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A Search algorithms 

A.1 Web of Science (Core Collection) 

Search date 2021-06-11, 3795 hits 

#1 TS = ((synthetic OR artificial)  

NEAR/3 (*data* OR record*))  

AND TS = ((generat* OR produc* OR simula*))  

AND TS = ((longitudinal OR correl* OR panel   

           OR repeat* OR follow-up   

           OR multivariate OR lifespan*  

           OR traject* OR health*   

           OR medical OR patient))  

NOT TS = (aperture OR insemination OR seism*) 

AND LA = (English) 

AND DT = (Article OR Abstract of Published Item  

          OR Book OR Book Chapter OR Data Paper  

          OR Early Access OR Proceedings Paper  

          OR Review OR Software Review)  

Search date 2022-11-22, 1734 hits 

TS = ((synthetic OR artificial)  

NEAR/3 (*data* OR record*))  

AND TS = ((generat* OR produc* OR simula*))  

AND TS = ((longitudinal OR correl* OR panel   

           OR repeat* OR follow-up   

           OR multivariate OR lifespan*  

           OR traject* OR health*   

           OR medical OR patient))  

NOT TS = (aperture OR insemination OR seism*) 

AND LA = (English) 

AND DT = (Article OR Abstract of Published Item  

          OR Book OR Book Chapter OR Data Paper  

          OR Early Access OR Proceedings Paper  

          OR Review OR Software Review) 

NOT #1  
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A.2 Embase (1947 onwards) 

Search date 2021-06-11, 504 hits 

#1 (((synthetic OR artificial) 

NEAR/3 (data OR record*)):ti,ab,kw) 

AND (generat* OR produc* OR simula*):ti,ab,kw 

AND (longitudinal OR correl* OR panel 

OR repeat* OR ’follow?up’ 

OR multivariate OR lifespan* 

OR traject* OR health* OR medical 

OR patient):ti,ab,kw 

AND ([article]/lim OR [article in press]/lim 

OR [conference paper]/lim 

OR [conference review]/lim 

OR [data papers]/lim OR [letter]/lim 

OR [note]/lim OR [review]/lim 

OR [short survey]/lim) 

AND [english]/lim 

AND [embase]/lim 

Search date 2022-11-22, 326 hits 

(((synthetic OR artificial)  

NEAR/3 (data* OR record* OR microdata*)):ti,ab,kw)  

AND (generat* OR produc* OR simula*):ti,ab,kw  

AND (longitudinal OR correl* OR panel OR repeat*  

      OR 'follow?up' OR multivariate OR lifespan* 

      OR traject* OR health* OR medical OR patient):ti,ab,kw 

NOT (aperture OR insemination OR seism*):ti,ab,kw 

AND ([article]/lim OR [article in press]/lim  

      OR [conference paper]/lim OR [conference review]/lim 

      OR [data papers]/lim OR [letter]/lim OR [note]/lim  

      OR [review]/lim OR [short survey]/lim)  

AND [english]/lim NOT #1 
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A.3 MEDLINE (Ovid interface, 1946 onwards) 

Search date 2021-06-12, 574 hits 

#1 (((synthetic or artificial)  

    adj3 (data or record*))  

    and (generat* or produc* or simula*)  

    and (longitudinal or correl* or panel  

        or repeat* or 'follow up'  

        or multivariate or lifespan*  

        or traject* or health* or medical  

        or patient)).ti,ab,kf.  

 #2  limit #1 to ((english language or english)  

    and (classical article or clinical conference  

        or comparative study or congress  

        or english abstract or evaluation study  

        or festschrift or government publication  

        or historical article  

        or introductory journal article  

        or journal article  

        or letter or preprint or "review"  

        or "systematic review" or technical report  

        or validation study)) 

Search date 2022-11-22, 402 hits (contains duplicates with the previous search because the time 

range could not be specified more precisely) 

