
Security Assurance in Agile Software

Development Methods:
An Analysis of Scrum, XP and Kanban

Kalle Rindell1, University of Turku

kakrind@utu.fi

Department of Future Technologies

20014 University of Turku

Finland

Sami Hyrynsalmi, Tampere University of Technology

sami.hyrynsalmi@tut.fi

Pervasive Computing

PL 300, 28101 Pori

Finland

Ville Leppänen

ville.leppanen@utu.fi

Department of Future Technologies

20014 University of Turku

Finland

ABSTRACT

Agile software development methods were introduced in the beginning of the 2000s as methods to

increase the visibility and efficiency of software projects. Since then, agile methods have become a de

facto industry standard in software development. However, fitting sequential security engineering

development models into iterative and incremental development practices in agile methods has caused

difficulties in defining, implementing and verifying the security properties of software. In addition, agile

methods have also been criticized for decreased quality of documentation, resulting in decreased security

assurance, necessary for regulative purposes and security measurement. As a consequence, lack of

security assurance also can complicate security incident management thus increasing the software’s

potential lifetime cost. This chapter clarifies the requirements for software security assurance by using an

evaluation framework to analyze the compatibility of established agile security development methods: XP,

Scrum and Kanban. The results show that the agile methods are not inherently incompatible with security

engineering requirements.

Keywords: Security, Agile Software Development, Security Assurance, Security Engineering, Extreme

Programming, Scrum, Kanban, Microsoft Security Development Lifecycle

1 Corresponding author

INTRODUCTION

During the last decade, agile software development methods have become an industry de facto

standard. The aim of these methods has been to improve efficiency as well as transparency of

software development (Abrahamsson et al., 2002). The methods promote iterative development

and informal interaction, and put a lower or even negative value to strict processes. This is

particularly stressed in cases where documentation is used as a means of communication,

whether used to convey the customer requirements to the development team, or for

communication within the team itself, e.g., in the form of specifications (Beznosov and

Kruchten, 2004; Ko et al., 2007; LaToza et al., 2006).

Introducing strict security requirements to the software development process usually results in

creation of excess security assurance, such as a formal security architecture, out of necessity to

fulfill the strict external security criteria. Integrating the security requirements, such as reviews,

security testing, processes and documentation into an agile method, the cost of the development

effort is very likely to increase (Beznosov and Kruchten, 2004). The entire extra ‘management

overhead’ is in direct contradiction with agile methods’ core philosophy of leanness and

informality (Beck et al., 2001). Thus, applying the security processes to the agile or lean

development methods has the potential of rendering the methods, by definition, something that is

neither agile nor lean.

On the other hand, the need for software security has been always one of the main drivers in

software development. While quality assurance remains a key process to ensure software

robustness, effectiveness and usability, security assurance provides the means to develop and

deploy software components and systems that protect the system’s data, their users’ privacy and

the system resources.

The operating environment of the software products and services has been evolving and

changing due to extensive use of the Internet and public services as well as the ever-increasing

pervasiveness and ubiquitous characteristic of software solutions. In addition, the software

industry itself has gone through an unprecedented shift from sequential development methods

(e.g. waterfall-type) towards iterative and incremental software development methods (e.g. agile

and lean). In addition, due to the large scale adaptation of agile methods in the industry (Licorish

et al. 2016, VersionOne 2018), the new agile development methods seem to be able to reclaim at

least some of their claimed benefits.

Furthermore, the need for security has also been realized in the form of several commercial,

international and national standards. To comply with these, several security frameworks and

security-focused development methods have been presented. However, knitting together strict

security engineering practices and adaptable agile software methods is not straightforward and

may cause remarkable problems.

Furthermore, the selection of a software development method to be used in a development

project has consequences into the software architecture and design. While the manifesto for agile

software development states that the best architectures and design emerges from self-organized

teams (Beck et al., 2001), this statement has been often criticized. For example, renowned

software engineering researcher Philippe Kruchten (2010) has repeatedly questioned whether the

concept of ‘agile architecture’ combines two incompatible approaches. In the context of security

sensitive projects, this question is even more topical as it is a hard and arduous task to embed

security into a product afterwards.

Therefore, the objective of this chapter is to study how well the selected agile methods are

adaptable to security development practices. For the purposes of this study, we have selected

three widely-used development methods, Scrum, XP and Kanban. We use Microsoft Secure

Development Lifecycle (SDL) model as a benchmark for the evaluation – as the model is

designed for high regulation environment and therefore its practices as well as the required

frequency of occurrence should define the baseline required for this kind of activities in the

industry.

These agile development methods are evaluated against a security requirement framework. The

security requirement framework is created with adaption from the Finnish governmental security

instructions, named VAHTI (VAHTI, 2016). The evaluation framework presented in this study

consists of 22 different security requirements, selected from the instructions from software

development. The compliance of the selected development methods is then evaluated against the

requirements of VAHTI, and the applicability and adaptability of the ‘security-enhanced’

methods themselves are evaluated. In this analysis, SDL’s activities and their properties are used

to guide the analysis.

The remaining of this chapter is structured as follows. The next section discusses shortly on

different software development methods as well as related work. It is followed by a presentation

of the evaluation framework and VAHTI security regulation as defined by Finnish government.

After that, the results of applying the presented evaluation framework into XP, Scrum and

Kanban are presented. Finally, in the last three sections the findings are discussed, future

research avenues presented, and the study summarized.

BACKGROUND

The security claims of a software product or a service need to be backed with evidence; it cannot

be declared only by the developer. To verify the security claims stated by the software, evidence

is gathered through several activities such as reviewing the software, documentation written

during the development, and processes as well as through security testing, and security auditing.

