
an analysis of the XP method from the viewpoint of two central ISO
standards for so�ware security: Systems Security Engineering –
Capability Maturity Model (SSE-CMM, ISO 21817) and the Common
Criteria (CC, ISO 15408). �e article provides a solid analysis of the
agile security: it discusses the topic of insecurity of agile methods,
reviews the literature and earlier work aiming to integrate security
activities into agile methods and transform them into agile activities,
and then provides an analysis standing on two cornerstones of the
traditional security engineering standards.

�e issues presented in this article, wri�en in 2004, are echoed
and reiterated in several of the later works: the agile methods’
perceived unsuitability of security work, the contradicting require-
ments for fast and continuous delivery and meticulous design and

planning, and the fundamental contradiction between security en-
gineering (i.e. sequential development, formal processes, nonnego-
tiable requirements) and agile methods (i.e. incremental devel-
opment, free-form work �ow and low overhead, �uid goals and
requirements). �e authors set aside much of the prejudice, and
concentrate in reviewing XP from a standardized security engineer-
ing perspective. XP is analysed from the viewpoint of SSE-CMM’s
requirement to specify security needs and Common Criteria’s re-
quirement to provide assurance that the said requirement is met.

�e discussion of the topic is more on the philosophical rather
than practical side, as there is no empiric evidence to test the hy-
potheses; the authors do, however, succeed in arguing their case
that XP is no less well suited for security engineering activities than
any other so�ware development method. As a ma�er of fact, many
of the XP’s inherent properties are seen as bene�cial to security
engineering, such as simplicity of the design, pair programming,
collective ownership of the code, test-driven development, refactor-
ing and coding standards. Certain security activities are noted to
be, if not incompatible with XP, at least missing from it: need for
security engineer(s), static code review, security policies, formal
security reviews and security documentation are mentioned. �e
suggested solution is as simple as one would assume: integrate the
security engineering activities into the agile method.

�e authors acknowledge the need for empiric validation missing
from this article. �ey present a claim that their approach is limited
to particular �elds of so�ware engineering, speci�cally excluding
real-time so�ware and safety critical applications. �e paper is
the earliest one of the selected studies, pointing out that certain
agile practises are also bene�cial security activities. �e identi�ed
activities were security education, misuse cases, simplicity of (secu-
rity) design, pair programming, and security testing. �e security
activities the authors acknowledged to be missing from XP were
excluded from the results.

4.2 Extending XP Practices to Support Security
Requirements Engineering [5]

�e paper by Boström, Wäyrynen, Bodén, Beznosov, and Kruchten
[5] enhances XP by introducing two security speci�c mechanisms:
abuser stories as threat scenarios, and security-related user stories
as security functionalities. �e authors suggest that incorporat-
ing the security engineering activities into XP as agile processes,



ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy K. Rindell et al.

using XP terminology and mechanisms, yields the intended ben-
e�ts without sacri�cing the agile method’s claimed bene�ts. �e
security-augmented XP process is explained starting from require-
ments planning, and introducing a way to integrate the abuser
stories and security-related user stories into XP’s planning game.
Since stories are the essential way of communicating requirements
and features in XP, the two new story types a�ect the whole devel-
opment process.

�e method is applied in a student project, which is described
from the security point of view: speci�cally, the implications of the
added features on the XP process are discussed. For the project,
they have also introduced the role of a security engineer, which is
typically an explicit requirement in various security standards. �e
Common Criteria is mentioned several times, and its requirements
discussed, yet the method or the described student project do not
claim compliance with any security standard, nor speci�cally pro-
vide the security assurance that would satisfy the CC requirements.
�e proposed security activities consist of two key design phase
processes: use of misuse cases (abuser stories, security-related user
stories), which were considered to have e�ect when applying secu-
rity principles to design.

4.3 Towards Agile Security in Web
Applications [11]

�e study by Kongsli [11] is one of the earlier e�orts to integrate se-
curity engineering activities with agile so�ware engineering meth-
ods. �e paper reiterates the then-current strongly negative a�itude
towards the agile methods’ ability to support security activities,
assumed to result in less secure so�ware products. �e reasons for
this are still basically unchanged, a�er a decade of e�ort: security
methodologies are sequential and require ’big design up front’. �e
paper does not elaborate further mismatches, and from there on,
concentrates on the security activities to be incorporated in agile
methods. Use of XP is implied, yet not speci�cally stated; also
Scrum is mentioned.

�e article lists several agile security activities, collected from
earlier literature: misuse stories (also called abuse stories) to supple-
ment user stories; automated security tests throughout the devel-
opment, parallel to unit and acceptance tests to verify the defence
against misuse stories; security review meetings, comparable to
iteration planning meetings, to provide the team with an overview
of the security-related issues; and, �nally, securing the deployment
earlier than in sequential development, where system hardenings,
security tests and security risk mitigation is done a�er the so�ware
functionality and features are completed. Authors then discuss the
shortcomings, incompleteness of the misuse cases and tests, largely
speci�c to the used testing tool, Selenium. �ey also discuss the
role of security expert in so�ware development, which transforms
in agile process from owner of the security issues into a coach, who
guides the team which collectively owns the misuse cases (stories)
and the security in general.

