
Surveying Secure Software Development Practices in Finland
Kalle Rindell

University of Turku
Turku, Finland

kalle.rindell@utu.fi

Jukka Ruohonen
University of Turku

Turku, Finland
jukka.ruohonen@utu.fi

Sami Hyrynsalmi
Tampere University of Technology

Pori, Finland
sami.hyrynsalmi@tut.fi

ABSTRACT
Combining security engineering and software engineering is shap-
ing the software development processes and shifting the emphasis
of information security from the operation environment into the
main information asset: the software itself. To protect software
and data assets, software development is subjected to an increasing
amount of external regulation and organizational security require-
ments. To fulfill these requirements, the practitioners producing
secure software have plenty of models, guidelines, standards and
security instructions to follow, but very little scientific knowledge
about effectiveness of the security they take.

In this paper, we present the current state of security engineering
surveys and present results from our industrial survey (n = 62)
performed in early 2018. The survey was conducted among selected
software and security professionals employed by a selected set of
303 Finnish software companies. Results are compared to a commer-
cial survey, the BSIMM version 8 and the similarities and distinct
differences are discussed. Also, an analysis of the composition of
security development life cycle models is presented, suggesting
regulation to be the driving force behind security engineering in
software industry.

KEYWORDS
software engineering, agile, security engineering, survey
ACM Reference Format:
Kalle Rindell, Jukka Ruohonen, and Sami Hyrynsalmi. 2018. Surveying
Secure Software Development Practices in Finland. In ARES 2018: Inter-
national Conference on Availability, Reliability and Security, August 27–
30, 2018, Hamburg, Germany. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3230833.3233274

1 INTRODUCTION
Information security and privacy of personally identifiable informa-
tion aremain concerns of all organizations involvedwith processing
or storing digital data. Security engineering—the systematic effort
to produce more secure computing environments [1]—is primarily
concerned with the protection of operating environments and the
post-development phases in the software life cycles. The overlap-
ping of security engineering with software engineering has been
nominal and more or less an afterthought. Security engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES 2018, August 27–30, 2018, Hamburg, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6448-5/18/08. . . $15.00
https://doi.org/10.1145/3230833.3233274

covers external reviews, pre-scheduled milestones, and formal cer-
tifications, among other related processes. By and large, these do
not contribute to the primary business requirements of software.

Several maturity frameworks, software life cycle models, and
security standards have been established. The goal of these is to
guide and commensurate software development processes towards
producing secure software systems that meet formal security re-
quirements with adequate security assurance. These include the
OpenWebAlliance Security Project’s (OWASP) Software Assurance
Maturity Model (SAMM) [17], the Building Security in Maturity
Model (BSIMM) [13, 26], a generic design-oriented life cycle model
from Synopsys, and the Security Development Lifecycle (SDL) from
Microsoft [6, 14]. Of these, only BSIMM claims to be based on em-
pirical observations by being created by observing and analyzing
real-world data from leading software security initiatives.

There is a lack of scholarly empirical research on BSIMM, and
to the best of our knowledge, this paper is the first to examine
BSIMM from a scholarly viewpoint. This study’s research objective
is to evaluate BSIMM and Microsoft SDL against the security and
software engineering practices currently used in the Finnish soft-
ware industry, and contributes to research on the linkages between
software and security engineering.

To this end, we conducted a survey among software profes-
sionals in selected software companies in Finland and asked for
their security practises. The survey was conducted by presenting a
comprehensive list of software security engineering activities to
the survey respondents. The respondents were asked to rate these
based on their usage, and to estimate the perceived effectiveness
of these activities, and their impact upon security. The rest of the
paper is structured as follows: section 2 briefly reviews the related
work. Results are presented in Section 3 and discussed in Section 4.
Conclusions follow in the final Section 5.