Combined, these requirements create a need for the software developers to be able to choose a

development methodology that supports not only the creation of software for the selected

software domain, but also satisfies the security requirements (SAFECode 2012). Preferably, this

is done in the most efficient way possible, taking into account the organization and the

operational environment. In software development, efficiency is gained by close integration to

the utilized development methodology.

In the following, we will first take a look on different agile software development methods later

studied in this chapter. It is followed by a review of related studies done in examining security

engineering in agile software development context.

Software development methods

A series of different kinds of software development methods have been presented (Abrahamsson

et al., 2002). In our use, a ‘software development method’ defines how a software development

process is divided into different phases, how the phases are arranged, and what kinds of artefacts

are produced during the different phases. Instead of more traditional methods, as so-called

‘waterfall’ and spiral models, our focus turns on modern lightweight development methods

labelled as agile.

For this study, we have chosen three agile software development methods: Extreme

Programming (XP), Scrum, and Kanban. These methods were selected as they are among the

most popular and most used ones in the latest surveys (Licorish et al. 2016) as well as they have

been the among the most popular ones during the last decade (cf. VersionOne 2013, 2018). That

is, these methods can be interpreted to present the core of agile software development methods.

All of these methods can be considered archetypes of agile software development methods, with

strong use base in the industry. Thus, they are also eligible candidates for development work

carried out in highly regulated environments.

In addition to the selected agile methods, we take a look on Microsoft’s SDL model that acts as a

reference point for the evaluation. As the SDL model is designed especially for highly regulated

information security environments, it should lay the needed level of security engineering

activities in software projects.

Extreme Programming. XP is one of the first and most widely used agile development models.

The XP method principally consists of a collection of practices and values; that is, it does not

define strictly how the actual development process should be carried out (Beck, 1999). In

addition, XP promotes a number of techniques, such as 40-hours week, iteration planning game,

test-first development and small releases.

However, the guidelines given by the method are quite practical, such as the use of pair

programming or continuous integration. Popularity of the XP method, especially in the beginning

of the first decade of the 21st century, has spun attempts to bring security elements into the

method. Previous work of security enhancements into the XP method consist of security-related

user stories and abuser stories in the planning phase (Boström et al., 2006; Ge et al., 2007).

Scrum. Scrum can be considered as the current mainstream of the software industry (see

VersionOne, 2018). The method defines certain roles for the team members, their responsibilities

as well as certain tools, activities and a loose framework for the development process. The

development work is divided into sprints that usually last from two to four weeks. (Schwaber,

1995, 2004)

In the extant literature, earlier examples of security enhancement to Scrum consist of loosely

SDL-based security features specifically aimed for regulated environments, such as in a case

presented by Fitzgerald et al. (2013). These features and processes include ‘hardening sprints’,

which consist entirely of security-related planning and documentation, and regulation-driven

security and quality assurance reviews and checks. This methodology includes new roles that are

not included in baseline Scrum. Scrum has been selected due to its overwhelming popularity in

the current software development industry (VersionOne, 2013, 2018).

Kanban. Kanban, much like XP, can be understood simply as a set of development concepts,

ideas and principles, rather than a tightly-defined set of processes, practices and roles. It

therefore provides a rather flexible framework for development, focusing on the work flow: the

work flow is visualized, the amount of work in progress is limited, and the development lead

time is measured. This helps the developers to stay informed of the work backlog, aims to ensure

that the team members do not get overloaded, and provides metrics to optimize the development

time. Kanban is typically combined with more prescriptive methods, leading into creation of e.g.

Scrumban (Nikitina et al., 2012) and other hybrid methods.

Security Development Lifecycle. Microsoft’s effort to improve the security of their software

has led them to develop their own security framework, the Security Development Lifecycle

process. SDL is based on iterative spiral model borrowed from and adaptable to agile

methodologies (Microsoft, 2012; Baca and Carlsson, 2011).

The approach selected in the SDL, when adapted without modification, is quite heavy on

processes, documentation and organization – a contrast to the agile methods discussed above.

This forms part of the motivation of this study, aiming to identify the minimal set of SDL

elements required to fulfill the security requirements. SDL divides activities into three

categories: one-time requirements, bucket requirements and every-sprint requirement. The

naming of the categories appears to suggest that SDL for Agile is meant for Scrum or Scrum-like

methods. SDL emphasizes the use source code static analysis tools as the principal security

activity, followed by threat modeling and security testing.

Related Work

A starting point for the research was formal categorization of security aspects for software

development, and conducting a feature analysis using DESMET (Kitchenham et al., 1997).

DESMET framework was presented in the 1990s for evaluation of software development

methods. The evaluation may be quantitative or qualitative, and based on experiments, case

studies, screenings, effect analyses, feature analyses or surveys. The nature of this study

suggested a screening feature analysis, with easily quantitative results: the requirement is either

fulfilled or not, and each method and security process is analyzed as a simulated case study,

based on expert opinions and without instantiation.

Beznosov and Kruchten (2004) earlier used a similar approach; however, they did not use

established security criteria or framework, nor an external evaluation criteria. In addition, there

exists a number of studies concerning secure software development concept in general, also

covering the topic of security-focused testing (Fitzgerald and Stol, 2014). Furthermore,

Abrahamsson et al. (2003) made an early contribution comparing agile software development

methods by their suitability for different stages of development life cycle, and their support for

project management — both important aspects from the security point of view. In their study,

security engineering was not considered per se, as they focused more on general issues in

different agile software development methods.