�e paper does not provide direct empiric validation for their
method, yet implies that the method has been used in a customer
project. �ere is no mention about a need to follow security reg-
ulations regarding the so�ware or the development process. �e
amount of security activities mentioned in this study was quite low,

but these can be considered key components in building secure so�-
ware: misuse cases and security testing. Security review meeting
was considered to be a form of verifying the security a�ributes of
resources.

4.4 Agile Security Using an Incremental
Security Architecture [6]

�e article by Chivers, Paige, and Ge [6], as many of the other
early works in the �eld of agile security engineering, starts by
acknowledging the contrast between agile development, namely
XP, and traditional security engineering approaches. �e approach
concentrates on the iterative nature of the agile methods, and also
the inherent cost of refactoring, contrasted to maintaining a suf-
�cient level of security. �e authors propose an iterative security
architecture which maintains ’good enough security’ throughout
the development iterations. �e agile approach to architecture is
described in Kent Beck’s words as the simplest thing that could pos-
sibly work, and on the other hand admit that an architecture acts
as a useful artifact for maintaining and communicating the overall
vision of the system under development. �is approach is used to
de�ne also the security architecture presented in this article. Good
security architecture is stated to partition a system and identify its
security-sensitive parts (and in what way), show how the security
components combine for useful system level security, and commu-
nicate the structural security logic in an a�empt to ensure that
the development team does not build functionality that bypasses
security.

Security architecture is partly approached from the refactoring
point of view: architecture is wri�en as the code is produced, and
re-wri�en during following iterations, to re�ect the security view of
the current system. �e authors claim that the architecture should
be just that: not a plan for future, but as clear and and simple rep-
resentation of the current state as possible. �is is logical from the
agile point of view, which promotes avoiding top-down planning as
the goals may change before they are reached. �e case is presented
as a ’paper exercise’ where an iterative so�ware project’s architec-
ture evolves during each iteration along with added functionality.
�e security context in the example project is user authentication
scheme, with alternative architectures: presented alternatives are
a heavy top-down design, which at certain stage will have to be
abandoned and changed to another, the scenario where there is no
architecture and the developers select the easiest way which soon
becomes unmanageable; and, �nally, there is the ’just right’ archi-
tecture that also may have to be abandoned (of course, not in the
scenario presented), but is much less expensive as it corresponds
to the current need, not an anticipated one.

�e article does not present empiric evidence, nor claim standard
support. It does, however, provide a way to provide security assur-
ance in the form of security architecture in a way that conforms
with agile values. �e security activities covered by an iterative
security architecture are not explicitly stated in the description,
yet the provided example conveys the idea that the author has
had in mind. �ese were expanded to cover most of the require-
ment phase activities, and due to its iterative nature, also contain
the most common design phase activities: documentation of as-
sumptions, detailing misuse cases, applying security principles to



Busting a Myth: Review of Agile Security Engineering Methods ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

design (in response to changing architecture-level requirements),
and performing a security analysis of the system design.

4.5 Extreme Programming Security
Practices [9]

Ge, Paige, Polack, and Brooke [9] propose security training and
fundamental security architecture for XP as means to establish a
security criteria. Security training would e�ect the team’s way
of conducting the XP’s planning game: team’s awareness of secu-
rity issues would bring security issues into the center of the stage.
Speci�cally, they would write security stories, understand secu-
rity threats and vulnerabilities, be able to write be�er code and
avoid common mistakes, and be able to perform security testing.
Fundamental security architecture, in contrast to an iterative secu-
rity architecture, is de�ned before the iterations commence, and
outlines the available security mechanisms, system platforms and
provides basis for risk and vulnerability assessments. An exam-
ple representation of a fundamental security architecture would
be a collection of engineering pa�erns. �e architecture could be
created based on architectural risk analyses, security and program-
ming best practises, and from both tacit and documented so�ware
project experience and knowledge.

�e article does not provide empiric evidence, nor provide much
more than the outlines of the proposed security activities. Both
security training and and a system-level security architecture are,
however, a common requirement in so�ware security standards,
and the authors show their validity for agile methods in the context
of extreme programming (XP). Security training is a direct and
straightforward security activity. Fundamental security architec-
ture, as proposed in this article, does not specify the content of the
architecture model itself. It was interpreted to cover most of the
general pre-requirement and requirement phase activities speci�ed
in the then-current CLASP security process.

4.6 On the secure so�ware development
process: CLASP, SDL and Touchpoints
compared [7]

De Win, Scandariato, Buyens, Gr�goire, and Joosen [7] have con-
ducted an extensive and exhaustive review of three then-current
industry standard security processes, OWASP CLASP, Microso�
SDL and Cigital Touchpoints. �e security activities in these pro-
cesses are extracted, categorized and placed into an activity matrix,
with a total of 153 distinct entries. Each security process is discussed
and characterized, and their similarities and common properties
pointed out. An theoretical case is presented, applying all three
processes into an example development project.