#3 (((synthetic or artificial)  

    adj3 (data* or record* or microdata*))  

    and (generat* or produc* or simula*)  

    and (longitudinal or correl* or panel  

        or repeat* or 'follow up'  

        or multivariate or lifespan*  
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        or traject* or health* or medical  

        or patient)  

    not (aperture OR insemination OR seism*)).ti,ab,kf 

#4 limit #3 to ((english language or english)  

    and (classical article or clinical conference  

    or comparative study or congress  

    or english abstract or evaluation study  

    or festschrift or government publication  

    or historical article  

    or introductory journal article  

    or journal article or letter or preprint  

    or "review" or "systematic review"  

    or technical report or validation study)) 

#5 limit #3 not #2 

A.4 Google Scholar (Publish or Perish, 1000 first hits) 

Search date 2021-06-18, 980 hits 

("synthetic data" OR "artificial data")  

AND (generat* OR priduc* OR simula*)  

AND (longitudinal OR correl* OR panel  

    OR repeat* OR "follow up" OR "follow-up"  

    OR "multivariate OR lifespan* OR traject*  

    OR health* OR medical OR patient) 

A.5 arXiv 

Open-source metadata were downloaded from Kaggle [1] and R software (version 4.2.2) [2] was 

used to extract the relevant articles. The source code is presented below. 

Search date 2022-11-22, 628 hits 

# libraries 

library(jsonlite) 

library(data.table) 
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library(synthesisr) 

 

# imoporting ArXiv results 

arxiv <- stream_in(file(paste0(getwd(), "/articles/source_searches/arxiv-

metadata-oai-snapshot.json"))) 

arxiv <- as.data.table(arxiv) 

 

# regex developed according to database search queries 

# synthetic data 

search_data <-

"\\b(synthetic|artificial)(?:\\W+\\w+){0,3}?\\W?(\\S*data|record\\S*)\\b" 

 

# inclusion criteria 

search_gener <- "(generat|produc|simula)" 

search_type <- "(longitudinal|correl|panel|repeat|follow-

up|multivariate|lifespan|traject|health|medical|patient)" 

# exclusion criteria 

search_excl <- "(aperture|insemination|seism)" 

 

# grepping abstracts according to criteria 

arxiv_results_1 <- arxiv[grepl(search_data, abstract, ignore.case = T, perl = 

T)] 

arxiv_results_2 <- arxiv_results_1[grepl(search_gener, abstract, ignore.case = 

T, perl = T)] 

arxiv_results_3 <- arxiv_results_2[grepl(search_type, abstract, ignore.case = T, 

perl = T)] 

arxiv_results_4 <- arxiv_results_3[!grepl(search_excl, abstract, ignore.case = 

T, perl = T)] 

 

# modifying data for export 

arxiv_results_4[, source_type := ifelse(is.na(`journal-ref`), "UNPB", "JOUR")] 

arxiv_results_4[is.na(`journal-ref`), `journal-ref` := paste0("arXiv preprint 

arXiv:", id)] 

arxiv_results_4[, year := year(update_date)] 
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setnames(arxiv_results_4, "journal-ref" , "journal") 

setnames(arxiv_results_4, "update_date" , "date_generated") 

setnames(arxiv_results_4, "authors" , "author") 

  

arxiv_results_4[, c("id", "submitter", "comments", "report-no",  

                    "categories", "license", "versions", "authors_parsed") := 

NULL] 

  

setcolorder(arxiv_results_4, c("date_generated", "source_type", "author",  

                               "year", "title", "journal", "doi")) 

  

arxiv_results_4[, author := gsub(",", " and", author)] 

arxiv_results_4[, author := gsub("\n", "", author)] 

arxiv_results_4[, author := gsub("\\\\", "", author)] 

arxiv_results_4[, author := gsub("\\\"", "", author)] 

arxiv_results_4[, author := gsub("[(]\\d[)](\\W?and)?", "and", author)] 

 

# exporting as ris file 

write_refs(as.data.frame(arxiv_results_4), format = "ris", file = 

paste0(getwd(), "/articles/source_searches/arxiv_results.ris")) 
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B Selection process 

B.1 Abstract screening chart 

The flowchart presented in Figure 1 was used by KP and JV to independently screen the titles and abstracts yielded by the search. 