Regarding more specifically literature on security engineering in agile software development, a

series of work has been presented (cf. Rindell et al., 2017b). A common nominator for the earlier

literature seems to be an approach of documenting a proprietary corporate software development

method, or even specify own development method (e.g., Baca and Carlsson, 2011; Boström et

al., 2006; Rindell et al., 2015). For example, Baca and Carlsson (2011) also compare existing

software methodologies, including SDL, with a proprietary method, and claim also a new

proprietary method of their own. In addition, for instance Vuori (2011) discusses how IEC 61508

standard can be used to improve agile software development methods’ suitability for a safety-

critical development environment.

Furthermore, Wäyrynen et al. (2004) discusses whether security engineering approach can be

implemented into XP development method at all. They also discussed certain activities – e.g.,

static code reviews, security policies –that might need to be included into XP to make it more

security engineering friendly. Boström et al. (2006) continued this topic and proposed the use of

abuser stories and security-related user stories as a part of XP to make it more suitable for

security engineering.

Similar approach has been utilized by Köngsli et al. (2006), who notes the mismatch between

requirements for security engineering projects and agile software development. Yet, the study

does not specifically discuss on the claimed shortcomings. Nevertheless, the study reviews a

bulk of literature and lists several different security activities that should be taken into account.

Chivers et al. (2005) also note the mismatch between XP and security engineering. Their

proposal is iterative security architecting to maintain a ‘good enough’ (from a security point-of-

view) architecture during iterative and incremental development work. Also Ge et al. (2007) aim

to improve security engineering in XP through security training and security architecture. Their

security activities include, e.g., security stories.

Adelyar and Norta (2016) and Adelyar (2018) adopted a different approach and studied what

kind of security challenges there are in agile methods. Their results show that there are certain

developer and customer activities that might enable the presence of security flaws in the software

product.

De Win et al. (2009) used an alternative approach and focused on three security engineering

standard processes in the field: CLASP, SDL and Touchpoints. Their focus is on these practices

and whereas they acknowledge, e.g., XP, it is not clear how well the studied cases are suitable

for mainstream software security engineering projects with an agile approach. Ayalew et al.

(2013) continue this work and focus on cost-benefit analysis. However, their work produces also

a list of comparable agile security activities.

Sonia et al. (2014) assigns an agility value to different security engineering activities. In their

analysis, all security activities studied are seem to be incompatible with at least one modern agile

activity. Thus, their work further emphasizes the difference and incompatibility of security

engineering and agile software development methods.

Othmane et al. (2014) propose their own secure agile development method for continuous

security. Their approach is to adapt different security engineering activities in each development

sprint in order to guarantee that the software produced in each iteration is secured.

In addition, empiric research has been conducted on the impact of agile methods on software

security (Alnatheer et al., 2010). There also exists case studies in adapting Scrum-based methods

in an environment with strict formal security regulations (Fitzgerald et al., 2013; Rindell et al.,

2016, Oyetoyan et al., 2016).

The study by Fitzgerald et al. (2013) discusses security regulations and Scrum in considerable

depth, yet only within the scope of a single company and a single development method. The case

study by Rindell et al. (2016, 2017a) focuses also on a case using Scrum-based method but it is

as well restricted by the scope of a single project. Oyetoyan et al. (2016) studied two

organizations using Scrum in their development work. The focus of the study is on the skills,

trainings and experience of the development teams. The study shows that security awareness

improves the use of security activities in the development work.

To summarize the review of related work, it can be noted that there are a series of work devoted

for improving different aspects of security engineering in agile software development methods.

However, a common claim seems to be that agile methods are inherently insecure and

inapplicable for security engineering (Rindell et al., 2017b). Yet, there is a lack of work

addressing whether this can be considered to be true or just a myth.

This study takes an alternative approach and aims to evaluate the vanilla versions of different

agile software development methods against a security engineering framework. To depart from

the previous work, that have assumed the insecurity of these methods, we instead use an industry

standard (i.e., VAHTI regulation) as a baseline for defining security activities needed.

EVALUATION FRAMEWORK

This chapter aims to assess how well agile software development methods are suitable for

security engineering projects by using a nationwide criteria and new development methods, and

the SDL security framework as a benchmark. In contrast to most of the previous approaches,

security is in this chapter considered to be an absolute requirement for software. In the agile

method terminology, security is considered an essential part of the customer satisfaction, which

the agile methods aim to promote (Beznosov and Kruchten, 2004).

We concentrate on the challenges this brings into the development process and the quality

assurance closely associated with security controls. This study also makes the security

requirement more specific by using a well-established security criteria, VAHTI, and inspecting

the applicability of the selected software methodologies to comply with this criteria. The term

‘security assurance’ is used to describe the drive to mitigate security vulnerabilities in a

measurable and evidence-backed way, comparable to the term ‘quality assurance’, which aims to

mitigate software discrepancies in general. In a regulatory context, security assurance conveys

also the meaning of security proof, referring to written security documentation and e.g. logs.

The specific set of security requirements used in this chapter is based on VAHTI (literally

translated ‘Guard’, a mnemonic acronym in Finnish for ‘Government Information Security’)

security regulation. VAHTI is one of the earliest and most comprehensive sets of open and

public information system security regulations. The instructions consist of 51 documents,

published since 2001, aiming at covering the whole life cycle of the governmental information

systems. The guideline covers also various aspects of information systems management,

governance, use, and, ultimately aid implementing Finland’s national information security

strategy, published in 2009.

VAHTI instructions specify three security levels (‘basic’, ‘increased’ and ‘high’). The

instructions were originally targeted only for government’s internal information systems work;

due to public sector’s integral part in the Finnish society, VAHTI is in the process of becoming a

de facto security standard in any information system that interacts with a governmental system.