�e suitability of the processes with agile methods is not dis-
cussed, although the authors acknowledge the prevalence of the
XP method, and note a knowledge gap in applying CLASP to ag-
ile methods, where SDL and Touchpoints are noted to be more
extensive in this ma�er.

Although not directly discussed in the article, the security pro-
cesses analyzed and compared are designed for basic compliance
with ISO security standards (SSE-CMM and Common Criteria). �e
study presents an example case into which the security processes
are applied, but not direct empirical evidence.

It should be noted that as this study aims to chart out all the
security activities in several security processes, they are not listed
as occurrences in the resultant table of security activities in this
study.

4.7 Agile Development with Security
Engineering Activities [4]

Baca and Carlsson [4] start by stating the existence of classic suspi-
cion against the security of agile methods, naming the fast pace of
development and perceived lack of documentation as the greatest
discrepancy between the agile and secure engineering values.

�e selected approach is to introduce and review Microso� Secu-
rity Development Lifecycle (SDL), Cigital Touchpoints and the Com-
mon Criteria. �e activities speci�ed in these processes are then
used to evaluate an industry agile so�ware development method,
enhanced with proposed security activities. Scrum and XP are used
as reference methods for the iterative and incremental development
process. �e evaluation criteria for the security activities was to
give the developers chance to rate the cost and bene�t of each
security activity.

�e company where the study was conducted was tradition-
ally not using iterative methods, which is represented by the roles
present in the development process: the development team con-
sisted not only of developers but also of testers, architects and re-
quirement engineers. �e feedback received from the development
team, product owners and the unit manager contributed to selec-
tion of the most preferred and bene�cial security activities. Product
owners preferred security requirements from CC and role matrix
from SDL. �e development team preferred at design phase to use
assumption documentation from Touchpoints, abuse cases from
SDL, and requirements inspection from CC, added with counter-
measure graphs. For implementation phase, the static code analyses
and coding standards were seen most bene�cial. Testers preferred
dynamic analyses and, of course, testing.

�e security activities ranking by the developers themselves pro-
duced interesting results, and, according to authors, selecting the
activities based on feedback produced a �exible security engineer-
ing process that also conforms with agile principles. �e developer
opinion may well be biased, resulting compromised security: this
is apparent in the project team’s a�itude towards fuzz testing: this
was seen as costly and therefore non-bene�cial, so it was not im-
plemented at all. �is very poorly re�ects e.g. the Microso� SDL’s
view on fuzz testing: in SDL, fuzz testing is seen as an important
and easily automated part of security testing of various so�ware
interfaces. �e article summarizes neatly the security activities
suggested by existing security frameworks, giving a good overview
of activities valid for standard compliance – which the method
does not claim. �e method and the security activities were not
integrated into a real production project, they were merely tested
and discussed in the existing sequential so�ware project context.

Article presents a solid set of 11 security activities. Of these, the
release-phase activity of repository improvement was not found
on any of the other studies. �is is done in retrospect, and may
be considered to further promote continuous security between
iterations.



ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy K. Rindell et al.

4.8 Identi�cation and Evaluation of Security
Activities in Agile Projects [2]

Ayalew, Kidane, and Carlsson [2] have selected several security
engineering activities from industry security frameworks: CLASP,
SDL, Cigital Touchpoints and the Common Criteria, and performed
a survey-based cost-bene�t analysis of these security activities. �e
approach extends the previous work by producing a list of ‘agile
compatible and bene�cial security activities’. �is resulting list of
16 activities appears to cover all phases of the secure so�ware devel-
opment life cycle. Countermeasure graphs, introduced by Baca and
Carlsson in [4] are present also in this study, which, coupled with
the same the life cycle phase model, is another concrete evidence of
the connection between these studies. �e similarity between this
and the previous studies is noted and discussed, and the extended
results and marked di�erences of this paper are pointed out.

Inclusion of CLASP marks a concrete improvement in resul-
tant set of agile security activities, especially in the release phase.
Assigning a value for agility is not self-explanatory, as each orga-
nization may estimate the agility of an activity di�erently. Also,
selecting security activities solely based on their agile value does
not guarantee acceptable security. Combined with the other studies,
the activities selected by this process provides a valuable addition to
the set of agile security activities. �is article lists several security
activities extracted from SDL, CLASP and CC, and selects the most
agile ones out of them. �e resulting set of 16 security activities was
further reduced for the purposes of this study: SDL’s security tools
and countermeasure graphs were removed, resulting in 14 key agile
security activities, covering all phases of the security development.