2 BACKGROUND
2.1 Secure Software Engineering
Software engineering has primarily been concerned with the ef-
fectiveness of software development and the means to effectively
create features and functionality that fulfill the software’s primary
‘business’ objectives [7, 8]. At the risk of over-generalization, in
the grand scheme of things, security has been traditionally seen
as a secondary objective that falls to the parent field of computer
science [3]. Traditionally security engineering was seen as a part of
system engineering, a more technical and non-theoretical subject
primarily concerned with the task of protecting software systems
from security threats. If software security was recognized as an
explicit goal, it was seen as a subdivision of software quality im-
provement efforts. The actual software security was introduced af-
ter a software product had already been released and deployed. The

https://doi.org/10.1145/3230833.3233274
https://doi.org/10.1145/3230833.3233274
https://doi.org/10.1145/3230833.3233274

ARES 2018, August 27–30, 2018, Hamburg, Germany Kalle Rindell, Jukka Ruohonen, and Sami Hyrynsalmi

primary goal was to protect the operating environment, whether
computers or networks, by guaranteeing confidentiality, integrity,
and availability.

Introduction of maturity models, such as ISO/IEC SSE-CMM [9],
in the 1990s, formalized a systematic approach towards security
integrated into the software development processes. However, since
the introduction of these quality and security improvement efforts,
software development processes have undergone a comprehensive
paradigm change. Managing software project and its risks is no
longer based on careful pre-planning and evaluation (and likely
rejection) of change requests, but rather adapting to the change [2].
Another prominent trend in software development methodologies
is concentration on the functionality, or ‘value’. In this frame of
thinking, security requirements are prone to gaining less attention,
or even being dismissed as secondary. In these agile and lean terms,
anything that is not recognized as producing value, is treated as
waste [18]. Tendency to disregard, possibly without even recogni-
tion or understanding of the security requirements has proven to be
a serious challenge to software security engineering. The paradigm
change, starting in the mid-1990s, coincided with the vast increase
in Internet-connected programmable devices and complexity of
the software. This was prominently demonstrated by Microsoft,
whose Windows 95, 98 and XP operating systems suffered from an
enormous amount of security flaws and vulnerabilities [6].

This lack in software security was recognized and partially reme-
died by new efforts to mix software engineering and security engi-
neering at the development phase. A substantial early contribution
was the introduction of Security Development Lifecycle (SDLC) by
Viega and McGraw in 2002 [26]. Microsoft, learning from their fail-
ures, also published a design-centered SDLC around mid-2000s [6].
McGraw and partners later went on to introduce the Building Se-
curity In Maturity Model (BSIMM) in 2009. This model is based on
industry surveys, and provides a set of best practises for software
security development and organizational security processes.

2.2 Related surveys
Stavru [23] has pointed out certain shortcomings in industry sur-
veys in the field of software engineering. The key points of their
analytic framework are here applied to the BSIMM. First of all, we
do not know who answered the survey. The BSIMM does provide
industry verticals (business areas where the participant companies
belong) and good demographics about them, but does not clearly
state who answered and what was her role. There is a mention of
109 executives and “more than 80 individuals”, but no details are
provided about details. Nor is it clearly stated what were the ques-
tions asked. To overcome these shortcomings, our survey adheres
to the guidelines and good practises presented in [23].

The background information states that the companies have had
a Software Security Group (SSG) initiative in place for about four
years. The BSIMM does good job in providing links of how the SSG
should be constructed, what kind of experts it should contain, and
how it should be led, but tells very little of individual SSGs. The
median size of the group is stated to be 5 (smallest 1, largest 130),
and average size is 11.9 – but on top of that, all that we know is
their average age and that there are 109 of them.