 

Figure 1. Title and abstract screening flowchart. Each included search result was screened by KP and JV independently using Rayyan [3] and this flowchart. The process started at the top of 

the chart (Start) and progressed in the directions indicated by the arrows, depending on the selection. The terminations of the process and the selection of the search result (include, maybe, 

exclude) are indicated in bold
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B.2 Full-text screening chart 

The flowchart presented in Figure 2 was used by KP and JV to independently screen the full texts of 

publications that had been deemed as potentially eligible (classified as ‘Maybe’ or ‘Included’) 

following the title and abstract screening.  

 

Figure 2. Full-text screening flowchart.  Full texts of each publication that was included after screening the titles and abstracts was 

screened by KP and JV independently using Rayyan [3] and this flowchart. The process started at the top of the chart (Start) and 

progressed in the directions indicated by the arrows, depending on the selection. The actions and terminations of the process and the 

selection of the search result (include, maybe, exclude) are indicated in bold
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C Data collection process 

Data were collected and managed by the corresponding author using a structured form designed in 

REDCap electronic data capturing tools hosted at University of Turku [4,5]. The forms are 

presented below. 

C.1 Literature information 
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C.2 Method characteristics 

 



11 

 

 



12 

 

 



13 

 

C.3 Method evaluation 
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C.4 Assessment of bias and reporting quality 
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D Risk of bias and reporting quality assessment 

D.1 Risk of bias assessment framework 

Table 1. The framework used to assess the risk of bias. This table outlines different biases that may influence the evaluation of the methods’ performance. The risk of these 

biases were assessed from the included publications. The table presents the fundamental principles (Rationale) that guided the assessment as well as the challenges involved in 

recognizing each type of bias (Assessment plausibility), along with illustrative examples of each type of bias. 

Bias Rationale Assessment plausibility Examples 

Selection bias 

Assessing the method’s performance requires 

fairness in data representation, use of suitable 

metrics, and equal potential across methods to 

perform specific tasks. This necessitates clear 

justifications for input data, metrics, and 

reference method selection. 

Detecting selection bias is difficult because any assessment 

approaches taken prior to the final publication may not be fully 

disclosed, making it difficult to assess favoritism towards the 

primary method. The reviewers may also be unaware of 

instances where a particular dataset did not work well with a 

particular method.  

- Adjusting data or models based 

on arbitrary factors. 

- Using different datasets to 

evaluate different methods 

- Selectively using data or 

methods to favor the primary 

method. 

Performance 

bias 

To ensure a fair performance evaluation across 

methods, it is essential that a transparent and 

detailed description of the comparison and 

training procedures has been provided. 

Detecting performance bias is challenging when the model 

selection and training details are incomplete or not reported. It 

becomes possible when the authors provide these details and 

mention using reference methods without task optimization. 

- Not giving the reference 

methods a fair opportunity to 

perform well, e.g., through 

intentionally inadequate model 

training compared to the primary 

method. 

Reporting bias 

To ensure research transparency, it is 

important that all research evaluation metrics 

are comprehensively documented and the 

results are shared. 

Detecting the bias should be straightforward when a publication 

or its supplementary material lacks or incompletely presents 

results for the evaluation approaches mentioned in the study. 

- Results are either incomplete or 

missing 
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D.2 Risk of bias in individual studies (detailed explanations) 

Table 2. Detailed explanations of the identified risk of bias present within each study.   

Authors 
Performance 

bias 
Explanation 

Reporting 

bias 
Explanation 

Li et al. [6] Possibly 

The method was compared to other 

methods but the training processes were 

not described. 

Yes 

Certain outcomes were exclusively or incompletely reported 

across methods and/or datasets. For instance, not all 

outcomes of t-tests were fully given, and patient trajectories 

were displayed only for the primary method and using only 

the MIMIC-III data. 

Bhanot et al. [7] Possibly 

The method was compared to other 

methods but the training processes were 

not described. 

 

 

Yu, He & Raghunathan [8] Possibly 

The method was compared to other 

methods but the training processes were 

not described. 