4.9 FISA-XP: An Agile-based Integration of
Security Activities with Extreme
Programming [20]

�is article by Sonia, Singhal, and Banati [20] represents the prac-
tise of assigning security activities an agile value, in this approach
complemented by an online tool where the security activities can
be chosen based on a user-assignable Acceptable Agility Reduction
Factor. �e security activities are derived from OWASP CLASP
(Open Web Application Security Project, Comprehensive Light-
weight Application Security Process). Microso�’s SDL is dismissed
on account of an earlier study [7] branding it more ’heavyweight
and rigorous’ than CLASP, and therefore not suitable. Develop-
ment of CLASP has since seen discontinued and largely replaced
by OWASP SAMM [15], while SDL has evolved towards a more
agile-friendly adaptation [see 13, 14].

For the purposes of this study, this article works mostly as a
summary of the [7] from an agile point of view, also �lling the
‘knowledge gap’ applying CLASP to agile, identi�ed in that study.
An important contribution is mapping of XP’s agile activities into
the 30 listed security activities, although restricted to CLASP pro-
cess activities. �is mapping provides further evidence towards
the conclusion that a fundamental mismatch between security en-
gineering and agile methods does not exist: the authors provide
an integration matrix (Table 2 in [20]), in which every single secu-
rity activity is found basically compatible with at least one agile
activity. A clear fault of this integration matrix is the mapping of

several security activities into the agile activity of pair program-
ming: for example, operational security guide is not a result of
pair programming, and does not necessarily even take place at
the implementation phase. �is does not imply incompatibility
between the activities, just a misconception and misplacement in
the matrix. Despite these concerns, and a�er careful consideration,
it was decided that this article will be included in this review.

Pre-assigning an agility value to security activities can prove
useful in selection of security activities for an agile project, with
speci�c needs to satisfy a security requirement and to provide
security assurance. A requirement for compliance with a security
standard would be a perfect example of such a selection criteria.
Standard compliance is not discussed in this article. �e article
does not provide direct empiric evidence to support its agile value
assignment technique. As with [7], the security activities listed in
this article are not presented in the result matrix, Table 3.

4.10 Extending the Agile Development Process
to Develop Acceptably Secure So�ware [3]

�e article by b. Othmane, Angin, We�ers, and Bhargava [3] starts
with a comparison of iterative and sequential activities and pro-
cesses. �e challenges of ��ing these together are derived from
literature sources, and listed as “lack of complete view of the sys-
tem, absence of security engineering activities in the development
process, lack of detailed documentation, lack of security aware-
ness of the customers, and con�ict of interests between security
professionals and developers”. �e authors also refer to certain
earlier a�empts to integrate security activities into agile methods,
and criticize their lack of continuous security, calling for an agile
development method, that produces acceptably secure so�ware in
each iteration.

�e article presents several approaches to agile methods with
security activities: OWASP and Microso� security frameworks, and
risk-driven and security assurance-driven so�ware development
methodologies. �e authors proceed to proposing their own ap-
proach, which aims to continuous security and security assurance
by adapting security activities and a speci�c security reassurance
process into each increment and release. �e security activities are
listed per life cycle phase:

• Inception: threat modeling, risk estimation, and identi�ca-
tion of security goals.

• Construction: de�ning security claims, writing security
stories, and de�ning the security assurance. All of these
are done for each iteration.

• Transition: performing the security assurance tasks, for
example producing the documentation artifacts, running
(automated) security tests, or conducting an external re-
view (security audit).

�e article presents a methodology which not merely integrates
security activities into an agile method, but also o�ers a method
to provide continuous security assurance. Although somewhat
limited and without concrete empiric evidence, each incremental
release candidate produced by applying the proposed is secure and
ready for acceptance. Although complying with security standards
is not speci�cally mentioned in the text, this approach includes all
the necessary components for standard compliance. A real world



Busting a Myth: Review of Agile Security Engineering Methods ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

approach might not aim for continuous security assurance, i.e.,
transition phase tasks done during each iteration, which could
improve the approach by reducing the workload and therefore
the cost of security tasks. On the other hand, continuous security
assurance makes the proposed method directly eligible for DevOps
and other continuous delivery and continuous integration models,
characterized by frequent delivery of new so�ware increments into
production environment.

4.11 An Empirical Study on the Relationship
between So�ware Security Skills, Usage
and Training Needs in Agile Settings [16]

In this case study by Oyetoyan, Cruzes, and Jaatun [16], the security
activities of two organizations using agile so�ware development
methods are inspected and compared. �e study was conducted by
combining 26 security activities from CLASP, SDL, Touchpoints and
the Common Criteria, and asking the development teams which of
the activities does their organization employ. �e focus was in the
skill, training and experience of the development teams in each of
these activities. Both surveyed organizations used Scrum as their
agile so�ware development method. �e researchers had selected
four common agile activities as ’frequently used activities’: use of a
code review tool, static code analysis, use of a static code analysis
tool, and pair programming. Promoting pair programming into a
core activity used by both of the surveyed organizations is some-
what atypical, as a wider industry study �nds pair programming
among one of the least utilized practises [12]. Also, unlike in XP,
pair programming is not a key technique in Scrum. Additionally the
security activities were categorized into two groups: core activities
and activities that can be leveraged to deliver security.