Finally, BSIMM describes itself as descriptive, not prescriptive. In
other words, BSIMM provides a balanced scorecard for consulting—
thewinners and losers of a “software security popularity contest”. In
BSIMM, security activities are divided into four main domains: gov-
ernance, intelligence, SDLC Touchpoints, and deployment. The fo-
cus in our survey is in SDLC Touchpoints, introduced in McGraw’s
2006 praiseworthy book on software security [11]; its relationship
to BSIMM is further explained by McGraw in [12]. Touchpoints are
SSDL practises consisting of architecture analysis, code reviews
and security testing, the building blocks of software security en-
gineering. From a software engineer’s point of view this contains
the development-time activities and shapes the software security
engineering processes and activities. There are, however, activi-
ties involved in all four domains of BSIMM in our survey – some
directly worded after the BSIMM activities, some closely related.
Based on our results, however, BSIMM appears to provide a some-
what biased view on software security. This is likely due to the
simplified way they have chosen to report the usage of software se-
curity activities in their survey. Also the choice of respondents is an
important factor; unlike BSIMM, our survey targeted software de-
velopers in general, whereas BSIMM appears to have a strong focus
on security-oriented companies, and specifically on executives.

Software development practises in general have been extensively
surveyed in Finland [21] and elsewhere [10]. Security education and
security skills have recently been charted in Finland [22]. On the
other hand, surveys about security software development process
appear almost nonexistent. Besides BSIMM’s surveys and reports,
there exists very little evidence on how—if at all—software security
is actually implemented during software development. This gap
is unfortunate (and somewhat odd) compared to the substantial
body of empirical research on software development processes
gathered over the decades of its existence. To fill this gap, and
to provide comparability with the previous studies, our survey,
labeled “Secure Agile Survey”, was aimed to confirm the software
development practises in combination of 40 suggested development-
time security activities.

3 RESULTS
The results are disseminated by first discussing the survey design
and the activities observed. After this brief discussion, the main
empirical points are delivered by focusing on the reported use of
the activities and their perceived impact on software security.

3.1 Materials
The results presented are a part of a larger web survey on security
engineering practices and agile software development processes
currently used in Finland. The survey is structured into three main
categories: (a) the background of the respondents and their organi-
zations; (b) the typical agile software development processes used
in the organizations; and (c) the security engineering practices used.
All of these categories are linked. In particular, respondents were
instructed to consider only those software projects that were im-
plemented by using both agile and security engineering processes.
While keeping this point in mind, this paper focuses on a subset of
the security engineering practices.

Surveying Secure Software Development Practices in Finland ARES 2018, August 27–30, 2018, Hamburg, Germany

Table 1: Security activities in the survey.

Phase Source Activity
Requirement

Other Identify user roles and requirements
SDL Establish security requirements
BSIMM Create a data classification scheme and inventory
BSIMM Security requirement review
SDL Set quality gates
BSIMM Translate compliance constraints to requirements
VAHTI Define application goal and criticality
SDL, VAHTI Application’s security and privacy risk analysis
VAHTI Business impact analysis

Design
SDL, VAHTI, BSIMM Threat modeling
SDL Design requirements established
Other Abuse or misuse cases
VAHTI Architecture and Application Development Guidelines
VAHTI Application security configurations specified
VAHTI, SDL Attack surface analysis and reduction
VAHTI Application Security Settings Definitions

Implementation
BSIMM, SDL Use coding standards
SDL Approved tools
SDL Static analysis
SDL Deprecation of unsafe functions
Other Security specific hardening sprints
VAHTI External interface review
BSIMM Use automated tools along with manual reviews
VAHTI Documentation of security solutions

Verification and Validation
*VAHTI Security specific test cases
SDL Fuzz testing
*BSIMM Penetration testing
SDL Dynamic analysis
SDL Attack surface review
VAHTI Review security testing plans
VAHTI Code reviews during testing
VAHTI Automated testing tools

Release
BSIMM Code signing
SDL Incident response plan created
BSIMM Documentation required by regulations
*VAHTI Internal security audits
*VAHTI External security audits
SDL Formal certification
*VAHTI Security patch planning

Items marked with * are differently worded than corresponding BSIMM activities.

The initial questionnaire was piloted with a small set of profes-
sional security engineers and researchers. Based on their feedback,
the draft questionnaire was adjusted regarding questions that were
found to be hard to understand. After this iterative development,
the questionnaire was posted in December 2017 via email to several
Finnish software companies and engineers working in these compa-
nies. In addition, the survey was promoted online by asking people

to forward it to interested parties. This promotion included also
social media platforms. After a month, reminder messages were
sent. The questionnaire was closed in late January 2018. In total, 62
usable responses were received.

