

Challenges in Agile Security Engineering:
A Case Study1

Kalle Rindell2, University of Turku
kakrind@utu.fi

Department of Future Technologies
20014 University of Turku

Finland

Sami Hyrynsalmi, Tampere University of Technology
sami.hyrynsalmi@tut.fi
Pervasive Computing

PL 300, 28101 Pori
Finland

Ville Leppänen

ville.leppanen@utu.fi
Department of Future Technologies

20014 University of Turku
Finland

Abstract

This chapter describes a case of a large ICT service provider building a secure
identity management system for a government customer. Security concerns are a
guiding factor in the design of software-intensive products and services. They
also affect the processes of their development. In regulated environments,
development of products requires special security for the development
processes, product release, maintenance and hosting, and also require security-
oriented management and governance. Integrating the security engineering
processes into agile development model is argued to have the effect of mitigating
the agile methods’ intended benefits. The project case was an effort of multi-
team, multi-site, security engineering and development work, executed using the
Scrum framework and regulated by governmental security standards and
guidelines. In this case research, the experiences in combining security
engineering with agile development are reported, challenges discussed and
certain security enhancements to Scrum are proposed.

Keywords: Security, Standard, VAHTI, Infrastructure, Case Study, Scrum, Agile

1 This paper extends article “Case Study of Security Development in an Agile Environment:
Building Identity Management for a Government Agency” by Rindell, Hyrynsalmi & Leppänen
(2016).
2 Corresponding author

1. Introduction

Security regulations are an important driver in various aspects of software
development and information systems and services. Even in the cases when
formal security standards or guidelines are not strictly required the drive for
security still guides the selection of design patterns and technological
components, as well as the design and development work. Increasing diversity in
development methods, technology, and the environments where the systems are
used, have prompted organizations to follow various security standards, as well
as created the need to establish new ones to guarantee adequate security
assurance. In 2001, the government of Finland begun to issue a set of security
regulations, called VAHTI instructions3. Compliance with the instructions is now
mandatory for all government agencies and the regulation is also applied to any
information system and data connected to a VAHTI-classified system.

While the importance and use of security regulations has increased, the use of
lightweight software development processes and methods, i.e., agile
development, has become the de facto standard in the industry (VersionOne,
2016). While there exists a series of suggested methods how to conduct security
engineering activities in an agile project (see e.g. Baca & Carlsson, 2011;
Beznosov & Kruchten, 2004; Fitzgerald, Stol & Sullivan, 2013; Ge, Paige, Polack &
Brooke, 2007; Pietikäinen & Röning, 2014; Rindell, Hyrynsalmi & Leppänen,
2015:1), the empiric evidence is still largely anecdotal and the cases reported
specific to an industry or a single company. The study reported in this paper is
exploratory, and thus the research, by its nature, explorative. This study reports
the experiences in agile development in a security-regulated environment. The
research objective (RO) is:

RO: Identify advantages, best practices and the possible disadvantages of
using agile software development methodologies in security engineering.

The results contribute to the on-going discussion by being a result of a deep
analysis of combining security engineering with an agile method in an industry
setting. Furthermore, the result of this study pave the way for further work
deepening our understanding on the benefits and drawbacks of using agile
software development methodologies in security sensitive development work.

In the case examined, a Scrum project was conducted with the objective of
building an IDM system for information systems compliant with the security
regulations. This included building a secure compliant server platform to host
the IDM; the same platform would be utilized also to host the client’s other
information systems. Also software development projects’ infrastructure would
be hosted on the same platform, although with certain (unrelated) dispensations
from the client’s security regulations.

The project was executed from 2014 to 2015, spanning over 12 months.
Depending on the tasks in each sprint, the team was split into two to three

3 https://www.vahtiohje.fi/web/guest/home

geographically dispersed groups. The client, a government agency that initiated
the building of the platform, mandated the project to be managed by unmodified
“textbook version” of Scrum. This called for strict adherence to fixed-length
sprints, well-communicated product and sprint backlogs and daily progress
monitoring by the Product Owner, and the steering group watching over all the
ongoing projects. The project was under strict control of the Project Management
Office, and schedules of related infrastructure and software development
projects were depending on the results of this project. Compliance with the
government regulation, VAHTI, was a central objective of the project. In addition
to VAHTI, the client agency had also their own additional security demands, as
well as recommendations from other government agencies, most importantly the
National Cyber Security Centre's (NCSA-FI)4 security instructions. The server
platform to be built was to be acceptable for use for all government agencies, as
well as private companies or organizations requiring similar level of VAHTI
compliance.

This paper presents how Scrum was applied for the security-related work
required in the project, the challenges that were met, and how the project was
overall conducted. As observed, not all the objectives of using “pure” Scrum were
not met; therefore, suggestions are made to improve the efficiency of the
development work by e.g. introducing rudimentary security engineering
extensions to the Scrum framework. These extensions include a new role for a
security developer. In addition, use of specific security sprints and other
security-oriented additions are suggested. We also discuss how the introduction
of the security engineering activities into the project affect cost, efficiency and
the conduct of the project.

Chapter 2 will present the related work and standards, as well as clarify the
motivation for the study. The Scrum process and some useful security
augmentations to it are presented in Chapter 3. This is followed by an
explanation of the research process, and the description of the case. In Chapter 6,
an analysis is presented, and the last two chapters conclude the study with
discussion and proposals for future work.

2. Background and motivation

A software development process model depicts how development work is
divided into smaller parts and how those are managed. In addition, the method
may define different artefacts, tools, ceremonies and practices that should be
used. Currently, agile software development methods form the current state of
the art in software development projects, whereas the security standards
regulating software development processes, such as ISO/IEC 21817 (2008) and
ISO/IEC 27002 (2013) originate in the time preceding the agile methods.

4
https://www.viestintavirasto.fi/en/cybersecurity/ficorasinformationsecurityservices/ncsa-
fi.html

Based on the literature, the typical approach to agile security engineering is to
simply start using the methodology at hand without formal adjustments – the
observations made in this particular case follow this same pattern. In the
literature, notable exceptions of thorough and formal approach to security
engineering are described e.g. by Baca & Carlsson (2011) and Fitzgerald & al.
(2013). There are even well documented cases of attempts to achieve formal
ISO/IEC capability maturity level incorporating agile methods, such as Diaz,
Garbajosa & Calvo-Manzano (2009). Unfortunately, the findings and suggestions
made in these studies were not directly applicable in a project that was not
strictly restricted to software development.