VAHTI exists to harmonize the security requirements among the public institutions, a set of

national standards has been developed, based on standards such as ISO/IEC 27002 (ISO/IEC,

2013), and derived from Systems Security Engineering – Capability Maturity Model (ISO/IEC

standard 21827, 2008). These requirements aim to cover the life cycle and various use cases of

the public information systems, and span over several dozen public documents.

VAHTI was selected due to two main reasons. First, the selection of a governmental regulation

that is in active use in Finland allows us to focus on aspects and activities that are actively used

in the industry. That is, instead of developing an own evaluation framework from the scratch, we

depart from the previous work by using an existing and widely-used instruction set in our

analysis. Second, VAHTI allows us to focus on a more comprehensive picture of a security

engineering instead of a single standard. While this also forces us to select the suitable criteria

for the evaluation of the software development methods, the evaluation framework based on this

kind of an instruction set should be more general than one based on a more narrow standard.

For developing the evaluation framework for this study, we focused on all VAHTI criteria in

different phases and regulation levels. VAHTI security criteria for application development

comprises the whole life cycle of software. The complete list of security requirements in VAHTI

includes 118 activities (FMoF, 2013). This list was analyzed through by the authors and relevant

criteria for the software development methods were selected. The selection was made based on

the relevance of the requirements to the software development method: the selected criteria are

either requirements for the documentation, reviews or the development process itself.

We excluded requirements that did not directly relate to the software development method or

approach used. For example, requirements for handling data storage as well as physical access to

the server room are not relevant for the software development method’s point-of-view. That is,

those can be handled regardless of the development method used.

The only selected organizational requirement, the one for security training, was included due to

the fact that SDL as well as previous work (e.g., Ge et al., 2007 and Oyetoyan et al., 2016)

emphasizes this as a security-enhancing mechanism. Furthermore, it may affect the development

roles in the software development method.

From the complete list of VAHTI’s security requirements, 22 activities directly concerning the

software development methods were selected. The selected security requirements are presented

in Table 1. The table also links each requirement back to the respective VAHTI security level.

We evaluate each criteria through four dimensions: i) requirements integrality in a development

method, ii) requirement’s frequency of occurrence in the development work, iii) level of

automation and iv) cost of performing or carrying out the requirement. Each of these dimensions

are clarified more in the latter.

In the evaluation, we study whether each requirement is i) an integral part of the method; ii) the

method can be adjusted to support the requirement; or iii) the method is incompatible with the

requirement or there are needs for improvement in the method. This evaluation was done by the

authors discussing and analyzing how well the requirement can be implemented in each of the

selected software development methods. All authors are expert in software engineering and it

was required that a mutual agreement needed to be reached before continuing.

The other assessment criteria of the frequency requirement for each technique is defined as it is

by SDL. That is, the analysis of these requirements needed frequency is based on how often SDL

requires them to be used. The frequency is encoded into three values: i) one-time requirements;

ii) bucket requirements and iii) every-sprint requirements.

Each task is further ranked to either Automated, Semi-automated or Manual. Semi-automated

means the bulk of the work is done by automated tools, which in turn may require a considerable

amount of manual configuration. This analysis is based on the description in the VAHTI

instruction set and it is subjectively evaluated by the authors. However, the authors mutually

agreed on the level of the automation during the analysis.

Cost is calculated by multiplying the level of automation with the frequency of the task. The cost

of security requirement’s, that has to be carried out only one-time during the project and which

can be easily automated, would be considered as a very low. Similarly, manual requirement that

has to be carried out in each sprint would be considered as a very high in its cost. The remaining

combinations are similarly categorized into the following scale: Very Low, Low, Medium, High,

and Very High.

Table 1. The evaluation framework’s criteria

No. Criterion VAHTI level

1 Application Risk Analysis Basic

2 Test Plan Review Basic

3 Threat Modeling Basic

4 Goal and criticality Increased

5 Business Impact Analysis Increased

6 Documentation of Security Solutions Increased

7 Application Security Requirements Increased

8 Application Security Settings Definition Increased

9 Security Testing Increased

10 Security Auditing Increased

11 Architecture guidelines High

12 External Interface Review High

13 Use of Secure Design Patterns High

14 Attack Surface Reduction High

15 Architectural Security Requirements High

16 Internal Communication Security High

17 Security Test Cases Definition High

18 Test Phase Code Review High

19 Use of Automated Testing Tools High

20 Security Mechanism Review High

21 Application Development-time Auditing High

22 Security training High

RESULTS

Table 2 summarizes the Scrum’s, XP’s and Kanban’s compliance with each security requirement

in the evaluation framework. In addition, Table 3 reports each criterion’s level of automation and

estimated cost as this was found an important factor. In the following, we will discuss on the

central observations based on these analyses.

Table 2. Compliance of XP, Scrum and Kanban with different security requirements presented in the

evaluation framework

No. Requirement XP Scrum. Kanban

1 Application Risk Analysis Integral Integral Integral

2 Test Plan Review Adaptable Adaptable Adaptable

3 Threat Modeling Integral Integral Integral

4 Goal and Criticality Adaptable Adaptable Adaptable

5 Business Impact Analysis Adaptable Adaptable Adaptable

6 Documentation of Security

Solutions

Adaptable Adaptable Adaptable

7 Application Security

Requirements

Integral Integral
Integral

8 Application Security Settings

Definition

Adaptable Adaptable Adaptable

9 Security Testing Integral Integral Integral

10 Security Auditing Adaptable Adaptable Adaptable

11 Architecture guidelines Adaptable Adaptable Adaptable

12 External Interface Review Integral Integral Integral

13 Use of Secure Design Patterns Integral Integral Integral

14 Attack Surface Reduction Integral Integral Integral

15 Architectural Security

Requirements

Integral Integral Integral

16 Internal Communication

Security

Integral Integral Integral

17 Security Test Cases

Definition

Adaptable Adaptable Adaptable

18 Test Phase Code Review Integral Integral Integral

19 Use of Automated Testing

Tools

Integral Integral Integral

20 Security Mechanism Review Adaptable Adaptable Adaptable

21 Application Development-

time Auditing

Incompatible Incompatible Incompatible

22 Security training Adaptable Adaptable Adaptable

The three first criteria (Application Risk Analysis, Test Plan Review and Threat Modeling) of the

framework can be considered as a basic requirement for all kinds of application development

projects. That is, Application Risk Analysis is an essential security element and it has been or it

can be well integrated into all methods. Yet, it can be done only manually as SDL requires it to

be carried out in each iteration. Therefore, it is costly.