ARES 2018, August 27–30, 2018, Hamburg, Germany Kalle Rindell, Jukka Ruohonen, and Sami Hyrynsalmi

Identify gate locations and gather necessary artifacts

Provide awareness training

Create a data classification scheme and inventory

Translate compliance constraints to requirements

Perform security feature review

Have SSG perform ad hoc review

Ensure QA supports edge/boundary value condition testing

Use external penetration testers to find problems

Ensure host and network security basics are in place

Identify software bugs found in operations
monitoring and feed them back to development

Use (%)

0 20 40 60 80 100Finnish survey
BSIMM v.8

Figure 1: A Comparison of Selected Security Engineering Activities

3.2 Activities in the Survey
The surveyed security engineering activities, presented in Table 1
were drawn from established models and standards, with few ad-
ditions drawn from extant literature. However, for comparing the
results to BSIMM, a number of activities were explicitly included
from the BSIMM version 8 [13]. The other activities surveyed were
based on the Microsoft’s SDL and the Finnish governmental VAHTI
framework. The inclusion of VAHTI is particularly important in
Finland, given the country’s extensive public sector, currently un-
dergoing a large-scale digitalization process (see e.g. [15]). VAHTI
instructions for software development have been created by security
professionals by collecting best practices and security activities [25].

The BSIMM promotes a “top-12” list of organizational security
activities, which are expressed as “activities that ‘everybody’ does”.
According to BSIMM’s argument, a security practise can be formed
by selecting three activities from each of their four domains; one
of these domains is a security development lifecycle model, the
SDLC Touchpoints which resides directly within the scope of our
survey. Microsoft does not explicitly state the criteria how the
activities were selected into the SDL. the model has not received
any significant changes since its creation. The focus at Microsoft
appears to have been simplicity, scalability and applicability to
various organizations and products [6]. VAHTI instructions for
software development contain a comprehensive set of security
activities, largely based on best practises; the usage and impact of
VAHTI instructions for software development has been analysed
in [20]. The activities in these models have a significant overlap,
mainly due to the generic nature of the Microsoft SDL. BSIMM
claims to be descriptive whereas VAHTI is prescriptive to the level
of a de facto national standard.

Our survey was activity and lifecycle based and the questions
were grouped by the SDLC phases. Primary purpose was measur-
ing their usage, and for activities they had used, the respondents
were asked also for an evaluation of their effectiveness. The 40 in-
cluded security activities were divided into five development phases:
requirement elicitation, design, implementation, verification and
release. Of the 40 activities five were word-for-word picked from
the BSIMM top 12 using their distinctive nomenclature. Further
five were included in or similar to the activities picked from SDL or
VAHTI. As we concentrated on development-time activities, user
training was asked giving a yes/no option regarding the security
training given by their current organization; the results may not
be directly comparable.

Activities of the SDL were also prominently featured, with 11 of
SDL’s 15 development-time activities selected, added with the train-
ing activity with the same notes as above. Rest of the activities are
selected from VAHTI, complemented with three common security
activities, selected from software security engineering literature
as reviewed in [19]. These activities are labeled as ‘Other’ in Table
1. As security activities are rather universal, there was also some
overlap with certain activities stemming from multiple sources. As
usage data of the other models does not exist, our comparison is
necessarily specific to BSIMM.

3.3 Actual Use
Most of the ten BSIMM-related activities examined were surveyed
with a Likert-scale. The only exception is a question about security
awareness and training provided by the respondents’ employers.
This question was asked with a dichotomous scale: either security
training was provided or it was not provided. A five-level scale

Surveying Secure Software Development Practices in Finland ARES 2018, August 27–30, 2018, Hamburg, Germany

was used for the other activities: a given activity was used system-
atically, mostly, sometimes, rarely, or never. For these activities,
the respondents were asked to frame their answers with respect
to those software projects that used both agile processes and secu-
rity engineering practices. The selected activities are the ones in
the Finnish study overlapping with the BSIMM’ top-12 practices,
directly available for comparison.