Yes 

Certain findings, such as those shown in Table 2, pertained 

only to the primary method. Furthermore, the outcomes 

pertaining to IVEWare were excluded from the tabulated 

results of Tables 3 and 4. These specific outcomes were also 

omitted from the supplemental materials. 

Zhang, Yan & Malin [9] Possibly 

The method was compared to other 

methods but the training processes were 

not described. 

Yes 

The primary method “Baseline + CFR + RS” was omitted 

from Figure 5 illustrating the drift in time.  

Zhang et al. [10]   Yes 

The authors asserted in their work (page 602, top of the 

second column) that statistical insignificance of FPR and 

TPR was observed.  However, we could not find information 

about the specific statistical test they used in this context. 



22 

 

  

Biswal et al. [11] Possibly 

The method was compared to other 

methods but the training processes 

were not described. 

Yes 

In Figure 2, the VAE-Deconv component is absent. Within 

Figure 3, the depiction of outcomes is partial across 

various methods, and the rationale for excluding specific 

subfigures has not been presented. The evaluation of 

privacy remains either unaddressed or, at minimum, the 

outcomes pertaining to the alternative comparative 

methods and EVAc are absent from the presentation. 

Gootjes-Dreesbach et al. [12]  

 

Yes 

Comparative analyses between the actual patients and 

virtual patients were only shown for the PPMI dataset. In 

Figure 6, the depiction of decoded real patients was 

missing from the subset pertaining to SP513.  

Sood et al. [13]  

 

Yes 

Comparisons between synthetic and original variables 

were selectively delineated for a subset of the variables 

under consideration.  

Fisher et al. [14]  

 

Yes 

The authors had decided to confine the outcome section to 

a subset of data characterized as partially synthetic. 

Notably, some of the evaluation techniques could have 

been suitably extended to encompass fully synthetic data. 

The rationale behind this decision remains unclear. 

Raab, Nowok & Dibben[15]  

 

Yes 

Analyses concerning the marginal distributions and the 

preservation of temporal correlations of discrete variables 

were not presented. 
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D.3 Individual study reporting quality assessment (detailed explanations) 

Table 3. Detailed explanations of the identified reporting quality deviations within each study. Inconsistency of reporting refers to utilization of 1) identical terminology 

or notations to signify distinct phenomena and lacking clarification (e.g., using "noise" for both original data variation and additional privacy mechanism-induced noise 

without clear differentiation) or 2) disparate notations to represent the same phenomenon, both 1 and 2 introduce a potential risk of misunderstanding. Imprecision of 

reporting refers to the lack of precision (e.g. p-values reported with varying accuracies) or clarity in the presentation of information, which may lead to ambiguity or difficulty 

in understanding the reported data. Indirectness of reporting involves conveying information in a manner that is not straightforward or explicit, albeit to a lesser extent than 

observed in reporting bias, potentially requiring the reader to infer or deduce certain details. This can introduce a level of uncertainty or make the interpretation less direct. 

Authors Inconsistency Explanation Imprecision Explanation Indirectness Explanation 

Li et al. [6]   Yes 

Statistically significant p-

values are not reported as 

precisely as values above 

0.05. 

Yes 

The meaning of mean and standard 

deviation for a discrete-valued feature 

is unclear (page 13, section 4.3). 

 

Figure 5 states that the y-axis 

represents the probability distribution 

of Mechanical Ventilation and 

Vasopressor being applied ("On"). It's 

unclear how the y-axis can exceed the 

range of [0,1]. 

 

In reference to differential privacy, it is 

stated that delta ≤ 0.001 (p. 21), but it 

is unclear what the exact delta was in 

each situation, e.g. if the delta remains 

constant for all values of epsilon 

presented in Figure 7b. 

Bhanot et al. 

[7] 
  Yes 

The number of patients was 

not reported precisely (“The 

data set has over 30 K 

records”, page 2). 

  

Zhang et al. 

[10] 
    Yes 

The data description in Table 1 shows 

the gender distribution, but the article 

lacks clarity on whether this variable 

was utilized in data synthesis or 

analyses. 
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Biswal et al. 

[11] 
  Yes 

The number of clinicians 

used to evaluate the realism 

score was not reported. 