Test Plan Review is an internal security activity in which the personnel reviews the test plan. All

of the studied development methods support this integrally while its cost is high. Threat

Modeling consists of compiling the list of the threats and keeping that up to date during every

sprint. This is a cornerstone activity of SDL and essential to any security related development

project. The activity provides a baseline for risk analysis and guides architectural choices, among

other things. The threat ‘landscape’ is dependent on the software’s intended users and use

environment. This is essential to all methods and easily integrated to them. This requirement was

not mandatory even at VAHTI’s highest level, which can be considered as a clear omission to

the instruction set. A potential explanation to this could be the restrictions in the availability of

threat modeling tools. Alternatively threat modeling can be performed as a manual task using

e.g. Microsoft’s STRIDE mnemonics for component analysis. In this approach, the system and

its components are reviewed for security threats in the categories of Spoofing, Tampering,

Repudiation, Information disclosure, Denial of Service, and Elevation of Privilege.

Table 3. The level of automation, frequency of occurrence and relative cost of the evaluation framework’s

security requirements

No. Requirement Level of

automation

Frequency Cost

1
Application Risk Analysis Manual

Every

sprint
Very high

2 Test Plan Review Manual Bucket High

3
Threat Modeling Manual

Every

sprint
High

4 Goal and Criticality Manual One-time Low

5 Business Impact Analysis Manual Bucket Low

6 Documentation of Security

Solutions
Manual Bucket Low

7 Application Security

Requirements
Manual Bucket High

8 Application Security Settings

Definition
Manual Bucket High

9
Security Testing Automated

Every

sprint
Medium

10 Security Auditing Manual One-time Low

11 Architecture guidelines Manual One-time Low

12 External Interface Review Manual Bucket High

13 Use of Secure Design Patterns Manual One-time Low

14
Attack Surface Reduction Manual

Every

sprint
Very high

15 Architectural Security

Requirements
Manual One-time Low

16 Internal Communication

Security
Semi-automated

Every

sprint
Medium

17
Security Test Cases Definition Manual

Every

sprint
Very high

18
Test Phase Code Review Manual

Every

sprint
Very high

19
Use of Automated Testing Tools Automated

Every

sprint
Very low

20 Security Mechanism Review Manual One-time Low

21 Application Development-time

Auditing
Manual One-time Low

22
Security training Manual

Every

sprint
Very high

The following six criteria (i.e., the requirements from number 4 to 10 in Table 1) can be

considered to be essential to all security engineering projects with increased information security

alertness. With the notable exceptions of Application Security Requirements and Application

Security Settings Definition, the cost of these requirements is estimated to be low in a

development project.

The Goal and Criticality requirement means classification of the software and documentation of

its purpose. Both XP and Scrum were found lacking in this respect while the Scrum-based

methods are more readily adaptable to produce planning phase documentation. Kanban-based

methods are also considered adaptable.

Business Impact Analysis is basically method independent requirement, and as such, considered

adaptable to all methods. This document should be produced in the planning phase, and updated

during the implementation when the application’s incremental threat analyses implicate further

threats to the business environment.

Documentation of Security Solutions is a direct requirement to communicate the security

requirements to the developers through documentation. All agile methods are fundamentally

against this approach, and will need improvement to be able to take into efficient use.

Document on Application Security Requirements is a high-level description, covering the

criticality of the information handled by the software, threat analysis, and other functional

security requirements. All security related development methods were deemed to support

creation of this document in the planning phase. Similarly, Application Security Settings

Definition is an extensive documentation step, where all the software settings, interfaces,

administration steps, test data, encryption details etc. are listed and thoroughly documented. A

suggested action would be a separate documentation sprint, to be added into the agile methods.

On one hand, Security Testing states that security testing should be incorporated into the standard

testing procedure. This requirement is supported by all methods. On the other hand, Security

Auditing is a requirement for Increased and High VAHTI levels. Furthermore, it requires an

external auditor. This requirement was included due to its strain on the development process,

mainly through architecture auditing. Also this requirement is supported by all selected methods.

The remaining twelve criteria can be considered to be essential for a software development

project where information security requirements are extremely high. As the VAHTI instruction

set is defined by a governmental agency, it is not a surprise that special emphasizes has been put

on these requirements. Furthermore, on average these requirements are more costly to carry out

than the ones belonging essentially in the increased security category.

Architecture guidelines define the principles guiding the application development, in this context

especially from the security point of view. This requirement is adaptable to all development

methods. External Interface Review is an analysis of the software’s external interfaces and

comparison to architectural and application level principles. All methods support the

performance of this action. Use of Secure Design Patterns mandates classifying the software due

to its architecture type, such as client-server, mobile, web or embedded application. The design

pattern is then selected based on the architectural type. All of the studied methods support this

requirement.