For comparing the survey results and the usage frequencies col-
lected from the recent BSIMM report [13], all survey answers that
indicated at least some usage were collapsed into a single category.
For each activity, the missing values were subsequently removed.
The results are summarized in Fig. 1. The comparison should be
interpreted only tentatively due to various methodological reasons,
starting from the lack of details on how the BSIMM reports are
assembled empirically. While keeping this remark in mind, most of
the ten activities align even surprisingly well between the Finnish
companies surveyed and the global software companies partici-
pating in BSIMM. However, there is a notable difference in terms
of the security awareness and training programs provided in the
companies—only about 16% of the survey respondents reported to
have received formal security training from their employers. This
observation is in stark contrast to the BSIMM results. To a lesser ex-
tent, there is a difference also in terms of identifying so-called gate
locations such as milestones and other release engineering aspects.
For all remaining activities, the usage can be reasonably interpreted
to be similar, given the comparison’s implicit but presumably wide
error margin.

Another way to look at the use of the activities is to examine how
frequently the activities were used. The original Likert-scales are
suitable for this task. The results are summarized in Fig. 2, sans the
training question with its dichotomous scale. The results are again
rather similar between the ten activities with one exception. When
compared to the other eight activities shown in the figure, ensuring
the fundamentals of host and network security was used much
more systematically. This result is not surprising. After all, doing
“software security before network security is like putting on your pants
before putting on your underwear” [13]. The Finnish respondents
seem to agree with this truism.

3.4 Perceived Impact
The use of a particular security engineering activity does not mean
that the activity would be particularly important for improving
security. For this reason, the survey respondents were also asked
to evaluate the impact of each activity upon security. As a survey
cannot answer to a question about actual security of a software
system, the term impact should be understood as the respondents’
educated opinions on the perceived impact upon security. Such
perceived impact was again solicited with a five-level Likert-scale,
ranging from a very high impact to a very low perceived impact.

There are three noteworthy observations to make from the re-
sults summarized in Fig. 3. First and foremost: for all nine activities,
the perceived impact is much higher than the corresponding use
(cf. Fig. 2). In fact, all of the activities are perceived to have at least
some impact upon security. Only a negligible amount of answers
fall into the category of very low perceived impact. Second, the
fundamental premises of host and network security match in terms

of use and perceived impact. Third, penetration testing is perceived
to have a very high impact, although this activity is only seldom
systematically used in Finland. Excluding this interesting detail,
the results largely bespeak about a mismatch between use and
impact. In other words, there is still much to improve. A possible
explanation for this mismatch relates to regulations and standards.

4 DISCUSSION
As a software development objective, security is typically imple-
mented in a way that provides various types of assurance [24], by
which it is then evaluated. Most of the software security engineer-
ing activities provide means to that end: reviews, tests, verification,
and extensive documentation produce security assurance artifacts
and act as evidence of security existence. The original idea behind
security assurance was to prove the existence of such security mech-
anisms that enforce the system’s security policies; in early security
specifications this meant primarily programmatic evidence, i.e.,
machine-produced log files [4]. Over several iterations of regula-
tion, the definition of assurance expanded to cover also various
reviews and programmer-created documentation [5].

This trend is notable in both BSIMM and the Finnish survey:
of the nine common activities, only two are direct security im-
provement activities: “Identify software bugs found in operations
monitoring and feed them back to development” (BSIMM code
CMVM1.2), and “Ensure host and network security basics are in
place” (BSIMM code SE1.2). In the software development lifecycle,
both these activities belong to phases that take place after develop-
ment. It should be well noted that feeding the found defects from
maintenance phase into the development backlog is a vital security
activity in DevOps model and links the maintenance phase directly
back to the design, implementation and verification phases.