Information on the minimum 

and maximum number of 

visits per patient and the 

minimum number of codes 

per visit was not given. 

Yes 

Full details about the presence 

disclosure test were not provided. 

Abbreviations like ELBO were 

unspecified. The nature of preliminary 

evaluations mentioned in the appendix 

remained unclear. 

Gootjes-

Dreesbach et 

al. [12] 

Yes 

Utilized three distinct 

notations for the 

differential privacy budget 

parameter. 

Yes 

Subfigure 9.1 did not specify 

the epsilon used in that 

figure. 

  

Sood et al. 

[13] 
  Yes 

The number and types of 

variables employed in the 

actual synthesis of data 

remained unclear. 

  

Wendland et 

al. [16] 
  Yes 

The p-value on page 3, right 

column, first paragraph, is 

reported with different 

precision compared to the 

subsequent p-values (which 

have two significant 

figures). 
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E Study selection: excluded publications 

The primary reason for exclusion was wrong data type (n = 165), mostly cross-sectional [17–20], 

survival [21–24] or time-series data [25–27]. Publications compromising the temporal structure in 

longitudinal data were categorized as having wrong data type [28–30]. Publications lacking SDG (n 

= 81) were typically introductions of a specific synthetic data framework [31–34] or data 

simulations [35–37]. Exclusions due to partially synthetic data (n = 49) were largely related to data 

augmentation using techniques such as Synthetic Minority Over-Sampling Technique (SMOTE) 

[38] or its variants [39–43].  

We excluded 29 publications as we could not determine their eligibility, stemming from incomplete 

data, incomplete method description, or restricted access to the cited references, data, or algorithms 

[44–47]. Additionally, 28 studies were excluded for relying solely on standard probability 

distributions to simulate data [48–51]. Furthermore, 14 studies were excluded for failing to 

acknowledge the longitudinal nature of data [52–57], although the original datasets included 

variables with repeated measurements. Lastly, we identified three duplicates and two publications 

of wrong literature type (thesis or an extended abstract). 

F Primary methods 

F.1 Generative adversarial networks 

Generative Adversarial Networks (GANs) [58] are a class of deep learning (DL) models of two 

neural networks. The generator network is trained to create synthetic data while the discriminator 

network learns to distinguish between real and generated data. The two networks are trained in a 

competitive setting, where the generator aims to produce increasingly realistic samples and the 

discriminator strives to improve its ability to differentiate between real and fake data.  

AC-GAN 

 

AC-GAN [59] (auxiliary classifier GAN) generates continuous synthetic data that includes a 

stratifying variable, e.g., a treatment group. Notably, AC-GAN offers options for both differentially 

private and non-private training approaches. The method models temporal relationships through 

convolutional layers [60] and by assuming that variables in the input dataset are ordered by time. 

Given that the objective is to concurrently generate realistic synthetic data while maintaining the 

inherent data stratification, its applicability in producing more generic longitudinal patterns is 

difficult to determine.  

EHR-M-GAN 

EHR-M-GAN [6] first maps variables into a shared latent space of reduced dimension using a dual 

variational autoencoder [61]. The method then generates correlated patient trajectories of different 

variable types through a coupled recurrent network that specifically focuses on learning temporal 

dependencies in the data. As EHR-M-GAN requires filtering outliers from the input data, it is not 

clear how well the method performs under data with long-tailed distributions.  

HealthGAN 

HealthGAN [62], applied in Bhanot et al. [7], implements a Wasserstein GAN gradient penalty 

(WGAN-GP) [63] and data transformation to generate mixed-type data. The transformation 
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involves scaling all variables to a unit range and reversing them back to their original scales after 

synthesis. HealthGAN, not initially developed for longitudinal data, relies on its ability to learn the 

multivariate distribution underlying the input data to capture temporal correlations. It may face 

challenges in learning and generating subpopulations. 

Health Gym GAN 

Health Gym GAN [64] generates mixed-type data and utilizes WGAN-GP and a bi-directional long 

short-term memory (biLSTM) network [65–67] to model dependencies in both temporal directions. 