Instead, a more ad hoc approach was used by the project team of this case study.
In this approach, the security-related tasks are treated simply as any other items
in the backlog: the security requirements are converted to tasks, given story
points, and completed among the other items as best seen fit. In cases when
security items could not reasonably be time-boxed, because of the inherent
uncertainties in the work estimate – or the inexperience of the team – they were
separated from the Scrum sprint cycle and completed in non-time-boxed spikes.
This was a common pattern throughout the project, and a notable motivation to
examine if the project could have benefited from the ´divide and conquer’
approach enforced by restricting the tasks to the length of a sprint. Although
technically spikes conform to the Scrum methodology, this can also be seen as a
partial abandonment of agile methods when performing the crucial security
tasks of the project.

While the ad hoc method may succeed in achieving “minimum viable security” by
complying with the formal requirements, it is hardly the most effective way to
achieve the goals, nor does it necessarily provide the best security assurance for
the product. Producing proper security assurance is possible with careful
planning, hindered by a lack of proper security requirement management and
security task pre-planning. Absence of these elements in the project management
methodology tend to lead to inefficiencies and consequently delays, as well as
increased development costs. Lack of proper security assurance may also
increase the amount and severity of the residual security risk during the
software system's life span.

Our argument is that by adjusting the Scrum methodology to better align with
the goals of security engineering, the security cost overhead can be reduced
while the security of the end product is enhanced, compared to traditional
sequential security engineering practices. This is achieved by incorporating the
security processes into Scrum activities, as opposed to treating them merely as
items in the backlog, by introducing new security-oriented roles into the
development team. By incorporating the security engineering activities into the
development method, the full benefit of incremental agile methods can be
utilized to achieve better efficiency ratio and, arguably, better software products.

The next subsections provide more information about the used governmental
security standard, VAHTI, and the use of Scrum methodology in development

projects requiring security standards compliance as well as the related work.
Notable similarities in the software security and safety regulations, and the ways
they are enforced, prompt a suggestion that similar methodologies are applicable
to both fields of requirement.

2.1. Related work

To the best of the authors’ knowledge, this work is among the first empirical
explorations on an industrial setting where security engineering project has
been handled with an agile method. While, e.g., Boström et al. (2006) studied
empirically on the applicability of secure enhanced XP method, they used
students in their controlled experiments. However, due to the simulative nature
of the student cases as well as limitations and imbalance of students’ skills, the
applicability and generalizability of results are limited, at the best.

Despite the lack of empirical evidence, a series of different methods and
adaptions to the existing processes have been presented. In 2004, only a few
years after the agile manifesto, Wäyrynen et al. (2004) discussed on the
applicability of and needed improvements to XP development method to a
security engineering project. Kongsli (2011) presented an approach to integrate
security mechanisms into the agile methods. Chivers, Paige and Ge (2005)
propose the use of iterative security architecture for achieving agile security.
They continued the work in Ge et al (2007) by proposing security practices for
XP.

While this research concentrates more on the overview of the issues faced in a
project including a considerable amount of security work, also more detailed
descriptions of security work have been created. Villamizar et al. (2018) have
conducted a systematic mapping of security requirements engineering in agile
development. They identify several approaches to meet these security
requirements. Among them are process adjustments, introducing new security-
related artefacts and guidelines to handle security issues – all of which were also
observed in the project reported in this article. Cruzes et al. (2017) provide
detailed empiric reports on security testing in agile development, suggesting
further awareness on security issues to improve the effectiveness and coverage
of security testing. Morrison et al. (2017) have studied how well development
teams adhere to security procedures, also measuring the security engineering
based on the time spent on security during development. Their findings are
partially consistent with the observations in this study, particularly on the strong
negative experienced effect of security tooling and security reviews on the work
schedule. Contrary to this, security documentation of the technical stack was
experienced positively in the study of Morrison et al., whereas our experience
reports indicated a clearly negative impact of the extensive documentation
requirements.

Achieving software security is a goal separate from software security, although it
is achieved by very similar means. Kasauli et al. (2018) have conducted a
mapping study of agile development of safety-critical systems, listing also the

challenges found in industry projects. Their findings have a strong resemblance
to our observations: waterfall mindset, strong focus on documentation and
reported lack of trust in agile methods were all evident in our project as well; in
practice, the waterfall mindset resulted in abandonment of iterative workflow, a
key component of agile methods, in crucial project tasks. Heeager et al. (2018)
have completed a systematic literature review of agile development in safety-
critical context. They identify four “problem areas” in the research field:
documentation, requirements, lifecycle and testing. Although their focus is more
on the quality assurance issues, the literature analysis suggests that these areas
are interdependent. In security, similarly to safety, the security requirements do
not change; however, if agile development models are abandoned because of
this, the quality improvement and other benefits of agile methods are lost
altogether, adversely affecting the implementation of requirements that do
change.

Recent works by Othmane et al. (2014), Sonia, Singhal and Banati (2014) as well
as by Rindell, Hyrynsalmi, and Leppänen (2015:2) have aimed to more complete
approach. For example, Rindell et al. (2015:2) presented an applied version of
Scrum method that fulfills the national security development requirements. Yet,
their study is also lacking an empirical evidence on the applicability of the
presented method. Thus, this study aims to explore a real-world industrial case
in order to provide first evidence on the actual applicability of agile methods in
security engineering. In the following, we will present Scrum and some of its
security enhancements as it was used by our case study team.

3. Security-augmented Scrum

Scrum is a generic agile framework, originally intended to manage software
development projects with small co-located teams. Scrum suggests that the
product to be completed is divided into smaller components, or features, based
on the customer requirements. These requirements are represented by user
stories, which are then translated into product features by the development
team. Features are then further divided into work packages or items, which are
compiled into a product backlog. Items in the product backlog are completed in
an incremental and iterative manner during short-term development sprints.
The team, consisting of the Scrum Master, the Developers, and the Product
Owner as customer's representative, determines the items to be completed
during the next 2-4 weeks sprint, consisting of daily scrums. After the sprint, the
work is demonstrated, and optionally the team performs self-assessment of the
past sprint in a retrospect event.

In this representation, the Scrum process is augmented by three major
extensions, presented in Figure 1.

Figure 1. Security-oriented Scrum process and roles (adapted from Rindell, Hyrynsalmi &

Leppänen (2015:2).

1. The role of a security developer. The security developer, or developers,

focus on the security of the product, and typically create or review the
documentation required to pass the security audits.