The rest of the activities fall into category of security assurance:
two of the activities belong into domain of security testing: En-
sure QA supports edge/boundary value condition testing (BSIMM
code ST1.1) and Use external penetration testers to find problems
(BSIMM code PT1.1). Notably, BSIMM promotes the penetration
testing activities as separate from other security testing.

The rest of the activities are various reviews. At code level, expert
reviews are used to enforce coding standards and locate security
design flaws and bugs; reviews are also applied to security architec-
ture and security features. Reviews are also perceived very efficient
and cost-effective ways to improve software security [24]. The
main issue with reviews is that they are performed typically by
external personnel, which may not be available unless explicitly
required – and paid for – by the customer. This leads to two minor
conclusions about the BSIMM: first, it appears regulation-driven
with emphasis on security assurance and compliance requirements;
second, it notably promotes use of external security experts despite
one of BSIMM’s basic elements is the organization’s own SSG, or a
“security satellite”.

5 CONCLUSIONS
The foremost conclusion is clear: (a) the security engineering ac-
tivities currently used in Finland align well with the BSIMM-based
activities used in the global software industry. The reasons for this
alignment are likely also similar. Despite increased promotion for

ARES 2018, August 27–30, 2018, Hamburg, Germany Kalle Rindell, Jukka Ruohonen, and Sami Hyrynsalmi

Identify gate locations and gather necessary artifacts

Create a data classification scheme and inventory

Translate compliance constraints to requirements

Perform security feature review

Have SSG perform ad hoc review

Ensure QA supports edge/boundary value condition testing

Use external penetration testers to find problems

Ensure host and network security basics are in place

Identify software bugs found in operations
monitoring and feed them back to development

Use (%)

0 20 40 60 80 100Systematically
Mostly
Sometimes
Rarely
Never

Figure 2: A Breakdown on the Use of Selected Security Engineering Activities

Identify gate locations and gather necessary artifacts

Create a data classification scheme and inventory

Translate compliance constraints to requirements

Perform security feature review

Have SSG perform ad hoc review

Ensure QA supports edge/boundary value condition testing

Use external penetration testers to find problems

Ensure host and network security basics are in place

Identify software bugs found in operations
monitoring and feed them back to development

Impact (%)

Very high
High
Moderate
Low
Very low

0 20 40 60 80 100

Figure 3: A Breakdown on the Perceived Impact of Selected Security Engineering Activities

security and increased recognition as an important property of good
software, security engineering in software development appears
still to be driven by regulation. That is, the rationale for using the

majority of “top-12” activities surveyed can be plausibly explained
by regulation.

Surveying Secure Software Development Practices in Finland ARES 2018, August 27–30, 2018, Hamburg, Germany

The results further align ratherwell with a recent industry survey
according to which setting standards is often more important than
actually following through, external reviews are seen as important
for security, and last but not least, many companies fail to perform
desired security activities [16]. In particular, (b) the small set of
activities surveyed are actively used in Finland, but the use is still
limited compared to the perceived impact upon security. When
compared to BSIMM’s surveys, (c) security training is only seldom
used according to the results. This observation may relate to a
selection bias: according to the background information collected,
most of the respondents are professionals with more than six years
of software development experience. As all respondents have also
explicitly worked in the domain of security engineering, formal
security training may be a redundant activity for the majority of the
respondents. Finally, (d) it is worth pointing out that penetration
testing was perceived as particularly important for security. This
result is in contrast to the mentioned survey, which rather pointed
out the limitations of penetration testing when compared to code
reviews [16]. Given that penetration testing is not widely used
in Finland according to the results, the reason may relate to the
concept of perceived impact on software security. In other words,
an activity that is widely promoted by consultants and industry
associations may not correlate with the actual impact of the activity.
This remark leads to a couple of important points for both research
and practice.