To model multiple correlated categorical variables, Health Gym GAN requires fine-tuning. 

MTGAN 

Multi-label time series GAN (MTGAN) [68] generates patient-level illness sequences (diagnosis 

code indicator vectors). MTGAN utilizes a gated recurrent unit (GRU) generator [69] to recursively 

generate diagnosis probabilities and applies a conditional transition matrix to better address rare 

diagnoses. GRU also models temporal correlations between visits and diagnoses via latent variables 

and probabilities from previous iterations. The current MTGAN version is restricted to categorical 

variables and cannot generate continuous variables. 

F.2 Autoencoders 

Autoencoders (AEs) [70] are a type of neural network architecture that consists of an encoder and a 

decoder network, collectively trained to learn an efficient data representation that captures the most 

salient features of the input data. The encoder maps input data to a lower-dimensional latent space, 

while the decoder reconstructs the original input from the latent space. The goal of an autoencoder 

is to minimize the reconstruction error. 

Variational autoencoders (VAEs) [61] differ from AEs by employing probabilistic encodings that 

capture uncertainty through probability distributions over latent variables. This approach offers 

greater flexibility in handling mixed-type data and enables VAEs to generate new samples by 

sampling from the latent space and decoding to the data domain. 

EVA 

EHR Variational Encoder (EVA) [11] generates patient-level visit sequences (indicator vectors of 

diagnosis codes, medications, and procedures) as autoregressive time-ordered transitions, with 

latent variables accounting for between-patient heterogeneity across the sequences.  EVA models 

the temporal structure by incrementally expanding the latent space's spatial dimensions 

(deconvolution). While EVA can generate unbalanced data, it does not model the actual time 

between the visits. In addition, EVA’s performance may be suboptimal when dealing with less 

frequent sequences in input data.  

F.3 Bayesian Networks 

Bayesian Networks (BNs) [71] are probabilistic modeling techniques that capture relationships 

between variables using a directed acyclic graph (DAG). The graph’s nodes represent random 

variables while the edges indicate between-node dependencies. Each node is associated with a 

conditional probability distribution that describes the probability of the variable given its parental 

nodes. 
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MBN 

A Modular Bayesian Network (MBN) [13] generates Gaussian and categorical synthetic data by 

learning conditional probabilities between predefined modules of semantically similar variables. 

Learning the network structure is improved by enforcing edge constraints, such as the correct 

temporal order of the nodes, and by reducing the module dimensionality via sparse autoencoders. In 

the case of non-Gaussian variables, MBN performs better when these variables are discretized, but 

this process also reduces data resemblance. Moreover, defining the modules and constraints requires 

expert knowledge. 

VAMBN 

A Variational Autoencoder Modular Bayesian Network (VAMBN) [12] expands on MBN by 

introducing a variational autoencoder (HI-VAE) [72] that considers data heterogeneity and 

missingness within modules. Temporal ordering is maintained by preventing edges from pointing 

backward in time for variables with repeated measurements. Similarly to MBN, VAMBN requires 

expert knowledge. In addition, the current implementation does not allow Gaussian nodes to have 

discrete-node children and necessitates a modern parallel computing architecture. 

GMB model 

Wang et al. [73] used a Generative Markov-Bayesian-based (GMB) approach to generate disease 

progression sequences (diagnosis codes). The method is a hierarchical model, with three layers: 

disease progression is modelled as a continuous-time Markov jump process [74], possible 

complications as conditionally independent Markov processes [74], and the presence of 

comorbidities is inferred through a bipartite noisy-or Bayesian Network [75,76]. GMB transforms 

unbalanced discrete-time input data into continuous-time illness sequences. For improved 

computational efficiency, expert knowledge is needed to establish prior probabilities that link 

complications and observed comorbidities. 

F.4 Ensembles 

Ensemble methods are machine learning techniques that combine multiple individual models [77]. 

The underlying idea is that by aggregating predictions or decisions from multiple models, the 

overall performance is improved over a single model. Common ensemble methods include bagging, 

boosting, and stacking [77]. Bagging involves training multiple models independently on different 

subsets of the training data and averaging their predictions. Boosting focuses on sequential model 

training, where each subsequent model tries to correct mistakes made by the previous models. 