�e key �ndings from security activity perspective are di�cult
to generalize. It does appear, however, that largely regardless of
the selected key activities in an organization, awareness of security
issues and security training promotes their use – which was exactly
what was hypothesized. Also, the security awareness in the form of
training should be administered to all participants in the so�ware
development process: architects, developers and testers, to yield the
best results. �e ultimate drivers for a more frequent and thorough
use of security activities cannot be deducted from the results, but
the presence of an organizational security expert group in one of
the organizations is listed as a potential source of promotion of
security activities. �e presented security activities are selected
from industry-proven security processes.

�e study is empirical and surveys existing organizational prac-
tises. Of security standards, the Payment Card Industry Data Se-
curity Standard (PCI-DSS) is speci�cally mentioned, and others
hinted at. �e presence of a security expert team and the listed
security activities – secure design and coding, threat modeling and
risk management, security testing, and security considerations at
requirement and release phases – are all among to common security
activities performed when meeting standard requirements [see e.g.
18].

5 RESULTS
�e purpose of this study was to outline and identify the security
activities used in agile so�ware development. �e papers selected

Pre-
Requ

ire
men

t

Requ
ire

men
t

Desi
gn

Im
ple

men
tat

ion
Test

ing

Rele
ase

2

4

6

8

10

7

4

10

6

3

8

Ac
tiv

iti
es

Figure 1: Distribution of the activities by life cycle phase

for this study represent the whole development life cycle, from the
project inception to the release. Secure DevOps delivery model
was not in the central focus of the study, but was still found to be
directly supported by at least one of the proposed methods. Our
key �nding can be summarized in the secure agile development
life cycle: every phase of a so�ware development project has been
e�ectively covered by at least one agile security activity, including
iterative architectures along the multitude of activities used in the
development and release phases.

An adjusted total of 38 individual security activities were identi-
�ed in these studies, of which 34 were present in more than one
case. Even the least used activities have their uses: for example,
while nominating a security o�cer or using a separate ‘red team’
for security testing can not be considered agile at all, they represent
established industry processes and provide intrinsic value for the
security process. Some distinctively non-agile activities may addi-
tionally be required by security regulation and therefore accepted
as a form of customer requirement.

�e security activities presented in each study were extracted and
placed in the rudimentary life cycle model presented in [4] and [2],
which in turn closely represents the phases used in Microso� SDL.
Some of the activities were grouped into main activities, and some
more generic activities, such as the iterative security architecture
in [6] were considered to contribute into several activities in the
requirement and design phases. �e resulting set of activities and
the coverage of the agile security development life cycle is presented
in Figure 1.

An overview of the gathered security activities is presented in
Table 3. Certain activities, such as fuzz testing and red team testing,
were combined under other activities, in these cases under ‘Perform
SW security fault injection testing’ and the generic ‘Identify and
implement security tests’, respectively.



ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy K. Rindell et al.

Table 3: Security activities in life cycle phases

Phase Activity Occurrences Source(s)
Pre-requirement

Specify operational environment 1 [9]
Identify global security policy 1 [9]
Institute security awareness program 3 [9], [24], [2]
Monitor security practises 1 [9]
Research and assess security solutions 1 [9]
Build information labeling scheme 1 [9]
Project security o�cer 1 [16]
Pre-Requirement phase adaptations total 9

Requirement
Identify user roles and requirements 5 [4], [6], [9], [16], [2]
Perform security analysis of requirements 5 [4], [6], [9], [16], [2]
Specify resource-based security properties 2 [6], [16]
Requirement inspection 1 [4]
Requirement phase adaptations total 13

Design
Risk estimation 3 [3], [16], [2]
�reat modeling 2 [3], [16]
Document security design assumptions 5 [4], [6], [3], [16], [2]
Detail misuse cases 7 [11], [4], [5], [6], [24], [3], [16]
Apply security principles to design 4 [5], [6], [24], [2]
Specify DB security con�guration 0
Perform security analysis of system design 3 [4], [6], [2]
Design UI for security functionality 0
Annotate class designs with security properties 1 [16]
�ality gates 1 [2]
Design phase adaptations total 26

Implementation
Coding standards 3 [4], [16], [2]
Pair programming 2 [24], [16]
Integrate security analysis into build process 1 [2]
Implement and elaborate resource policies 0
Implement interface contracts 0
Address reported security issues 1 [16]
Implementation phase adaptations total 7

Testing
Identify and implement security tests 6 [11], [4], [24], [3], [2]
Perform security function usability testing 1 [4]
Perform SW security fault injection testing 1 [2]
Testing phase adaptations total 8