First, measuring the popularity of security activities hardly con-
stitutes a maturity model. Instead of just providing a ranking, a
maturity model should describe a tangible framework for orga-
nizations to translate their security objectives and requirements
into a set measurable security activities, processes, and artifacts.
Generic security models, to-do-lists, and prescriptive processes are
necessary when the security objectives of the software develop-
ment process, and thus the software product, are based on security
regulation, laws or standards.

Second, in most software projects, security engineering activities
should be arguably based on the project’s threat models and risk
assessments, which depend on the application area, implementation
platform, and the operating environment. Instead of prescribing a
SSE process, the SSDLs would be more beneficial when they contain
a set of targeted security engineering activities. From these sets, the
software security experts would be able to pick the most effective
ones fitting their software development processes and fitting their
specific security profiles.

Software security is tightly related to the privacy of the cus-
tomers of an electronic business, and increasingly also all citizens
in an information society. Regulations will continue to drive soft-
ware security by providing a set of security objectives, but it is
in the hands of software and security practitioners to define and
implement the correct and most effective measures to achieve those
objectives. In software industry, this means setting up processes
that integrate into the development processes as seamlessly and
effortlessly as possible; optimally in the way that the benefit gained
from the security measures exceeds the cost. Building such a frame-
work should be based on universal and generic building blocks and
theoretical constructs. Further empirical research can suggest how
to put these together in a way that is beneficial in practice.

REFERENCES
[1] Ross J. Anderson. 2008. Security Engineering: A Guide to Building Dependable

Distributed Systems (2 ed.). Wiley Publishing.
[2] K. Beck. 1999. Embracing change with extreme programming. Computer 32, 10

(Oct 1999), 70–77. https://doi.org/10.1109/2.796139
[3] Edsger W. Dijkstra. 1982. Selected Writings on Computing: A Personal Perspective.

Springer-Verlag.
[4] DoD. 1983. TRUSTED COMPUTER SYSTEM EVALUATION CRITERIA. United

States Department of Defence.
[5] DoD. 1994. SOFTWARE DEVELOPMENT AND DOCUMENTATION. United States

Department of Defence.
[6] Michael Howard and Steve Lipner. 2006. The security development lifecycle. Vol. 8.

Microsoft Press Redmond.
[7] IEEE. 1990. IEEE Standard Glossary of Software Engineering Terminology. 1–84

pages. https://doi.org/10.1109/IEEESTD.1990.101064
[8] ISO/IEC. 2001. ISO/IEC 9126. Software engineering – Product quality. ISO/IEC.
[9] ISO/IEC standard 21827. 2008. Information Technology – Security Techniques –

Systems Security Engineering – Capability Maturity Model (SSE-CMM). ISO/IEC.
[10] Sherlock Licorish, Johannes Holvitie, Rodrigo Spinola, Sami Hyrynsalmi, Jim

Buchan, Thiago Mendes, Steve MacDonnell, and Ville Leppänen. 2016. Adop-
tion and Suitability of Software Development Methods and Practices - Results
from a Multi-National Industry Practitioner Survey. In 2016 Asia-Pacific Software
Engineering Conference (APSEC). IEEE.

[11] Gary McGraw. 2006. Software Security: Building Security In. Addison-Wesley
Professional.

[12] Gary McGraw. 2012. Software Security. Datenschutz und Datensicherheit - DuD
36, 9 (01 Sep 2012), 662–665. https://doi.org/10.1007/s11623-012-0222-3

[13] GaryMcGraw, SammyMigues, and JacobWest. 2017. Building Security InMaturity
Model (BSIMM), version 8. Technical Report. BSIMM.

[14] Microsoft. 2017. Security Development Lifecycle for Agile Development. (2017).
[15] OECD. 2018. Government at a Glance 2017 – Finland Country Fact Sheet. (2018).

https://www.oecd.org/gov/gov-at-a-glance-2017-finland.pdf
[16] Andy Oram. 2017. The Alarming State of Secure Coding Neglect: A Survey

Reveals a Deep Divide Between Developer Aspirations for Security and Organi-
zational Practices. (2017). O’Reilly Media, Inc. Referenced in 5th of May 2018:
https://www.oreilly.com/ideas/the-alarming-state-of-secure-coding-neglect.