Stacking combines predictions from multiple models using another model, called a meta-learner. 

LS-EHR 

The Longitudinal Simulation framework for EHR (LS-EHR) [9] combines GAN and recurrent 

neural network (RNN) with condition fuzzing and regularization (CFR) [9] to generate patient-level 

visit sequences (indicator vectors of diagnosis and procedure codes). To further improve data 

quality, LS-EHR incorporates Gaussian noise to add variability to synthetic observations and uses 

rejection sampling to improve data resemblance. CFR enables learning from both previous and 

subsequent episodes, mitigating gradual synthetic sequence divergence (drift) from the real 

sequence. While the LS-EHR was developed to address drifting, the problem was not fully 

resolved. Additionally, the performance of LS-EHR on datasets with high sparsity or a mix of 

categorical and continuous variables remains uncertain. 
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MultiNODEs 

The Multimodal Neural Ordinary Differential Equations (MultiNODEs) [16] uses latent NODEs 

[78] to generate continuous repeated measurements, HI-VAE [72] to generate static variables (both 

categorical and numerical) and an imputation layer to replace any missing values present in the 

input data. The method is currently limited to generating continuous repeated measurements and its 

optimal performance depends on tuning several sensitive hyperparameters. 

SynTEG 

The Synthetic Temporal EHR Generator (SynTEG) [10] utilizes a self-attention architecture of 

transformer encoders [79] and a recurrent model to generate patient-level visit sequences (diagnosis 

code indicator vectors) conditionally on the previous visits. Subsequently, GAN is used to capture 

the multivariate distribution and to generate the sequences. SynTEG is limited to generate only 

diagnosis codes and it is possible that the method generates sequences conflicting with medical 

knowledge. 

F.5 Other 

CRBM 

Fisher et al. [14] used a Conditional Restricted Boltzmann Machine (CRBM) to generate mixed-

type disease progression data. CRBM is a probabilistic graphical model that incorporates latent 

variables and conditional distributions. The temporal dependence structure was learned by training 

the model with all possible pairs of two consecutive observations. As such, CRBM can generate 

both static and time-varying variables. However, the method requires balanced, numerically 

formatted data. 

SCM 

Barrientos et al. [80] used Sequential Conditional Modeling (SCM) to generate synthetic career 

data. Specifically, they modelled each input variable based on its type, utilizing techniques like 

classification and regression trees (CARTs) [81] and parametric probability distributions. Data were 

generated sequentially, variable-by-variable, and the future values of any time-varying variables 

were assumed to depend on the past only through the variables’ current values. This method 

resembles traditional simulation and relies on expert knowledge to determine the approach and 

sequence for modeling each variable. 

SPMI 

Yu, He and Raghunathan [8] used Semiparametric Multiple Imputation (SPMI) to generate 

synthetic mixed-type survey data. Missing observations were first imputed using a Sequential 

Regression Multiple Imputation (SRMI) [82] framework. Subsequently, a Bayesian bootstrap 

sample [83] was extracted from these data and Alternating Conditional Expectation (ACE) [84] and 

a Ridge-Penalized Logistic (RPL) [85] imputation models were used to generate synthetic 

observations of continuous and discrete variables, respectively. Temporal dependencies were 

assumed to be learned by the imputation models as part of the overall correlation structure. SPMI is 

designed for datasets with around a hundred variables and may not be suitable for significantly 

larger or smaller datasets. Additionally, the method’s generalizability beyond specific types of 

survey data, such as EHR or census data, is uncertain. 
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Synthea 

Synthea [86] generates synthetic EHR data using modules and state-transition machines to model 

patient data. The modules are built based on Publicly Available Data Approach to the Realistic 

Synthetic EHR (PADARSER) framework [33] utilizing publicly available data and predefined 

healthcare trajectory templates (care maps). Users can build their own disease models using a 

dedicated module builder, but this requires expert knowledge of the disease. Synthea's module-

based approach may not fully capture real-world complexity, and it primarily generates snapshots of 

patients at specific times, lacking long-term health data representation. 