Release
Manage system security authorization agreement 1 [3]
Perform source level security reviews 3 [4], [3], [16]
Verify security a�ributes of resources 1 [3]
Manage certi�cation process 1 [3]
Perform code signing 2 [3], [2]
Build operational security guide 2 [3], [2]
Manage security issue disclosure process 3 [11], [3], [16]
Repository improvement 1 [4]
Release phase adaptations total 14
Adjusted total number of security activities 38



Busting a Myth: Review of Agile Security Engineering Methods ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

A majority of the actions, 30 of the 38 in total, were selected from
CLASP as presented and adapted to agile in [20]. Corresponding
SDL, Common Criteria and Touchpoints activities are combined
under the de�nition provided in CLASP. Selection of the security
activities should always based on the task at hand rather than a
popularity contest, yet the number of their uses was recorded. A
low number of occurrences, 0 or 1, suggests a more uncommon
adaptation of the activity, and a higher number can be interpreted
as an indication of wider adoption. �e top activity list of security
actions looks as follows; in case of a tie, all the most used activities
are listed.

• Pre-requirement: Institute security awareness program
(security training)

• Requirement: Identify user roles and requirements (role
matrix), Perform security analysis of requirements

• Design: Detail misuse cases (abuser and security stories)
• Implementation: Coding standards
• Testing: Identify and implement security tests
• Release: Perform source level security reviews (static code

reviews)
Security activities in the design phase appear especially widely

adapted to agile development, with a total of 26 documented imple-
mentations. �e placement of abuser and/or misuse stories were
present majority of the (in 8 of 11). Although some sources bucketed
all stories into the implementation phase, they were considered to
belong to the design or planning phase of each iteration or sprint.
Pre-requirement phase had 9 implementations, while there were
16 found in the requirement phase. Implementation and testing
phases are more tool oriented, but had still 11 and 13 implemented
activities across the analyzed studies. Release phase, with static
code reviews and strong emphasis on security assurance tasks, had
21 total security activity implementations. In total, the whole cycle
of so�ware development process appears well covered.

6 DISCUSSION
�e �ndings implicate that while adoption of agile so�ware de-
velopment methods has been perhaps slower in the security �eld,
but nevertheless it has largely already happened. �e perceived
discrepancy between agile values and security requirements has
largely been solved, and both security activities and agile methods
– and the experts utilizing them – have adapted to their integrated
use. �e original intention was not to inspect the agile security
‘myth’, yet the theme occurred in so many papers, especially in
the earlier ones, that we decided the time has come to o�cially
declare the death of of the incompatibility myth. One probable and
much-cited origin or at least a propagator of the unsuitability myth
is the of Viega and McGraw’s book published in 2002 [23], in which
a thorough and meticulous pre-planning is emphasized, and agile
methods found to be lacking in this aspect. In the light of current
studies, however, the con�ict appears to be more theoretical than
practical or technical.

Certain limitations are acknowledged in the selected approach:
the articles were selected from the result set in common digital
libraries, and the source material is far from complete. Addition
of non-academic sources might have produced rather interesting
results and potentially well-documented cases, yet the search of this

study was limited to peer-reviewed articles. It is to be noted that an
unexplored body of work with further – or contrary – evidence may
not have been included in the result set, excluded from the source
material. �e invariably positive view of agile secure activities in all
of the surveyed articles can also be a re�ection of publication bias:
cases in which the agile methods are found not to be suitable for the
task at hand are perceived to be failures and do not get published.
Also, access to restricted environments and projects may be limited,
and publication of the results withheld. Furthermore, certain types
of the so�ware products and organizations may provide easier
access to empiric evidence.

From strictly agile security engineering point of view, the evi-
dence gathered by this study appears bipartite: theoretical models
support the use of security engineering activities in agile so�ware
development, whereas empirical evidence is sporadic and largely
incomplete. Also, concrete security or quality metrics collected
from the use of these activities appears to be absent. No examples
of properly documented cases of agile security engineering in a
security standard regulated se�ing, either from internal or exter-
nal point of view, were included in the result set. While alarming,
this can also a�est to either a publication bias, incompleteness of
the source material included in the selected digital libraries – or, a
research gap.

7 CONCLUSIONS AND FUTUREWORK
In the light of this study, the practise of security engineering appears
well adapted to and widely used with agile so�ware development
methods. Some of the activities have been modi�ed to be�er suit
iterative development model, and, based on the literature, much at-
tention has been paid to retain the agile nature of the development
process despite of the added security activities. �e o�en-repeated
myth of agile methods’ incompatibility or inherent unsuitability for
security tasks has been e�ectively been broken already in the �rst
observed study, published in 2004 [24] - yet the myth is perpetuated
for years a�er this well up until mid-2010’s. �e �eld of secure
agile so�ware development is still fragmented and organization
speci�c, largely due to highly adaptable nature of the agile methods.
A wide industry survey concentrating on agile security activities
would help identifying the key agile security practises and con�rm
the �ndings outlined in this study. Also using other than peer-
reviewed academic sources would provide an interesting ground
for hypotheses, to be veri�ed with a scienti�c method. Finally, a
distinctive similarity between security and safety activities implies
an increase in the general quality of the so�ware products created
with security-augmented processes. �e impact of security activ-
ities on the measurable quality of so�ware and so�ware projects
should also prove to be an interesting research subject.