Attack Surface Reduction includes identifying and analyzing all software functionality where the

participants cannot completely trust each other, such as open services, user or administrator

actions or database connections. All methods support this step. Architectural Security

Requirements mean analysis of the application’s architecture against known or anticipated

threats. All methods support this requirement. Internal Communication Security concerns

especially applications utilizing multi-tier architecture and ties the deployment of the application

into the development phase. Largely method independent planning-phase activity, but still

supported by each method.

Security Test Cases Definition is an absolute requirement for almost all security-related

development, and VAHTI gives here specific instructions how the test cases should be defined,

such as use of empiric evidence, known issues and several sources. This requirement is adaptable

to all methods. Test Phase Code Review is informally performed by the internal security

personnel, and documented either separately or even straight into the source code. This

requirement is also supported by all of the studied methods.

Use of Automated Testing Tools is more or less standard practice for all agile software

development, regardless of the used methodology. On the security side, the tools include fuzz

testing tools, vulnerability scanners, code analyzers and continuous integration tools. This

requirement is quite naturally supported by all three included agile methods.

Security Mechanism Review is a code-level review of how security components are

implemented. Basically it is method independent, but may be difficult to implement in iterative

methods as after changes this review has to be done again. As such, this activity might require a

specific hardening sprint, as a time-consuming activity like this may be difficult to fit into the

work flow.

Application Development-time Auditing is a high-level security audition at various points of

application development. Intrinsically a waterfall-type approach, causing difficulties with

iterative methods. Security training means organizing purpose-oriented and role-based training

for the personnel responsible for the application development, such as the product owner,

developers and testers. This requirement is adaptable to all of the studied methods.

DISCUSSION

The three agile methods (Scrum, XP and Kanban) studied in this chapter were found to have

certain issues with adaptability of security tasks. Repetitive (i.e., multi-sprint or every-sprint)

documentation and review tasks were found specifically incompatible with these methods. While

a theoretical examination cannot establish concrete benefits gained from the use of agile

methods, it was deemed unjustifiable to claim that their use would have an adverse effect on

security assurance. Instead, use of agile prompts including security items e.g. in the user stories

and integrating them into the backlog as a part of regular conduct of an agile development

project. All three methods were found inherently compatible with or adaptable to all planning

and implementation phase activities. Incorporating security reviews and auditing into the

iterative development processes proved to be a tougher issue. The SDL prompts these activities

to be completed in “each and every sprint”, or “the sprint is deemed incomplete”. However, the

wording of the SDL has since 2015 been altered, and the word sprint is no longer used as a

synonym for release, which is the current term. It appears that Microsoft, too, has awoken to the

reality in which not every agile sprint produces a released version of software.

When compared to the previous work in the field, this study is produces somewhat different

results, explained by the different research approach. Whereas the previous work has been

focused on defining more or less a ‘perfect’ method for agile security engineering and

underlining all possible obstacles, we adapted a different route for our analysis. Instead of a rigid

model, this study concentrated on the aspects that are needed to be changed in order to use a

popular agile method in a development project that needs to fulfill governmental security

development instructions. That is, we were looking for a ‘good enough’ solution and the result

shows that mismatch between agile methods and security engineering might be too harshly

reported. Especially the concerns of agile methods’ compatibility with formal requirements can

be quite readily dismissed based on a theoretical analysis only.

Nevertheless, the use of studied agile methods clearly requires quite heavy process

customization, in order for them to be applicable to projects with formal security requirements.

The key findings were that continuous security planning, in the form of iterative design and

architecture activities, has the most potential to improve the security of the finalized product. On

other hand, at the higher security levels, incorporating every-sprint security reviews make it

difficult to retain the ‘agility’ of a method – and formal auditing requirements worsen this

situation altogether. Incorporating the ‘hardening sprints’, suggested by e.g. Fitzgerald et al.,

(2013), or focusing on security only in the planning phase of the project (Boström et al., 2006;

Ge et al., 2007), may simply lead to superficial fulfillment of the requirements, potentially

leading to security issues afterwards. Methodology-based evaluation suggests that security

assurance is best achieved through investing in both planning and implementation tasks.

Scrum is the only one of the methods that include any kind of role definitions. Security

methodologies, on the other hand, tend to have specific role definitions and push for strict

separation of duties. Table 4 presents a summary of key tasks and properties required from a

security assured software development method. The table states whether the selected methods

have the roles defined (Yes or No), or support the extension of existing roles to cover the more

security-specific one. This comparison reveals a more worrying side of the secure agile methods,

especially regarding role definition.

Table 4. Security task role definition

No Task XP Scrum Kanban

1 Security specialist roles defined No Yes No

2 Documentation and guidelines produced Yes Yes Yes

3 Support for development time security reviews No Yes No

4 Support for delivery time security reviews No Yes No

5 Compliant development process roles defined No No No

SDL defines several security roles for the development team, such as reviewer/advisor, auditor,

expert, and team champions. It also promotes strict and vigorous separation of duties, all while

the agile methods typically define only a minimum set of roles or none at all. Scrum, in its basic

form, defines only the roles of Product Owner, Developers and the Scrum Master. Of these, the

Developer is the most appropriate one to assume the responsibilities of a security specialist. This,

however, is a clear violation of the industry standard ‘separation of duties’ rule: the developers

themselves are rarely the best persons to break their own code. This approach is anti-agile in two

ways: teams not sharing information is a clear violation against the agile philosophy, and having

separate teams working in parallel bogs down the development speed while increasing the cost.

The same lack of defined security roles also characterizes XP and Kanban, all while giving

organizations more freedom in choosing the development tools, mechanisms and processes.