Synthpop 

Raab, Nowok and Dibben [15] generated mixed-type data with Synthpop [87]. This R-package 

enables the use of several different parametric and non-parametric methods for generating synthetic 

mixed-type data by drawing each variable sequentially from its conditional distribution given the 

already synthesized variables. The authors applied both non-parametric (CART) and parametric 

(polychotomous, logistic, and linear regression) models to estimate these conditional distributions. 

Temporal modeling is based on the models’ abilities to learn the general correlation structure. 

Applying methods provided by Synthpop requires expert knowledge akin to SCM. In addition, the 

parametric methods may oversimplify the underlying distributions and structure in the input data 

and thus may not work with complex datasets. 

G Reference methods 

Table 4. Reference methods used to benchmark the primary method. 

Study Primary method Reference methods 

Li at al. [6] EHR-M-GAN 

C-RNN-GAN [88]  

R(C)GAN [89] 

TimeGAN [90] 

medGAN [91]  

seqGAN[92] 
SynTEG [10] (included) 

DualAEE [93] 

PrivBayes [20] 

Lu et al. [68] MTGAN 

medGAN  [91] 

CTGAN [94] 

EMR-WGAN [95] 

RDP-CGAN [96] 

WGAN-GP [63] 

TimeGAN [90] 

T-CGAN [97] 

Biswal et al. [11] EVA 

EVAc 

biLSTM [65] 

VAE-LSTM [98] 

VAE-Deconv [99] 

Wendland et al. [16] MultiNODEs VAMBN [12] (included) 

Yu, He & Raghunathan [8] SPMI 
IVEware Version 0.3 [100] 

Synthpop [87] (included) 
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H Datasets used in the included publications 

Table 5. Details regarding the datasets utilized within the studies. 

Datasets Data type Availability Study Subjects 
Numerical 

variables 

Categorical 

variables 

Variables with repeated 

measurements 

Repeated 

measurements 

MIMIC-III Clinical database Public 

[59] 8 260 9 1 9 5 

[6] 28 344 78 20 98 24 

[68] 7 493 0 4 880 4 880 avg. 2.6 

[64] 3 910 9 13 20 48 

[64] 2 164 35 11 42 2–20 

PPMI Patient data Public 

[13] 362 NA NA 38 2–12 

[16] 354 53 15 25 5–12 

[12] 557 NA NA 38* 5 

VUMC 
EHR data No [9] 59 617 0 1 276 1 276 25–200 

Synthetic derivate No [10] 2 187 629 0 1 799 1 799 avg.12.1 

ADNI Patient data Public [13] 689 NA NA 18 4 

All of Us EHR data Public [9] 59 617 0 526 526 10–200 

ASD Health data No [7] > 280 000 7 2 7 10 

ATUS Behavioral data Public [7] > 30 000 1 4 1 30 

CDC EHR data No [73] 9 298 1 100 88 2–11 

CODR-AD Clinical database No [14] 1 909 38 6 36 7 

eICU Clinical database Public [6] 99 015 55 19 74 24 

HiRID Clinical database Public [6] 14 129 50 39 89 24 

HIV 
EuResist integrated 

database 
Public [64] 8 916 3 12 13 10–100 

HRS Longitudinal survey No [8] 12 652 7 41 11 2–3 

MIMIC-IV Clinical database Public [68] 10 000 0 6 102 6 102 avg. 3.6 

Multi-census Census data No [86] NA NA NA NA NA 
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NACC Patient data Public [16] 2 284 4 3 3 4 

PAMF EHR EHR data No [11] 258 555 0 10 437 10 437 avg. 53.8 

SP513 Clinical trial data No [12] 560 NA NA 35* 2–11* 

SPRINT Clinical trial data No [59] 6 502 3 1 3 12 

Status File Employment data No [80] 3 511 824 5 24 22 24 

UK LS Admin-census data No [15] > 186 000 1 4 5 2 

NA: not available; avg.: average; *: calculated from presented materials by the corresponding author 
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