REFERENCES
[1] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. 2002. Agile so�ware

development methods - Review and analysis. Technical Report 478. VTT PUBLI-
CATIONS.

[2] Tigist Ayalew, Tigist Kidane, and Bengt Carlsson. 2013. Identi�cation and Evalu-
ation of Security Activities in Agile Projects. Springer Berlin Heidelberg, Berlin,
Heidelberg, 139–153. DOI:h�p://dx.doi.org/10.1007/978-3-642-41488-6 10

[3] L. b. Othmane, P. Angin, H. We�ers, and B. Bhargava. 2014. Extending the Agile
Development Process to Develop Acceptably Secure So�ware. IEEE Transactions
on Dependable and Secure Computing 11, 6 (Nov 2014), 497–509. DOI:h�p://dx.
doi.org/10.1109/TDSC.2014.2298011

http://dx.doi.org/10.1007/978-3-642-41488-6_10
http://dx.doi.org/10.1109/TDSC.2014.2298011
http://dx.doi.org/10.1109/TDSC.2014.2298011


ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy K. Rindell et al.

[4] Dejan Baca and Bengt Carlsson. 2011. Agile Development with Security Engi-
neering Activities. In Proceedings of the 2011 International Conference on So�-
ware and Systems Process (ICSSP ’11). ACM, New York, NY, USA, 149–158. DOI:
h�p://dx.doi.org/10.1145/1987875.1987900

[5] Gustav Boström, Jaana Wäyrynen, Marine Bodén, Konstantin Beznosov, and
Philippe Kruchten. 2006. Extending XP Practices to Support Security Require-
ments Engineering. In Proceedings of the 2006 International Workshop on So�ware
Engineering for Secure Systems (SESS ’06). ACM, New York, NY, USA, 11–18. DOI:
h�p://dx.doi.org/10.1145/1137627.1137631

[6] Howard Chivers, Richard F. Paige, and Xiaocheng Ge. 2005. Agile Security
Using an Incremental Security Architecture. Springer Berlin Heidelberg, Berlin,
Heidelberg, 57–65. DOI:h�p://dx.doi.org/10.1007/11499053 7

[7] Bart De Win, Riccardo Scandariato, Koen Buyens, Johan Gr�goire, and Wouter
Joosen. 2009. On the secure so�ware development process: CLASP, SDL and
Touchpoints compared. Information and So�ware Technology 51, 7 (2009), 1152 –
1171. DOI:h�p://dx.doi.org/10.1016/j.infsof.2008.01.010 Special Section: So�-
ware Engineering for Secure SystemsSo�ware Engineering for Secure Systems.

[8] Tore Dybå and Torgeir Dingsøyr. 2008. Empirical Studies of Agile So�ware
Development: A Systematic Review. Inf. So�w. Technol. 50, 9-10 (Aug. 2008),
833–859. DOI:h�p://dx.doi.org/10.1016/j.infsof.2008.01.006

[9] Xiaocheng Ge, RichardF. Paige, Fiona Polack, and Phil Brooke. 2007. Extreme
Programming Security Practices. In Agile Processes in So�ware Engineering
and Extreme Programming, Giulio Concas, Ernesto Damiani, Marco Sco�o, and
Giancarlo Succi (Eds.). Lecture Notes in Computer Science, Vol. 4536. Springer
Berlin Heidelberg, 226–230. DOI:h�p://dx.doi.org/10.1007/978-3-540-73101-6
42

[10] ISO/IEC. 2014. Information technology - Security techniques - Evaluation criteria
for IT security ISO/IEC 15408:2008. (2014).

[11] Vidar Kongsli. 2006. Towards Agile Security in Web Applications. In Companion
to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems,
Languages, and Applications (OOPSLA ’06). ACM, New York, NY, USA, 805–808.
DOI:h�p://dx.doi.org/10.1145/1176617.1176727

[12] Sherlock Licorish, Johannes Holvitie, Rodrigo Spinola, Sami Hyrynsalmi, Jim
Buchan, �iago Mendes, Steve MacDonnell, and Ville Leppänen. 2016. Adoption
and Suitability of So�ware Development Methods and Practices - Results from
a Multi-National Industry Practitioner Survey. In 2016 Asia-Paci�c So�ware
Engineering Conference (APSEC). IEEE.

[13] Microso�. 2017. Agile Development Using Microso� Security Development
Lifecycle. (2017).

[14] Microso�. 2017. Security Development Lifecycle for Agile Development. (2017).
[15] OWASP. 2017. So�ware Assurance Maturity Model. (2017).
[16] T. D. Oyetoyan, D. S. Cruzes, and M. G. Jaatun. 2016. An Empirical Study on

the Relationship between So�ware Security Skills, Usage and Training Needs in
Agile Se�ings. In 2016 11th International Conference on Availability, Reliability
and Security (ARES). 548–555. DOI:h�p://dx.doi.org/10.1109/ARES.2016.103

[17] Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen. Case Study of Agile Se-
curity Engineering: Building Identity Management for a Government Agency.
International Journal of Secure So�ware Engineering 8 (��), 43–57. Issue 1.