2. Security assurance provided by creating security artefacts, mostly
security-related documentation. They consist of security training
certificates required from the project team, but most importantly the
architecture documentation, risk management plans, test plans, test
reports, system's log files and other evidence required by the security
auditor. The audits also produce reports, which are part of the security
assurance provided for the customer.

3. Anticipation of and planning for security-related tasks. To better illustrate
this aspect of security work, security engineering activities are presented
as iterative tasks in the sprint cycle in addition to the daily scrum. It
should be noted that not all sprints may have all the security tasks, and if
the organization decides to perform security-oriented security sprints,
the daily scrum may entirely consist of security activities.

In a project using unmodified Scrum, such as the one used in this case, the
security testing, reviews and audits are viewed as normal stories in the sprint
backlog and executed as part of the daily scrum. In this view, the security tests
and audits are part of the product, as compliance with security standards and
regulations is mandatory during development time. The main shortcoming is the
difficulty or outright inability to estimate the amount of work involved in the
security activities, which merits for giving them special treatment. By
emphasizing the importance and special role of the security stories, compared to
treating them as overhead and extra burden, is prospected to produce better
results with higher efficiency. In effect, this will reduce the cost of the
development work.
VAHTI is an open and free collection of the Finnish government's security
guidelines, published on the Internet since 2001. The aim of this regulatory

framework is to promote and enforce organizational information security, risk
management and overall security competence of various government agencies,
and harmonize security practices throughout the organizations. As of spring
2016, the collection comprises of 52 documents. The following VAHTI
instructions were found to be relevant for this project:

 VAHTI 2/2009 "Provisions for ICT service interruptions and
emergencies", VAHTI (2009:2)

 VAHTI 2b/2012 "Requirements for ICT Contingency Planning" , VAHTI
(2012:2b)

 VAHTI 3/2012 "Instructions for Technical Environment Security", VAHTI
(2012:3)

Of these, only the document 2b/2012 is available in English. The other relevant
documents are made available in Finnish, and their English titles translated for
the purpose of this chapter. This also applies to much of the VAHTI terminology:
official English translations may not exist, may be inconsistent between
documents or may change over time. Even the name of VAHTI board itself has
changed at least twice after 2015, although the acronym remains unaltered.

In addition to the VAHTI requirements, the company responsible for building the
platform is audited for compliance with ISO/IEC standards 9001, 27001, 27002,
and 21817, as well as its own extensive management framework, which it makes
available for its clients for review. The company has functions in the United
States, so also Sarbanes-Oxley (SOX) act applied. SOX is mostly concerned with
the financial elements of the project, but still affected the work load of the Scrum
Master by adding certain reporting responsibilities.

VAHTI classifies the information systems into three security levels: basic,
increased and high. The server platform, where the IDM system was installed,
was built for the increased security level. Information contained in the systems is
classified into levels from IV to I, level IV being the lowest. Information contained
in a system audited for increased security level may contain clear-text
information up to level III. In this case, however, all data stored on the platform
is always encrypted despite the official classification level.

According to Hope, McGraw & Anton (2004), software security is an emergent
property, not a feature or set of features of the software. The term `security
engineering' used in this chapter comprises all security-related software
engineering tasks within a software-intensive product's life cycle. In current
standardization, these activities are categorized into three main process areas:
risk, engineering and assurance processes, as presented in ISO/IEC 21817:

Security risk process assesses the risk and aims in minimizing it by assessing
threats and vulnerabilities, and the impact they have, producing risk
information.

Security engineering process uses this information with other security-related
input to define security needs and provides solutions to fill them.

Security assurance process collects and produces evidence of security's existence,
and aims in its verification and validation.

The ultimate goal of these processes is to identify and mitigate security threats,
and define the impact and actions to be taken when the residual or unrecognized
risk is realized: what will happen if, and when, the security becomes
compromised.

In the Scrum development process both functional (business) requirements and
the non-functional (quality, architecture, environment) requirements are
transformed into a working software product. Security is typically classified as a
non-functional requirement: these are noted to receive lessened attention in the
agile methods (see e.g. Ramesh, Cao & Baskerville, 2010). However, in the case of
regulated security, the distinction between functional and non-functional
requirements becomes irrelevant, as incorporation of security requirements is
an absolute acceptance criterion for the product. The security requirements
were given as strict list of processes to put in place, functionality to implement
and artefacts (security assurance) to produce. These requirements were all
evaluated, and assigned story points in a iteration planning event; however, as
shown in the case description (Chapter 5), this process failed with certain types
of security tasks, as they could not be fitted into the rigidly time-boxed iterations.
This happened at least partially because the security experts were used to work
in a more traditional way, and where the work units (tasks) are considerably
larger and, in this case, apparently indivisible. Despite not being part of sprints,
the performers of security-related items were still adhering to the Scrum
practices, and their work was monitored in daily meetings. In the team’s
experience, Scrum provided clear and consistent improvement to the security
engineering work also in this sense.

4. Research process

This study follows a case study design method by Yin (2003), and a qualitative
research approach by Cresswell (2003). The research approach is exploratory as
there are only little empirical evidence prior this study, and acts as a research
effort towards revealing some of the mechanisms for future inquiries. For the
study, a development project utilizing agile methods in compliance with security
regulations or standards was sought out. VAHTI regulations, as a national
security standard in Finland, provided this context readily in Finland. In addition,
a project either already finished or near its ending was favored in order to
provide quick access to the challenges and solutions, and to a chance to evaluate
the success of the model used in the project. Finally, the selected case should be a
representative candidate as well as be able to produce rich information about the
phenomenon under study.

In the project case an identity management and verification service was ordered
by a governmental client, who also required the use of VAHTI security
instructions; also, their acquisition guidelines mandated use of Scrum, providing

an ideal target for research. The development work in the project was done by
following a modified version of Scrum software development method. As Scrum
is currently one of the most used development methods, the findings from this
case study can be held representative of industry practices.

The project was executed by a well-known software product development and
consultancy company in Finland. The company has a long history of and is
experienced on both agile methods as well as producing information systems for
the government. By the wish of the company, the client and the interviewees, all
participants to the project shall remain anonymous.

A post-implementation group interview for the key personnel of the selected
project was held. Semi-structured interview approach was used, where time was
given to the interviewees to elaborate their thoughts about the phenomenon
under study. The general questions concerned the scope and size of the project,
amount of the personnel involved, and the daily routines of the team.

Additionally, the security standards that were applied to the project were
gathered. The security mechanisms developed to implement the requirements
were charted, along with how they were presented to the client and auditors.
Finally, the amount of extra work caused by the security requirements was
discussed and roughly estimated, and the interviewees recounted their views of
the lessons learned in the project. The interview session also acted as a
retrospective for the whole project, where the participants were able to express
their views of positive and negative aspects of the project and the effect the
security requirements had. The results of the interview were then analyzed by
the researchers and the key observations were emphasized.

There were two interviewees: the Scrum Master and the head architect of the
project; the latter was also responsible for the design of the technical stack,
including the security features. In practice, the architect assumed a new role in
the implementation team dubbed security developer. Both of the interviewees
were essential to the project’s implementation, and the one most capable of
providing insight to the project background and its execution, as well as to
evaluate its results and level of success. The interviewees were also the only
team members that consistently participated in all of the sprints in the project,
and were involved in the project for its whole duration.

The questions posed before the interviewees were divided into three groups.
First three questions concerned the project background (Q1-Q3); following five
questions concentrated on the project process, security standards, and feedback
on the Scrum and security (Q4-Q8); and the final two questions canvassed the
interviewees' views on the project results and success factors (Q9-Q10).

The questions asked in the interview were as follows:

 Q1: Project subject and scope?
 Q2: Project resources, budget, and duration?
 Q3: Personnel locations, multi-site teams?

 Q4: What VAHTI standards were followed?
 Q5: What other security standards and regulation were included?
 Q6: Other restrictions (safety, privacy, agency specific regulations)?
 Q7: What types of steps were taken to enforce them?
 Q8: How was the security assurance verified (audited) and audit trail
maintained?
 Q9: Did the budget and schedule hold, and what was the amount of extra work
caused by security?
 Q10: What were the lessons learned?

After the interview, some complementary questions were asked via emails to
confirm certain details, but otherwise the initial interview session was deemed
sufficient for the purpose of this study. Access to exact budget or workload
figures, or system logs or other technical documentation was not made available
for research: the security classification of the platform prevented using this data
even for verification. Instead, the interviewees relied on their personal
experience and notes made during the project, and provided best estimates on
the matters in a general level accepted for publication.

5. Case description

The client agency required a VAHTI compliant IDM platform for their
information systems, and for users and system administration and management
purposes. The platform was to be built using off-the-shelf components, installed
on common open source operating systems, and deployed onto a large scalable
array of virtual servers. A similar IDM platform was built also to authenticate and
manage the identities of the administrators who manage other VAHTI compliant
servers and services, and is to be separately instantiated for regular office users
as well based on the experience and solutions gained in this project.

The IDM was deemed a critical service in respect of agency's security, privacy
and business requirements. Whereas the agency had 650 internal users
connecting to 450 separate server-side computer systems, they also manage a
sizable array of contractors with up to 12,000 users. The building project was
conducted at the same time the server platform itself was being built, which
added to the challenge in such way that all the requirements of VAHTI were to be
met by a novel implementation.

Nearly all the design and definition work was to be completed in this project. To
add to the challenge, the work was to be performed using Scrum, mainly to
ensure steering group's visibility to the project's progress, and to enable reacting
to any unexpected obstacles or hindrances met during the project execution.
Unfortunately, for the project team, the client also saw use of Scrum as a method
to change the project's scope during its execution by adding items to the product
backlog, or removing them from there, which caused certain degree of confusion
among the team and forced it to abandon some work already completed. These
aspects of Scrum projects, however, are not a security issue but of a more generic
field of project management, and therefore are not further discussed.

The development work consists of distinct phases, which were completed during
one or more iterations:

1. Definition: synthesis of the requirements, component candidate selection,
risk assessment and analysis.

2. Design: architecture design, definition of interfaces, component hardening
plans.

3. Development: component research, modification (especially hardening the
operating systems and software), and installation.

4. Testing, reviews, audits and acceptance: security testing, external audits
and formal acceptance of the product to be a part of the agency's system
portfolio. In effect, security assurance processes.

As there were no formal milestones preset at the beginning of the project, the
security gates, such as audits, were passed flexibly whenever each feature was
considered mature enough. This removed certain amount of unnecessary
overhead, as a traditional fixed milestone dates may call for the team to work
overtime, which may get costly due to pay compensations and cause delays to
other projects due to resource shortage.

5.1. Project organization

The project involved an average of nine persons at any given time: Scrum Master,
dedicated Product Owner, Security Architect (who, during sprints, was
completing tasks in the role of a developer), and the developers split into their
production teams based on location and occupation.

The service provider in charge of the project is a devout follower of ITIL5, a well-
established and recognized set of industry standard best practices for IT service
management. As is typical for an ITIL-oriented organization, the infrastructure
production teams reside in their respective “silos”, with very little
communication with other teams. Production teams were divided by their
specialization. The platform teams involved in the project were “Storage and
Backup”, “Server Hardware”, “Windows Operating Systems”, “Linux Operating
Systems”, “UNIX Operating Systems”, “Databases” and “Networks”. The IDM
application specialists came from their own team, a separate unit within the
corporation.

This Scrum project brought together the specialists from these various teams at
least for the daily 15-minute stand-up meeting – albeit most of the time virtually.
Due to teams’ multiple physically separated locations, the meetings were without
exception held as telephone conferences.

The developers participating to the project in its different phases were so
diverse that only the Scrum Master, security developer (i.e., the architect) and

5 http://www.itil.org.uk/

the Product Owner participated in each sprint throughout the project. The
developers were part of a larger resource pool and drawn into the sprints or
spikes in various phases of the project whenever their expertise was required.

Much of the work related to VAHTI regulations was done in the planning phase:
it turned out that in addition to VAHTI, the client agency had compiled their own
list of requirements, which was based on VAHTI but had new security elements
added to the public requirements. The client viewed this to be necessary to
compensate the dropping the specific requirements for VAHTI compliant
application development (VAHTI, 2013:1) in the beginning of the project.

The project extended over a period of 12 months, from planning phase to
accepted delivery of final sprint. The amount of work was measured in story
points, and the average velocity of each sprint was 43 points. Divided with the
average number of the developers (9) and the length of the sprint (15 workdays)
gives a rough estimate of a story point equaling three workdays. As an overall
measure, the story points give an impression of the size of the tasks. This sort of
conversion may not be meaningful in general and outside of the scope of a single
project, as the story points are primarily used to compare the features (or
stories) to each other within a single project. For purposes of this study, the fact
that largest single units of security work, the hardenings, were not performed in
sprints and therefore not measured in story points, makes pinpointing the cost of
security work much harder. In this case, the interviewees' estimates were the
only source of the amount of workload, and although trusted to be reliable, exact
figures would have been preferred.

5.2. Project execution

From the beginning, the team's approach to the security tasks was pragmatic,
although in terms of Scrum, rudimentary: stories that were found difficult to
time-box at the time of their implementation were taken out of the sprint cycle
and completed as spikes. Prime examples of such tasks were operating system
hardenings, a task essential for the platform security: the project team allocated
resources to these tasks, and just ran them as long as the tasks took. This
resulted in a project structure presented in Figure 2, where there were major
sidetracks to the main sprint cycle. As tasks such as these were in the very core
of the project goals, it would have been beneficial to go through the trouble or
even adjust the Scrum structure to better accommodate these items.

Figure 2. Project structure and spikes.

The sprints are represented as the main story line. The parallel lines represent
the spikes that were executed outside the main sprint structure. Their results
(deliverables) were demonstrated at a sprint demo after the spike had run its
course, although they were executed independently without time-boxing. There
were three distinct task types outside the sprint structure:

1. System hardenings, performed for each tier or environment of the system
under development: Development, Quality Assurance (QA), and
Production environments. The results obtained in the Development phase
were not directly usable for the upper environments, whereas the QA
environment was built to be production-like. As a result, the work done at
QA phase was partly reusable at Production phase. Despite the technical
similarities, the ITIL-guided maintenance models of these two
environments were so great that the team proceeded in executing the
Production environment hardenings as a spike as well.

2. Documentation was a ubiquitous process during the development. This
included risk management, technical architecture and technical
component documentation, test plans and reports. Documentation
comprised most of the security assurance. Complete list of VAHTI
requirements for documentation are presented in Appendix 3 of the
VAHTI instruction 3/20126. In this document, there are 224 mandatory
requirements listed for the increased security level information systems.
Almost all of these requirements call for some type of written evidence to
be verified and reviewed, although most of the documentation artefacts
are created in other than the development phase of the information
system's life cycle.

3. Reviews and audit were performed based on the documentation and
included physical testing of implementation.

The demand for increased security (literally, the “increased level” on VAHTI
security classification) also stated how the systems were deployed: to maintain
audit trail, all changes to the production environment, including all server and
hardware installations during its buildup, were performed following ITIL
processes. These processes added extra levels of bureaucracy, and the team
reported getting acceptance from the Change Advisory Board (CAB) for all
changes to be made in the production environment had a very adverse effect on
the deployment schedules. Combined with the policy of role separation between
developers and maintenance personnel, this caused the building and installation
of the production environment to be document-driven, bureaucratic and slow.
The policy of separating the roles of developers and maintenance effectively
prevents the DevOps type of continuous delivery maintenance model, and would
require e.g. a form of “continuous security” model, such as presented by
Fitzgerald & Stol (2014).

In this project, the continuous delivery model was used with the lower
environments, speeding the rate of delivery significantly. When building the
production environment, the flow of work assumed in previous sprints was

6 https://www.vahtiohje.fi/web/guest/708 (available in Finnish only)

disrupted, which caused unnecessary slowness and cost overhead.
Documentation necessary for the maintenance personnel was to be created
before the handover, and as such did not necessarily contain all the required
information and details. Mandatory use of ITIL processes when building the
production environment was one of the main schedule hindrances of the project
according to the interviewees.

Depending on the items in the current sprint backlog, the team was divided in
two or three geographically separated locations during the whole length of the
project. The organizational separation of the developers resulted in situation,
where even the persons based on the same location did not necessarily sit near
each other or communicate with other team members directly. The central
location for the project, and the physical location of the server platform was
Helsinki, Finland, but the team members were divided on several sites. The
Scrum Master performed most of her duties remotely, without being in direct
contact with the developers except rarely. As usual in large ICT service
companies, almost all developers were also involved in other projects at the
same time. The overall experience of the team was deemed very high, although in
infrastructure work the use of agile methods is not very common, and is
customer dependent at best. As per this fact, most personnel was mostly
inexperienced with Scrum, although they received basic Scrum training before
and during the project. Use of Scrum was reflected by the use of collaboration
and project management tools, most importantly Atlassian JIRA7 specifically
customized for the agency's use. The Scrum Master promoted and demanded the
use of JIRA as reflecting the work performed in daily sprints. The Product
Owner's most visible role was following the project's progress based on what
team members reported on this tool. In general, the team was reported to be
happy or at least content with Scrum, at least up until the production
environment-building phase where ITIL processes broke the team's workflow.

The requirements called primarily for well-documented software quality and
component and process security. Most of the additional work was directly
security related, and creating its documentation. The platform also had strict and
formal requirements for availability and reliability. Outside the security domain,
the main source of regulation-related work was duplication of all infrastructure
into the service provider's second data center. The data centers themselves, as
well as the personnel administering the system and its infrastructure were
subject to meticulous security screening. Proper level of access control was
enforced, the server rooms' CCTV system extended to cover the new servers, and
remote connection practices were reviewed. All personnel involved with the
client was to be security checked by the national Finnish Security Intelligence
Service8. Data itself must reside within the country's borders and even the
infrastructure's configuration data and work tickets in the Configuration
Management Database (CMDB) were to be made inaccessible for personnel who
are not security checked.

7 https://www.atlassian.com/software/jira/agile
8 http://www.supo.fi/security_clearances

As an infrastructure project, the main technical obstacle was securing the
hardware, operating systems, middleware and the application (the IDM system)
against security threats. The bulk of this work was performed by one of the
interviewees, the security developer. Hardening in this case covered analyzing
and removal, or blocking, of hardware and software features, and testing against
the threats. The purpose is to reduce the attack surface of the platform under
construction and protect it from both internal and external threats, as well as
minimize the components where potential future vulnerabilities may emerge.

On hardware level, hardening means controlling the network interfaces and the
surrounding local area network, routing and traffic rules. It also covers all
hardware maintenance interfaces, typically accessible through the network. On
operating system and software level, the operating system's or software
manufacturers, such as Microsoft, provide their own hardening instructions,
which were used as a baseline. These were combined with the best practices of
the consultant company's own experiences and policies, and the explicit
instructions and requirements given by the client organization. These included
uninstalling a large number of modules and services, disabling a number user
accounts and policies, and enforcing a number of others, and restricting access
and privileges throughout the system. The same principles were applied to each
software component installed on the server platform.

By definition, all access rules and user validations had to be applied to the
infrastructure services provided for the server platform; these include software
and hardware patching, network access, malware protection, hardware and
application monitoring, and backups. The inherent uncertainty of security
testing, together with the inter-dependency of the components affected by the
removal and alteration of the services and restriction of rights made predictable
time-boxing of these tasks so unreliable that the team decided to execute them as
spikes.

5.3. Cost of security work

The Scrum Master estimated that the extra work caused by the regulations was
approximately 25 to 50% of the project's total workload and, in practice, the
duration of the project. As accurate billing information was not made available
for the researchers, this was accepted as the best estimate of the real cost of the
security work. Most of the overhead comprises from the documentation of the
solutions. Security-related documentation was created by all team members:
project manager and the security developer (architect) created most of the
documentation, and the Product Owner as the client's representative made sure
that the correct regulations were applied.

Developers were burdened by creating appropriate level of security-oriented
technical documentation of all their work, especially related to operating system
and application hardening procedures. The hardening process itself lasted for
four months, presenting the largest tasks in the project. Changes to the

production environment were further complicated by ITIL’s requirement of
strict Change Advisory Board processing of each change that was made.

6. Analysis

The research objective for this study is to identify best practices as well as
hindrances of using agile software development. This case provides a good view
how unmodified Scrum lent itself to a situation, where a large amount of
regulations caused extra work with uncertainties in work estimates. Due to these
uncertainties, or the large amount of presumably indivisible work included in
some of these tasks, the team was simply not able to fit certain features into the
sprint structure. Additionally, in contradiction to traditional security view,
iterative and incremental approach to development and building forced the
project team, steering group and the client to rethink how the product’s and its
management's security assurance was to be provided. In a sequential waterfall
model, the security deliverables and tasks were tied into the predetermined
milestones, without the flexibility provided by Scrum. As presented in Figure 2,
the project was in practice executed partly following a “waterfall” model, yet
without milestones fixed in advance; these waterfall processes ran alongside the
main project, and their deliverables were then included in the project outcomes.

Based on the above, in the strictest sense the project organization failed utilizing
Scrum methodology to create the product, although the superficial requirements
were fulfilled – the client was mostly interested in progress reports and the
timely delivery of the complete and standard compliant product. The failures
were partly due to inflexibilities on both the company developing the system,
and the client demanding a formal and fixed approach to Scrum. Sprint planning
for tasks, for example, called for features to be completed during the sprint.
When this was already known to be extremely unlikely, these features were
agreed to be performed as spikes. In retrospect, this was most likely caused by
the thinking that security features were perceived as overhead and not actual
features in the product, while in reality the security features were essential to
the product itself. The resulting implementation model is partially waterfall-like.

Even without applying any formal modifications to Scrum, at least one of the
“secure Scrum” features, presented in Section 3 and
Figure 1, was taken into use, as the project architect assumed the role of security
developer. In practice, most of the physical work triggered by security
requirements was done in spikes outside the sprints. When the work is done in a
non-iterative way, just letting them run along the project, the benefits of Scrum
are lost. Based on the project manager's estimate of cost increase factor was 1.5-
2x, caused by the security features, and thus there exists a large saving potential
in rearranging the security work. Attempting a new approach and restructuring
the work into iterations is recommendable in future projects. Initial spikes are
acceptable, but in this case, the team failed to utilize the experience gained from
them, and continued to implement similar security features as spikes even after
the first one. This is represented in Figure 2 by the OS hardening spikes H1, H2

and H3. During the spikes, there was very little activity in the actual sprints, as
also documentation was done as a spike.

The team defended their selected approach by stressing the inherent differences
in the physical environment and management practices of the development,
quality assurance and production environments, but also from the undertones of
the developer's interview, it was perceivable that the attitude towards using
Scrum in this kind of project was negative to start with. Time-boxing the
uncertain tasks to three-week sprints, having to perform the demonstrations
after each sprint, and other Scrum routines were perceived to some degree as
distractions from the main work. This mentality seemed to affect some members
of the team despite the personnel was trained in the Scrum method and the tools
necessary.

During the interview, the team was uniform on the key success factors of the
project. They emphasized the importance of document management, and very
strict requirement management. The amount of overlapping and sometimes
outright conflicting security requirements even within the VAHTI requirements
increased the Scrum Master's workload substantially. Use of Scrum was deemed
to have overwhelmingly positive effect, by enabling faster reaction to changes in
the requirements and directness of the client feedback. In addition, the team
praised frequent sprint planning for the effect of keeping the team focused,
especially in contrast to the very long spikes run during the project. In
retrospect, the team regretted not utilizing the Product Owner more already in
the beginning, as direct channels to the client were viewed to be very valuable
during the implementation. Furthermore, the client's key personnel were not
always present at sprint demos, which caused unnecessary questions and
insecurity on the client's side, despite the features were already completed and
already once comprehensively demonstrated.

The effect of Scrum to the efficiency of the work was estimated very positive. The
extra cost of the security was partly compensated by the fact that rigorous
testing and documentation of the technical solutions had also a positive impact
on the quality of the work, improving the system's reliability and availability. It
can also be argued that the cost of security work is lower when it is done
proactively rather than repairing an old system or trying to recover a breached
one.

7. Discussion

There are three key findings in this study:

 First, an agile development method works in a security-regulated
environment. This study showed that is possible to develop a system with
set governmental security regulations by utilizing an agile method
(Scrum). While the evidence is based on a single case, when combined
with other evidence it shows that the oft-repeated belief of agile methods

being unsuitable for security engineering (cf. Rindell, Hyrynsalmi, and
Leppänen 2017) seems not to hold.

 Second, Scrum as a method appears highly applicable for the software
security engineering projects. In this case, only little modifications were
needed to the method for meeting the security regulation restrictions. Yet,
the team constantly faced “surprises”, and were forced to adopt new
techniques and models in order to avoid pitfalls. While this is not a hoped
approach, the adoption to surprising changes is in the hearth of agile
software development methods and the Scum's empirical software
process improvement principle.

 Third, the interviewees reported that required security routines and their
documentation took up to 25-50 % of the project’s total budget. The time
reports were not made available for researchers, yet this was the estimate
given by the project manager.

This study has presented a case of building an infrastructure and setting up an
identity management software platform for a governmental client. The client
agency had a definitive set of security regulation and requirements: the VAHTI
instructions. In addition to the government requirements, the service provider
contracted to build the system was committed to several international ISO/IEC
standards, as well as to their own management frameworks. Additionally, the
project management was burdened with complex financial reporting tools and
rules. Both the agency and the service provider's project management offices
required employing the Scrum methodology as the project management
framework. The research was conducted as post-project semi-structural
interviews, and the information was gathered based on interviewees’
experiences and personal notes of the project. The parties involved are
anonymized, and only publicly available information about the project and the
regulations involved was to be disclosed.

Scrum was initially applied in its standard form, with no formal security
extensions. Security engineering activities were integrated into the product
backlog, and performed within sprints whenever possible. During the project,
the team adapted to the security work by creating a de facto security developer
role, and many of the security engineering tasks ended to be performed outside
of the regular sprint structure. Typically, security assurance is based on evidence
gained through security testing, which also in this case had an adverse effect on
the team's ability to schedule and time-box the items that were subject to these
tests; these were performed as spikes instead. The same technique was also
applied to documentation, which was performed outside the main sprints, and
audits and reviews, which were separately scheduled one-time tasks. The results
of these spikes were still presented in sprint demos among the other artefacts
and results. The reported issues at product deployment in production
environment prompt for developing and applying a delivery model that provides
the required security assurance without the interruption to iterative
development.

The team viewed the use of Scrum as a positive factor to project cost and quality,
although arguably Scrum was not utilized to the maximum extent: important

parts of the work were done in spikes outside of the main sprint flow, without
attempts to utilize the experience gained from them to time-box the future tasks.
This was seen to benefit the project, although an iterative and more exploratory
approach to those tasks might have proved more benefits in the long term, and it
is still a possibility that the experience gained in this project can be utilized in
similar future projects. The project team still regarded the security engineering
activities and providing the required security assurance to compose a significant
amount of extra work: at final stages, the workload effectively doubled. The
initial approach in this project was more or less an unmodified textbook example
of the Scrum method, but the team applied naturally certain security extensions.
Conducting weekly product backlog refinement sessions was deemed
essential for the project's success.

This project was a model case of two large entities that have decided to fit their
organizations to work according to an agile framework. The nature of work itself
has not changed, although the introduction of growing amount of security
engineering and increasing regulation put an additional strain on the project's
requirement management. Agile methods have inherent preference to produce
working solutions instead of spending time documenting them; in contradiction
to this goal, the documentation of the solutions is a key deliverable in the field of
security. Scrum will continue to be used by both organizations. As the team's
experience grows, we also expect the cost of the secure systems development to
drop, while their quality and security gets better.

Based on the experiences gained in this case, Scrum has shown the potential to
be suitable for security-oriented development work. With certain additions and
modifications, it can be used to provide the security assurance required by the
regulators in the ICT and software industry. Especially when applied by an
organization capable to adjust itself to fully utilize the flexibility of incremental
agile frameworks, instead of partially reverting to sequential mode of operations.
We are yet to observe a pure agile project where security standards are in a
central role: truly integrating security engineering processes and security
assurance activities without losing the agile values and benefits gained by the
use of those methods is still a work in progress.

Naturally, this study has its limitations. First, the analysis is based on a single
case and overgeneralization of the results should be avoided. As study is by its
design explorative, restricting to a single case is understandable. However,
further work are needed to verify the results with new cases. Furthermore, case
studies should be extended to cover also other agile methodologies used in
software security engineering than Scrum. While Scrum is among the most
popular development methods nowadays, it still present only a handful of
different methods, tools and techniques developed inside the agile community.

Second, due to the nature of the project, non-disclosure agreements and security
classifications, the researchers could not access the project documentation and
verify the project team’s interpretations. Thus, no proper data triangulation with
written documentation could have been done.

Third, the study presents a case where software security engineering succeeded
well with a selected agile method. However, as the project faced only small
disturbances that were able overcome with simple modifications, complete view
on the methods suitability for complex security project cannot be assessed. A
comparative study with, e.g., student teams handling a complex security project
with agile, as well as traditional method will reveal more insights into this issue.

Finally, this study opens further avenues for research. Our study reported that
the development team and manager estimated that almost half of the project’s
budget was spent on the security related tasks. Regardless of the exact amount,
this finding calls for further development work on revealing the real cost of
security as well as methods and tools to reduce time spent on security issues.

In addition, while Scrum was shown to cope with security development, it is
clearly not perfect fit for the work. Thus, future work should be focused on
developing, testing and validating tools, techniques and models to extend Scrum
or other methods to be more suitable for security development projects.

8. Conclusion

This chapter presented an exploratory case study on a security development
project regarding a governmental information system with strictly regulations.
The aim was to explore whether agile was a successful approach for the
development work or not. The result shows that agile development, performed
using the Scrum method, is suitable also for security engineering work. While
drawing too far-reaching conclusions from a single case study would be ill
advised, this case still clearly contradicts the criticism against agile methods’
suitability for security engineering. Among the key factors to success were
Scum's iterative approach, enhancing the management of client’s strict security
requirements. Use of Scrum processes, artifacts and roles also improved
communication both within the team and towards the client.

In contrast, the observations also reveal certain negative issues in the Scrum
method, and the way agile values and principles are affecting the security
development. The findings of this study suggest the requirement for new tools,
techniques and models to solve the challenges and alleviate the issues in agile
software security engineering. The solutions include security training for all the
project participants, improved mechanisms to manage security requirements,
and techniques to the security tasks into iterative process.

Acknowledgments

The authors gratefully acknowledge TEKES, the Finnish Funding Agency for
Innovation, DIMECC Oy, and the Cyber Trust research program for their support.

References

Baca, D. & Carlsson, B. (2011). Agile development with security engineering
activities. Proceedings of the 2011 International Conference on Software and
Systems Process, ICSSP '11 (pp. 149-158). ACM.

Beznosov, K., & Kruchten, P. (2004). Towards agile security assurance. NSPW '04
Proceedings of the 2004 workshop on New security paradigms (pp. 47-54).

Boström, G., Wäyrynen, J., Bodén, M., Beznosov, K., and Kruchten, P. (2006).
Extending XP Practices to Support Security Requirements Engineering. In
Proceedings of the 2006 International Workshop on Software Engineering for
Secure Systems (pp.11-18). New York, NY, USA, ACM.

Chivers, H., Paige, R., and Ge, X. (2005). Agile security using an incremental
security architecture. Proceedings of the 6th international conference on
Extreme Programming and Agile Processes in Software Engineering, June 18-23,
2005, Sheffield, UK.

Creswell, J.W. (2003). Research Design: Qualitative and Quantitative and Mixed
Methods Approaches. SAGE Publications, Inc., Thousand Oaks, California, 2nd
edition.

Cruzes, D. S., Felderer, M., Oyetoyan, T. D., Gander, M., & Pekaric, I. (2017). How is
security testing done in agile teams? a cross-case analysis of four software teams.
In Baumeister, H., Lichter, H., and Riebisch, M., editors, Agile Processes in
Software Engineering and Extreme Programming, pages 201–216, Cham.
Springer International Publishing.

Diaz, J., Garbajosa, J., & Calvo-Manzano, J.A. (2009). Mapping CMMI Level 2 to
Scrum Practices: An Experience Report. Software Process Improvement, volume
42 of Comm. in Computer and Information Science (pp 93-104).

Fitzgerald, B. & Stol, K-J. (2014). Continuous software engineering and beyond:
Trends and challenges. In Proceedings of the 1st International Workshop on
Rapid Continuous Software Engineering, RCoSE 2014 (pp. 1-9), New York, NY,
USA. ACM.

Fitzgerald, B., Stol, K-J., O'Sullivan, R., & O'Brien, D. (2013). Scaling agile methods
to regulated environments: An industry case study. Proc. of International
Conference on Software Engineering, ICSE '13 (pp 863-872).

Ge, X., Paige, R. F., Polack, F. & Brooke, P. (2007). Extreme programming security
practices. Agile Processes in Software Engineering and
Extreme Programming, (pp. 226-230), LNCS 4536.

Heeager, L. & Nielsen, P. (2018). A conceptual model of agile software
development in a safety-critical context: A systematic literature review.
Information and Software Technology, Volume 103, 2018, Pages 22-39, ISSN
0950-5849.

Hope, P., McGraw, G. & Anton, A. I. (2004). Misuse and abuse cases: getting past
the positive. IEEE Security & Privacy, Volume 2, Issue 3, pp. 90-92.

ISO/IEC, (2008). Information Technology - Security Techniques - Systems
Security Engineering - Capability Maturity Model (SSE-CMM) ISO/IEC
21817:2008.

ISO/IEC, (2013). Information Technology - Security Techniques - Code of
Practice for Information Security Controls. ISO/IEC 27002:2013.

Kasauli, R., Knauss, E., Kanagwa, B., Nilsson, A. & Calikli, G. (2018). Safety-Critical
Systems and Agile Development: A Mapping Study. Accepted at Euromicro Conf.
on Software Engineering and Advanced Applications 2018, Prague, Czech
Republic.

Kongsli, V. (2006). Towards agile security in web applications. Companion to the
21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, October 22-26, 2006, Portland, Oregon, USA

Morrison, P., Smith, B,. & Williams, L. (2017). Surveying Security Practice
Adherence in Software Development. In Proceedings of the Hot Topics in Science
of Security: Symposium and Bootcamp (HoTSoS). ACM, New York, NY, USA, 85-
94. DOI: https://doi.org/10.1145/3055305.3055312

b. Othmane, L., Angin, P., Weffers, H., and Bhargava, B. (2014). Extending the
Agile Development Process to Develop Acceptably Secure Software. IEEE
Transactions on Dependable and Secure Computing 11(6): 497--509.

Pietikäinen, P. & Röning, J. (2014). Handbook of the Secure Agile Software
Development Life Cycle. Univ. of Oulu.

Ramesh, B., Cao, L., & Baskerville, R. (2010). Agile requirements engineering
practices and challenges: an empirical study. Information Systems Journal Vol.
20, No. 5 (pp. 449–480). https://doi.org/10.1111/j.1365-2575.2007.
00259.x

Rindell, K., Hyrynsalmi, S., & Leppänen, V. (2015:1) A comparison of security
assurance support of agile software development methods. Proceedings of
Proceedings of the 15th International Conference on Computer Systems and
Technologies (pp. 61-68). ACM.

Rindell, K., Hyrynsalmi, S., & Leppänen, V. (2015:2) Securing Scrum for VAHTI.
CEUR Workshop Proceedings (pp. 236-250) Vol. 1525.

Rindell, K., Hyrynsalmi, S., & Leppänen, V. (2017) Busting a Myth: Review of Agile
Security Engineering Methods. Proceedings of the 12th International Conference
on Availability, Reliability and Security (pp. 74:1-74:10). ACM.

Sonia, Singhal, A., Banati, H. (2014) FISA-XP: an agile-based integration of
security activities with extreme programming, ACM SIGSOFT Software
Engineering Notes, 39(3):1-14.

VAHTI (2009:2) ICT-toiminnan varautuminen häiriö- ja erityistilanteisiin.
URL https://www.vahtiohje.fi/web/guest/2/2009-ict-toiminnan-varautuminen-
hairio-ja-erityistilanteisiin. Retrieved 15/08/2017.

VAHTI (2012:2b) Requirements for ICT Contingency Planning.
URL https://www.vahtiohje.fi/web/guest/2b/2012-requirements-for-ict-
contingency-planning. Retrieved 15/08/2017.

VAHTI (2013:1) Sovelluskehityksen tietoturvaohje.
URL https://www.vahtiohje.fi/web/guest/vahti-1/2013-sovelluskehityksen-
tietoturvaohje. Retrieved 15/08/2017.

VAHTI (2012:3) Teknisen ympäristön tietoturvataso-ohje.
URL https://www.vahtiohje.fi/web/guest/3/2012-teknisen-ympariston-
tietoturvataso-ohje. Retrieved 15/08/2017.

VersionOne, (2017). 11th annual state of agile survey.
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-
agile-report-2 Retrieved 15/08/2017.

Villamizar,H., Kalinowski,M., Viana, M., & Méndez Fernández, D. (2018). A
Systematic Mapping Study on Security in Agile Requirements Engineering.
Published at the Euromicro Conference on Software Engineering and Advanced
Applications 2018.

Wäyrynen, J., Bodén, M., and Boström, G. (2004). Security Engineering and
eXtreme Programming: An Impossible Marriage? Springer Berlin Heidelberg,
Berlin, Heidelberg, (pp. 117—128).

Yin, R. K. (2003). Case Study Research: Design and Methods. SAGE Publications,
Inc., 3rd edition.

https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2%20Retrieved%2015/08/2017
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2%20Retrieved%2015/08/2017