[17] OWASP. 2017. Software Assurance Maturity Model. (2017). https://www.owasp.
org/images/6/6f/SAMM_Core_V1-5_FINAL.pdf

[18] Mary Poppendieck and Tom Poppendieck. 2003. Lean Software Development: An
Agile Toolkit: An Agile Toolkit. Addison-Wesley.

[19] Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen. [n. d.]. Case Study of Agile
Security Engineering: Building Identity Management for a Government Agency.
International Journal of Secure Software Engineering 8 ([n. d.]), 43–57. Issue 1.

[20] Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen. 2015. Securing Scrum
for VAHTI. In Proceedings of 14th Symposium on Programming Languages and
Software Tools, Jyrki Nummenmaa, Outi Sievi-Korte, and Erkki Mäkinen (Eds.).
University of Tampere, Tampere, Finland, 236–250. https://doi.org/10.13140/RG.
2.1.4660.2964

[21] P. Rodríguez, J. Markkula, M. Oivo, and K. Turula. 2012. Survey on agile and
lean usage in Finnish software industry. In Proceedings of the 2012 ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement.
139–148. https://doi.org/10.1145/2372251.2372275

[22] Reijo M. Savola. 2017. Current Level of Cybersecurity Competence and Future
Development: Case Finland. In Proceedings of the 11th European Conference on
Software Architecture: Companion Proceedings (ECSA ’17). ACM, New York, NY,
USA, 121–124. https://doi.org/10.1145/3129790.3129804

[23] Stavros Stavru. 2014. A critical examination of recent industrial surveys on
agile method usage. Journal of Systems and Software 94 (2014), 87 – 97. https:
//doi.org/10.1016/j.jss.2014.03.041

[24] Jose M. Such, Antonios Gouglidis, William Knowles, Gaurav Misra, and Awais
Rashid. 2016. Information assurance techniques: Perceived cost effectiveness.
Computers & Security 60 (2016), 117 – 133. https://doi.org/10.1016/j.cose.2016.03.
009

[25] VAHTI 1/2013. 2013. Sovelluskehityksen tietoturvaohje. (2013). https://www.
vahtiohje.fi/web/guest/vahti-1/2013-sovelluskehityksen-tietoturvaohje Refer-
enced 8th Oct. 2017.

[26] John Viega and Gary McGraw. 2002. Building Secure Software: How to Avoid
Security Problems the Right Way (1st ed.). Addison-Wesley.

https://doi.org/10.1109/2.796139
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1007/s11623-012-0222-3
https://www.oecd.org/gov/gov-at-a-glance-2017-finland.pdf
https://www.oreilly.com/ideas/the-alarming-state-of-secure-coding-neglect
https://www.owasp.org/images/6/6f/SAMM_Core_V1-5_FINAL.pdf
https://www.owasp.org/images/6/6f/SAMM_Core_V1-5_FINAL.pdf
https://doi.org/10.13140/RG.2.1.4660.2964
https://doi.org/10.13140/RG.2.1.4660.2964
https://doi.org/10.1145/2372251.2372275
https://doi.org/10.1145/3129790.3129804
https://doi.org/10.1016/j.jss.2014.03.041
https://doi.org/10.1016/j.jss.2014.03.041
https://doi.org/10.1016/j.cose.2016.03.009
https://doi.org/10.1016/j.cose.2016.03.009
https://www.vahtiohje.fi/web/guest/vahti-1/2013-sovelluskehityksen-tietoturvaohje
https://www.vahtiohje.fi/web/guest/vahti-1/2013-sovelluskehityksen-tietoturvaohje

	Abstract
	1 Introduction
	2 Background
	2.1 Secure Software Engineering
	2.2 Related surveys

	3 Results
	3.1 Materials
	3.2 Activities in the Survey
	3.3 Actual Use
	3.4 Perceived Impact

	4 Discussion
	5 Conclusions
	References