[18] Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen. 2015. A Comparison of
Security Assurance Support of Agile So�ware Development Methods. In Proceed-
ings of the 16th International Conference on Computer Systems and Technologies
(CompSysTech ’15). ACM, New York, NY, USA, 61–68. DOI:h�p://dx.doi.org/10.
1145/2812428.2812431

[19] Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen. 2015. Securing Scrum
for VAHTI. In Proceedings of 14th Symposium on Programming Languages and
So�ware Tools, Jyrki Nummenmaa, Outi Sievi-Korte, and Erkki Mäkinen (Eds.).
University of Tampere, Tampere, Finland, 236–250. DOI:h�p://dx.doi.org/10.
13140/RG.2.1.4660.2964

[20] Sonia, Archana Singhal, and Hema Banati. 2014. FISA-XP: An Agile-based Inte-
gration of Security Activities with Extreme Programming. SIGSOFT So�w. Eng.
Notes 39, 3 (June 2014), 1–14. DOI:h�p://dx.doi.org/10.1145/2597716.2597728

[21] Michael Unterkalmsteiner, Pekka Abrahamsson, XiaoFeng Wang, Anh Nguyen-
Duc, Syed Shah, Sohaib Shahid Bajwa, Guido H. Baltes, Kieran Conboy, Eoin Cul-
lina, Denis Dennehy, Henry Edison, Carlos Fernandez-Sanchez, Juan Garbajosa,
Tony Gorschek, Eriks Klotins, Laura Hokkanen, Fabio Kon, Ilaria Lunesu, Michele
Marchesi, Lorraine Morgan, Markku Oivo, Christoph Selig, Per�i Seppänen,
Roger Sweetman, Pasi Tyrväinen, Christina Ungerer, and Agustin Yage. 2016.
So�ware Startups – A Research Agenda. e-Informatica So�ware Engineering
Journal 10, 1 (2016), 89–124. DOI:h�p://dx.doi.org/10.5277/e-Inf160105

[22] VersionOne. 2017. 11th Annual State of Agile Survey. (2017).
[23] John Viega and Gary R McGraw. 2002. Building Secure So�ware: How to Avoid

Security Problems the Right Way. Addison-Wesley.
[24] Jaana Wäyrynen, Marine Bodén, and Gustav Boström. 2004. Security Engineering

and eXtreme Programming: An Impossible Marriage? Springer Berlin Heidelberg,
Berlin, Heidelberg, 117–128. DOI:h�p://dx.doi.org/10.1007/978-3-540-27777-4
12

http://dx.doi.org/10.1145/1987875.1987900
http://dx.doi.org/10.1145/1137627.1137631
http://dx.doi.org/10.1007/11499053_7
http://dx.doi.org/10.1016/j.infsof.2008.01.010
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1007/978-3-540-73101-6_42
http://dx.doi.org/10.1007/978-3-540-73101-6_42
http://dx.doi.org/10.1145/1176617.1176727
http://dx.doi.org/10.1109/ARES.2016.103
http://dx.doi.org/10.1145/2812428.2812431
http://dx.doi.org/10.1145/2812428.2812431
http://dx.doi.org/10.13140/RG.2.1.4660.2964
http://dx.doi.org/10.13140/RG.2.1.4660.2964
http://dx.doi.org/10.1145/2597716.2597728
http://dx.doi.org/10.5277/e-Inf160105
http://dx.doi.org/10.1007/978-3-540-27777-4_12
http://dx.doi.org/10.1007/978-3-540-27777-4_12

	Abstract
	1 Introduction
	2 Background
	3 Research process
	4 Reviews
	4.1 Security Engineering and eXtreme Programming: An Impossible Marriage? wayrynen2004
	4.2 Extending XP Practices to Support Security Requirements Engineering bostrom2006
	4.3 Towards Agile Security in Web Applications kongsli2006
	4.4 Agile Security Using an Incremental Security Architecture Chivers2005
	4.5 Extreme Programming Security Practices ge2007
	4.6 On the secure software development process: CLASP, SDL and Touchpoints compared dewin2009
	4.7 Agile Development with Security Engineering Activities baca2011
	4.8 Identification and Evaluation of Security Activities in Agile Projects ayalew2013
	4.9 FISA-XP: An Agile-based Integration of Security Activities with Extreme Programming sonia2014
	4.10 Extending the Agile Development Process to Develop Acceptably Secure Software othmane2014
	4.11 An Empirical Study on the Relationship between Software Security Skills, Usage and Training Needs in Agile Settings oyetoyan2016

	5 Results
	6 Discussion
	7 Conclusions and future work
	References