In addition, the message in the studied literature is clear about certain benefit of employing agile

methods to develop security-oriented software: developing the software in numerous iterations

towards the finalized product may actually improve security assurance, as the product is kept

potentially shippable after every sprint – an agile ideal, although rarely achievable. This greatly

helps in tracking the changes in security development and detecting possible security threats. In

addition, the promoted use of automated testing and other tools is an inherent part of security

development, directly applicable also to fuzz testing.

FUTURE RESEARCH DIRECTIONS

This study opens new fruitful research avenues for future development in security regarding

software architecture and design fields. While there are different adaptations defined and

presented for secure agile software development, there is a lack of empirical evidence and test

regarding these adaptations. Future work should be aimed to develop usable agile software

development improvements that comply with the requirements of security engineering.

Furthermore, this kind of a development work should incorporate the ‘good enough’ principle in

order to keep the benefits achieved with agile methods. If the method aims for too good or too

strict security process, it might be that transparency and efficiency of agile methodologies will be

lost.

In addition, this chapter calls for a new kind of thinking into the security engineering. While

security is and will be a main driver in many, if not in all, software development projects, also

other aspects are important. These include, e.g., efficient and fast development. The current

development in this field has been based purely on the security engineering perspective and

much of the realism in the industry is bypassed. Therefore, especially in the agile security

engineering field a new fresh start is needed for defining, e.g., cost-efficient solutions and

integrating security engineering practices into other activities. While improving awareness has

been showed to have good effect on security engineering, lightweight solutions could also work.

The limitation of this study is a lack of empiric evidence, and the logical next step would be to

instantiate the methods and possibly include more of them. While security should be based on

‘defined’ rather than ‘empiric’ logic, practice will show not only the applicability of the methods

themselves, but also the real cost of security mechanisms to the development process. Security

cost is becoming increasingly necessary to pay, as Finland’s public sector’s software security

regulations show. As the cost of development is much smaller than rewriting and refactoring an

existing code base, integrating the security processes to the development method is crucial. The

ultimate objective should be nothing less than finding a framework for the software developers to

choose the correct set of roles, methods and processes for each situation and purpose.

CONCLUSION

This study used established and widely-used Finnish government’s security criteria, VAHTI, as a

basis for evaluation of three approaches to software development for a regulated environment.

Selected security framework was Microsoft SDL and the methods XP, Scrum, and Kanban.

Research objective of this study was to use lightweight DESMET evaluation criteria to analyze

the adaptability of agile methods to security development, and to estimate the cost of security-

related tasks. The study shows that in a theoretical framework the agile methodologies are

readily adaptable to even the most strict security requirements. This result departs from the

extant literature, which too often presents agile software development methods incompatible

with security engineering practices. Therefore, this chapter suggests future activities in

developing and using agile methods for the use of security work in software architecture and

design.

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile software development

methods. VTT Publications, 478.

Abrahamsson, P., Warsta, J., Siponen, M. T., and Ronkainen, J. (2003). New directions on agile

methods: A comparative analysis. In Proceedings of the 25th International Conference on

Software Engineering, ICSE ’03, pages 244–254, Washington, DC, USA. IEEE Computer

Society.

Adelyar, S. H. (2018) Secure Agile Agent-Oriented Software Development. Tallinna University

of Technology, Dissertations in Natural Sciences No. 51. Tallinna, Estonia.

Adelyar, S.H and Horta, A. (2016) Towards a Secure Agile Software Development Process. In

2016 10th International Conference on the Quality of Information and Communications

Technology (QUATIC), pages 101-106, IEEE.

Alnatheer, A., Gravell, A., and Argles, D. (2010). Agile security issues: A research study. In

Proceedings of the 5th International Doctoral Symposium on Empirical Software Engineering

(IDoESE).

Ayalew, T., Kidane, T., and Carlsson, B.. (2013) Identification and Evaluation of Security

Activities in Agile Projects. Springer Berlin Heidelberg, Berlin, Heidelberg, pages 139--153.

Baca, D. and Carlsson, B. (2011). Agile development with security engineering activities. In

Proceedings of the 2011 International Conference on Software and Systems Process, ICSSP ’11,

pages 149–158, New York, NY, USA. ACM.

Beck, K. (1999). Embracing change with extreme programming. IEEE Computer, 32.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Merllor, S.,

Schwaber, K., Sutherland, J., and Thomas, D. (2001). Manifesto for agile software development.

http://agilemanifesto.org/.

Beznosov, K. and Kruchten, P. (2004). Towards agile security assurance. In NSPW ’04

Proceedings of the 2004 workshop on New security paradigms, pages 47–54.

http://agilemanifesto.org/

bin Othmane, L., Angin, P., Weffers, H., and Bhargava, B., (2014). Extending the Agile

Development Process to Develop Acceptably Secure Software. IEEE Transactions on

Dependable and Secure Computing 11(6) 497--509.

Boström, G., Wäyrynen, J., Bodén, M., Beznosov, K., and Kruchten, P. (2006). Extending XP

practices to support security requirements engineering. In Proceedings of the 2006 International

Workshop on Software Engineering for Secure Systems, SESS ’06.

Chivers, H., Paige, R.F., Ge, X., (2005) Agile security using an incremental security architecture,

In Proceedings of the 6th international conference on Extreme Programming and Agile Processes

in Software Engineering, June 18-23, 2005, Sheffield, UK.

De Win, B., Scandariato, R., Buyens, K., Grégoire, J., Joosen W., (2009) On the secure software

development process: CLASP, SDL and Touchpoints compared. Information and Software

Technology, 51 (7) p.1152-1171.

Fitzgerald, B. and Stol, K.-J. (2014). Continuous software engineering and beyond: Trends and

challenges. In Proceedings of the 1st International Workshop on Rapid Continuous Software

Engineering, RCoSE 2014, pages 1–9, New York, NY, USA. ACM.

Fitzgerald, B., Stol, K.-J., O’Sullivan, R., and O’Brien, D. (2013). Scaling agile methods to

regulated environments: An industry case study. In Proceedings of the 2013 International

Conference on Software Engineering, ICSE ’13, pages 863–872.

FMoF (2013). Sovelluskehityksen tietoturvaohje. Ref. 17th March 2015.

Ge, X., Paige, R., Polack, F., and Brooke, P. (2007). Extreme programming security practices. In

Concas, G., Damiani, E., Scotto, M., and Succi, G., editors, Agile Processes in Software

Engineering and Extreme Programming, volume 4536 of Lecture Notes in Computer Science,

pages 226–230. Springer Berlin Heidelberg.

ISO/IEC (2013). Information technology - security techniques - code of practice for information

security controls iso/IEC 27002:2013.

ISO/IEC standard 21827 (2008). Information Technology – Security Techniques – Systems

Security Engineering – Capability Maturity Model (SSE-CMM). ISO/IEC.

Kitchenham, B., Linkman, S., and Law, D. (1997). Desmet: a methodology for evaluating

software engineering methods and tools. Computing & Control Engineering Journal.

Ko, A. J., DeLine, R., and Venolia, G. (2007). Information needs in collocated software

development teams. In Proceedings of the 29th International Conference on Software

Engineering, ICSE ’07. IEEE Computer Society.

Kongsli, V., (2006) Towards agile security in web applications, In Companion to the 21st ACM

SIGPLAN symposium on Object-oriented programming systems, languages, and applications

(OOPSLA’06), pages 805-808, ACM.

Kruchten, P. (2010) Software Architecture and Agile Software Development – A Clash of Two

Cultures? In Proceedings of the International Conference on Software Engineering, ICSE’10,

pages 497-498, ACM.

LaToza, T. D., Venolia, G., and DeLine, R. (2006). Maintaining mental models: A study of

developer work habits. In Proceedings of the 28th International Conference on Software

Engineering, ICSE ’06, pages 492–501, New York, NY, USA. ACM.

Licorish, S. A., Holvitie, J., Hyrynsalmi, S., Leppänen, V., Spínola, R. O., Mendes, T. S.,

MacDonell, S. G., and Buchan, J. (2016). Adoption and suitability of software development

methods and practices. In Potanin, A., Murphy, G. C., Reeves, S., and Dietrich, J., editors, 23rd

Asia-Pacific Software Engineering Conference, APSEC 2016, Hamilton, New Zealand,

December 6-9, 2016, pages 369–372. IEEE Computer Society.

Microsoft (2012). Microsoft security development lifecycle (SDL) process guidance - version

5.2. Referenced 17th March 2015.

Nikitina, N., Kajko-Mattsson, M., and Stråle, M. (2012). From Scrum to Scrumban: A case study

of a process transition. In Proceedings of the International Conference on Software and System

Process, ICSSP ’12, pages 140–149. IEEE Press.

Oyetoyan, T. D., Cruzes, D. S., and Jaatun, M. G., (2016) An Empirical Study on the

Relationship between Software Security Skills, Usage and Training Needs in Agile Settings. In

2016 11th International Conference on Availability, Reliability and Security (ARES), pages

548—555, ACM.

Rindell, K., Hyrynsalmi, S., and Leppänen, V., (2015) Securing Scrum for VAHTI. In

Proceedings of 14th Symposium on Programming Languages and Software Tools (SPLST),

pages 236-250 , University of Tampere.

Rindell, K., Hyrynsalmi, S., and Leppänen, V., (2016) Case study of security development in an

agile environment: building identity management for a government agency. In Proceedings of

2016 11th International Conference on Availability, Reliability and Security (ARES), pages 556-

593, IEEE.

Rindell, K., Hyrynsalmi, S., Leppänen, V., (2017a) Case Study of Agile Security Engineering:

Building Identity Management for a Government Agency. International Journal of Secure

Software Engineering (IJSSE) 8 (1), 43-57.

Rindell, K., Hyrynsalmi, S., Leppänen, V., (2017b) Busting a Myth: Review of Agile Security

Engineering Methods. In Proceedings of the 12th International Conference on Availability,

Reliability and Security (ARES’17), pages 74:1-74:10, ACM.

SAFECode (2012). Practical security stories and security tasks for agile development

environments. http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf.

Referenced 9th March, 2015.

Schwaber, K. (1995). Scrum development process. In Proceedings of the 10th Annual ACM

Conference on Object Oriented Programming Systems, Languages, and Applications

(OOPSLA), pages 117–134.

Schwaber, K. (2004). Agile Project Management with Scrum. Microsoft Press, Redmond,

Washington.

Sonia, Singhal, A., Banati, H., (2014) FISA-XP: an agile-based integration of security activities

with extreme programming, ACM SIGSOFT Software Engineering Notes, 39 (3) 1-14.

VAHTI (2001-2016). VAHTI instructions. https://www.vahtiohje.fi/web/guest/home.

VersionOne (2013). 8th Annual State of Agile Survey. http://www.versionone.com/pdf/2013-

state-of-agile-survey.pdf, Referenced 17th March 2015.

VersionOne, C. (2018). 12th Annual State of the Agile Survey.

Vuori, M. (2011). Agile Development of Safety-Critical Software. (Tampere University of

Technology. Department of Software Systems. Report; No. 14). Tampere: Tampere University

of Technology.

Wäyrynen, J., Bodén, M., and Boström, G. (2004). Security Engineering and eXtreme

Programming: An Impossible Marriage? Springer Berlin Heidelberg, Berlin, Heidelberg, 117–

128.

http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf
https://www.vahtiohje.fi/web/guest/home
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf

