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A Search algorithms
A.1 Web of Science (Core Collection)

Search date 2021-06-11, 3795 hits

#1 TS = ((synthetic OR artificial)

AND

AND

NOT

AND

AND

NEAR/3 (*data* OR record*))

TS = ((generat* OR produc* OR simula¥*))
TS = ((longitudinal OR correl* OR panel
OR repeat* OR follow-up
OR multivariate OR lifespan*
OR traject* OR health*
OR medical OR patient))
TS = (aperture OR insemination OR seism*)
LA = (English)
DT = (Article OR Abstract of Published Item

OR Book OR Book Chapter OR Data Paper
OR Early Access OR Proceedings Paper

OR Review OR Software Review)

Search date 2022-11-22, 1734 hits

TS

AND

AND

NOT

AND

AND

NOT

((synthetic OR artificial)

NEAR/3 (*data* OR record*))

TS = ((generat* OR produc* OR simula*))
TS = ((longitudinal OR correl* OR panel
OR repeat* OR follow-up
OR multivariate OR lifespan*
OR traject* OR health*
OR medical OR patient))
TS = (aperture OR insemination OR seism*)
LA = (English)
DT = (Article OR Abstract of Published Item
OR Book OR Book Chapter OR Data Paper
OR Early Access OR Proceedings Paper
OR Review OR Software Review)
#1



A.2 Embase (1947 onwards)

Search date 2021-06-11, 504 hits
#1 (((synthetic OR artificial)
NEAR/3 (data OR record*)) :ti, ab, kw)
AND (generat* OR produc* OR simula*) :ti,ab, kw
AND (longitudinal OR correl* OR panel
OR repeat* OR ’'follow?up’
OR multivariate OR lifespan*
OR traject* OR health* OR medical
OR patient) :ti,ab, kw
AND ([article]/lim OR [article in press]/lim
OR [conference paper]/lim
OR [conference review]/lim
OR [data papers]/lim OR [letter]/lim
OR [note]/lim OR [review]/lim
OR [short survey]/lim)
AND [english]/lim
AND [embase]/lim
Search date 2022-11-22, 326 hits
(((synthetic OR artificial)
NEAR/3 (data* OR record* OR microdata*)) :ti,ab, kw)
AND (generat* OR produc* OR simula*) :ti,ab, kw
AND (longitudinal OR correl* OR panel OR repeat*
OR 'follow?up' OR multivariate OR lifespan*
OR traject* OR health* OR medical OR patient) :ti,ab, kw
NOT (aperture OR insemination OR seism*) :ti,ab, kw
AND ([article]/lim OR [article in press]/lim
OR [conference paper]/lim OR [conference review]/lim
OR [data papers]/lim OR [letter]/lim OR [note]/lim

OR [review]/lim OR [short survey]/lim)

AND [english]/lim NOT #1



A.3 MEDLINE (Ovid interface, 1946 onwards)

Search date 2021-06-12, 574 hits

#1 (((synthetic or artificial)

adj3 (data or record*))

and (generat* or produc* or simula*)

and (longitudinal or correl* or panel

or

or

or

or

#2

repeat* or 'follow up'
multivariate or lifespan*
traject* or health* or medical
patient)) .ti,ab,kf.

limit #1 to ((english language or english)

and (classical article or clinical conference

or

or

or

or

or

or

or

or

or

comparative study or congress

english abstract or evaluation study
festschrift or government publication
historical article

introductory journal article

journal article

letter or preprint or "review"
"systematic review" or technical report

validation study))

Search date 2022-11-22, 402 hits (contains duplicates with the previous search because the time
range could not be specified more precisely)

#3 (((synthetic or artificial)

adj3 (data* or record* or microdata*))

and (generat* or produc* or simula*)

and (longitudinal or correl* or panel

or

or

repeat* or 'follow up'

multivariate or lifespan*



or traject* or health* or medical
or patient)
not (aperture OR insemination OR seism*)).ti,ab,kf
#4 limit #3 to ((english language or english)
and (classical article or clinical conference
or comparative study or congress
or english abstract or evaluation study
or festschrift or government publication
or historical article
or introductory journal article
or journal article or letter or preprint
or "review" or "systematic review"
or technical report or validation study))
#5 limit #3 not #2

A.4 Google Scholar (Publish or Perish, 1000 first hits)

Search date 2021-06-18, 980 hits

("synthetic data" OR "artificial data")

AND (generat* OR priduc* OR simula*)

AND (longitudinal OR correl* OR panel
OR repeat* OR "follow up" OR "follow-up"
OR "multivariate OR lifespan* OR traject*

OR health* OR medical OR patient)

A.5 arXiv

Open-source metadata were downloaded from Kaggle [1] and R software (version 4.2.2) [2] was
used to extract the relevant articles. The source code is presented below.

Search date 2022-11-22, 628 hits
# libraries
library(jsonlite)

library(data.table)



library(synthesisr)

# imoporting ArXiv results

arxiv <- stream in(file(pasteO(getwd(), "/articles/source searches/arxiv-
metadata-oai-snapshot.json")))

arxiv <- as.data.table(arxiv)

# regex developed according to database search queries
# synthetic data

search data <-
"\\b (syntheticlartificial) (? :\\W+\\w+) {0, 3}2\\W? (\\S*data|record\\S*)\\b"

# inclusion criteria
search gener <- " (generat|produc|simula)"

search type <- " (longitudinal|correl|panel|repeat]|follow-
uplmultivariate|lifespan|traject|health|medical |patient)"

# exclusion criteria

search excl <- " (aperture|insemination|seism)"

# grepping abstracts according to criteria

arxiv_results 1 <- arxiv[grepl (search data, abstract, ignore.case = T, perl =
T) ]

arxiv_results 2 <- arxiv _results 1[grepl (search gener, abstract, ignore.case =
T, perl = T)]

arxiv_results 3 <- arxiv results 2[grepl (search type, abstract, ignore.case = T,
perl = T)]

arxiv results 4 <- arxiv results 3[!grepl (search excl, abstract, ignore.case =
T, perl = T)]

# modifying data for export
arxiv_results 4[, source type := ifelse(is.na( journal-ref’'), "UNPB", "JOUR")]

arxiv_results 4[is.na( journal-ref’), “journal-ref’ := pastel("arXiv preprint
arXiv:", id)]

arxiv_results 4[, year := year (update date)]



setnames (arxiv results 4, "journal-ref" , "journal")
setnames (arxiv results 4, "update date" , "date generated")

setnames (arxiv_results 4, "authors" , "author")

arxiv_results 4[, c("id", "submitter", "comments", "report-no",

"categories", "license", "versions", "authors parsed")
NULL]

setcolorder (arxiv_results 4, c("date generated", "source type", "author",

"year", "title", "journal", "doi"))

arxiv_results 4[, author := gsub(",", " and", author)]
arxiv_results 4[, author := gsub ("\n", "", author)]

arxiv_results 4[, author := gsub("\\\\", "", author)]

arxiv_results 4[, author := gsub("\\\"", "", author)]

arxiv_results 4[, author := gsub("[(]J\\d[)] (\\W?and)?", "and", author)]

# exporting as ris file

write refs(as.data.frame(arxiv_results 4), format = "ris", file =
pastel (getwd(), "/articles/source searches/arxiv_results.ris"))



B Selection process

B.1 Abstract screening chart

The flowchart presented in Figure 1 was used by KP and JV to independently screen the titles and abstracts yielded by the search.

Uncertain
Does the article include data

. > )
includes data generation? generation?

Maybe + label:
1) no data generation

Exclude: ]

/ Exclude:

2a) image data
2b) NLP data
2c) video data
2d) location data
2e) time series
2g) compositional data
2f) functional data
2h) genome / microarray data
2i) spectroscopy data
2j) network data
2k) shape data
2l) synthetic aperture radar data

Uncertain

Is the method applicable
to longitudinal data?

- Exclude: 2m) seismic data
a Iicat:feafobleor: ‘i?ll‘ljdeill'.lal data? Uncertain 3a) data simulation Y )
PP 9 ’ Does the article include synthetic 3b) resampling / . 2
+ ) > 'z) other wrong data /
data generation? permutation methods \

synthetic or simulated?

3c) deterministic methods

Exclude:

Yes Maybe + label: Uncertain Does the article include 33;?‘:;;:;’::;7”
synthetic or simulated? synthetic data permutation methods
2
generation? 3c) deterministic methods
Maybe + label:
applicable to longitudinal
data?

Wi
[ Include ]

Figure 1. Title and abstract screening flowchart. Each included search result was screened by KP and JV independently using Rayyan [3] and this flowchart. The process started at the top of
the chart (Start) and progressed in the directions indicated by the arrows, depending on the selection. The terminations of the process and the selection of the search result (include, maybe,
exclude) are indicated in bold



B.2 Full-text screening chart

The flowchart presented in Figure 2 was used by KP and JV to independently screen the full texts of
publications that had been deemed as potentially eligible (classified as ‘Maybe’ or ‘Included’)
following the title and abstract screening.

I

Discussion

Maybe + label:
data type uncertain

Exclude:

1a not synthetic data generation

1b based on common pd(s)
1c partially synthetic

. Does the article include
synthetic data
generation?*

generated on the basis of some existing data
generated by utilizing a randomized algorithm
that is not a simple combination of commonly
known distributions
o a simple combination in this context
Yes means that the variables are generated
from well-known probability distributions
without the method having any
originality / novelty value on the basis of
which it could be considered different
Discussion from the so-called general simulation
fully synthetic, i.e., all variables are generated

Exclude:

Maybe + label: Maybe 2. Is the method applicable 2a wrong data type
applicability uncertain to generic longitudinal Could not confirm 2b applicability could not be
patient data?** confirmed
« consist of categorical and/or numerical variables
realistic for patient data
« includes at least one repeated measurement
Yes + can be presented in n x p format where rows are
independent
n and p are arbitrary
Add label: Yes, in another article . Exclude:
e i 3. Is the generating method .
not original article described? 3a method not described

Yes, in the current article

Upload the original
article
if not already included

Include + label:
method not available

4, |s the generating method
available?

Include

Figure 2. Full-text screening flowchart. Full texts of each publication that was included after screening the titles and abstracts was
screened by KP and JV independently using Rayyan [3] and this flowchart. The process started at the top of the chart (Start) and
progressed in the directions indicated by the arrows, depending on the selection. The actions and terminations of the process and the
selection of the search result (include, maybe, exclude) are indicated in bold



C Data collection process

Data were collected and managed by the corresponding author using a structured form designed in
REDCap electronic data capturing tools hosted at University of Turku [4,5]. The forms are
presented below.

C.1 Literature information

Page 1

Literature information

Please complete the survey below.

Type of publication (O Journal article
(O Poster
(O Conference paper
(O Book chapter
(O Dissertation or thesis
(O Research report
O Review article
(O Other

Name the other publication type

Authors

Year

Title

Publication platform (journal, conference, book...)

(Give the name of the journal/conference etc.)

Volume

Issue

Page numbers

Is the publication peer-reviewed? O Yes

O No

What was the purpose of the study?

(In this context, study refers to the article)

11.08.2023 11:27 projectredcap.org *EDCHP"



C.2 Method characteristics

Method characteristics

Please complete the survey below.

Page 1

Basic information

Type of the method

[] Generative adversarial network

[] Recurrent neural network

[] Auto-encoder (variational or other)
[] Bayesian network

[J Hidden Markov model

[] Density estimation

[] Imputation method

[] Dimensionality reduction

[7] Data partitioning

[] Decision tree (classification, regression)
[] Posterior predictive sampling

[ Clustering
[7] Other deep learning method
[] Other
Type of the method (other/other deep learning)
Is expert knowledge required/used in the method? O Yes
O No
How is expert knowledge needed?
Describe the method as concisely as possible
Programming language R
[] Python
OcC++
[ Java
[] Scala
[ Julia

[ Fortran(77/90/95/...)
[] Matlab/Octave

[ SAsS

[] Other

[] Not specified

Programming language (other)

Is the pseudocode of the method presented? QO Yes
O No
Is the source code/software provided? QO Yes
O No

11.08.2023 11:27

O Upon request

projectredcap.org *Enca ph

10



Page 2

Method's source code location

(e.g. URL)

Is the software

O Library

(O Standalone software
O Other

(O Not specified

Define the other software type

Is the software used to apply the method free?

O Yes
O No
(O Not specified

Software licence

Was the method

[ Originally desinged for longitudinal data

[] Altered/modified for longitudinal data

[J Implemented to longitudinal data without any
modifications

How the method model/approaches longitudinal data

Used system and complexity (requirements)

Does the article mention anything about the used
system or its requirements?

O Yes
O No

Operating system

Other system requirements or used system information

Method's running time in terms of the input size (Big
O notation) if reported

Input (original) and output (synthetic) data properties

Is the method capable of handling unbalanced
longitudinal data?

11.08.2023 11:27

O Yes (number of time points / timing / spacing for
intervals is different for different subjects)

O Yes (some variables are collected less often than
others, but still for everyone at the same time
point)

O No

(O Not specified

REDCap’

projectredcap.org

11



Page 3

Is the method capable of generating unbalanced
longitudinal data?

O Yes (number of time points / timing / spacing for
intervals is different for different subjects)

O Yes (some variables are collected less often than
others, but still for everyone at the same time
point)

O No

(O Not specified

The method is capable of

[] Handling categorical original data

[] Handling numerical original data

[] Generating categorical synthetic data

[] Generating numerical synthetic data
(numerical = continuous / interval, categorical =
binary / multiclass)

The numerical data values generated

[] Will not necessarily fall within the corresponding
range in the original data set

[ will fall within the corresponding range in the
original data set

[] Will be replicates of values in the original data
set

[C] Not specified

Is the method capable of handling missing values in
the original data?

O Yes
O No
(O Not specified

Is the method capable of producing missing values for
synthetic data?

11.08.2023 11:27

O Yes
O No
O Not specified

projectredcap.org *EDca pﬁ

12



C.3 Method evaluation

Method performance evaluation

Please complete the survey below.

Page 1

Data used to generate synthetic data, i.e., original or input data

Synthetic data was generated based on

[] Real-world data

[] Simulated data

[] Synthetic data

[ Other

(i.e., what type/form was the original data?)

Give the name of the data set(s)

(Separate the names with a comma)

What kind of data was used? Separate different data
sets with a comma.

(e.g., patient data, other data related to people,
non-human data)

Is the used data set(s) available?

[ Publicly
[] Upon request
[ No

Give the source(s) of the available data set(s)

(If multiple, in same order as given the data sets
above)

The number of independent observations (subjects) in
the input data set(s). If multiple data sets, separate
with a comma.

(If not reported or recoverable, write 'Not
specified')

The number of variables in the input data set,
including variables with repeated measurements. If
multiple data sets, separate with a comma.

(If not reported or recoverable, write 'Not
specified')

Number of variables with repeated measurements (subset

of the total number of variables).

Number of repeated measurements. For unbalanced data

or varying ranges, give the range [min, max]. If
multiple data sets are used, separate them with a
comma.

Number of categorical variables. If multiple data sets
are used, separate them with a comma.

(Options: 0,1,,2,..., not specified)

Number of numerical variables. If multiple data sets
are used, separate them with a comma.

11.08.2023 11:27

(Options: 0,1,,2,..., not specified)

projectredcap.org ﬁEDCap’

13



Page 2

Is the pattern of missingness similar to the original
data?

O Yes
O No
(O Not specified

Does the method have other limitations or requirements

for the original data that have not already been
mentioned?

O Yes
O No

(e.g. input data have to be scaled)

Describe the requirements / limitations regarding to
original data

Evaluation setup of the generated synthetic data

Was the variable(s) in the synthetic data with
repeated measurement treated as

O Response

(O Explanatory

O Both

O Not specified

(Option "Not specified" should be used only if the
article is otherwise relevant and the nature of the
variable cannot be determined even through
discussion.)

The evaluation of the generated synthetic data was
based on

[ Qualitative assessment
[] Quantitative assessment
[] Other

(Select all suitable options)

Describe the other approach used to evaluate the
synthetic data and/or the method

The evaluation of the generated synthetic data was
based on

[] A single repetition (i.e., the assessment is based
on a single generated synthetic data set)

[] A small amount of repetitions (i.e., multiple data
sets)(< 50)

[] A large amount of repetitions (>= 50)

(Select all suitable options)

Was any of the following used to describe or evaluate
the generated synthetic data and/or the method

[] Descriptive statistics

[] Statistical inference

[ Prediction/classification (synthetic vs. real)
[ Prediction/classification (some other variable)
[] Privacy

[ Externally assessed realism

(Select all suitable options)

Was the generated synthetic data evaluated

11.08.2023 11:27

[] Against (resamples) original data

[] Against other simulated data

[] Against other real-world data (public / private)

[ Against another synthetic data set(s) generated by
the same method (e.g., using different parameters)

[J Against another synthetic data set(s) generated by
a different method or methods

[] No comparisons to other data or methods were made

(i.e., a single data set was generated)
[] Other
(Select all suitable options)

REDCap

projectredcap.org

14



Page 3

Name the other methods used in the comparison

Describe the other approach to used to evaluate the
generated synthetic data (in terms of data)

Describe the simulation approach.

Was the training process(es) described and/or O Yes
available in the source code? QO Partially
O No

What was lacking from the training process description
if it was only partially described?

Qualitative methods used to characterize and/or evaluate the generated synthetic data set(s)

Specify all qualitative methods (e.qg., figures) used
to describe and/or evaluate the generated synthetic
data set(s)

Descriptive methods used to characterize and/or evaluate the generated synthetic data set(s)

Specify all descriptive statistics (e.g., measures,
estimates) used to describe and/or evaluate the
generated synthetic data set(s)

Inferential statistics used to evaluate the generated synthetic data set(s)

Specify all inferential statistics (e.g., tests,
models) used to evaluate the generated synthetic data
set(s)

Predictive and classification approaches used to evaluate the generated synthetic data set(s)

Specify all the predictive and classification
approaches (e.g., models, accuracy measures) used to
evaluate the generated synthetic data set(s) in terms
of synthetic data performance

Privacy of the method and the generated synthetic data set(s)

Was differential privacy used to enhance/secure the O Yes
privacy of the generated synthetic data? O No
(e.g., as a part of the method / applied post-hoc)

What was the epsilon used? If multiple epsilons were
used, separate them with a comma

Specify delta if applicable. If value not specified,
write not specified.

11.08.2023 11:27 projectredcap.org hEDCap"

15



Page 4

Was any of the following used to test the privacy of
the synthetic data?

[J Membership attack / identity disclosure
[] Attribute disclosure

[ Inferential disclosure

[] Other

[J No other approaches were used

Specify how the privacy of the method and/or the
generated synthetic data set(s) was addressed: specify
the approach (e.qg., distinguishing records with a
model) and parameters used (other than DP asked
previously) if reported or write a summary of the
authors' discussion on the subject if no specific
approach was used.

Externally assessed realism

How was the realism assessed externally?

Other limitations or requirements for the generated synthetic data

Does the method have other limitations or requirements O Yes
for synthetic data that have not already been O No
mentioned?

Describe the requirements / limitations regarding to

synthetic data

Advantages and disadvantages of the method

Did the authors discuss the advantages / disadvantages QO Yes
of the method? O No

Write down the advantages of the method according to
the authors

Write down the disadvantages of the method according
to the authors

Write down the advantages of the method according to
you

Write down the disadvantages of the method according
to you

11.08.2023 11:27

projectredcap.org hEDcapﬁ

16



Page 5

General remarks on the method and the synthetic data

General remarks on the method and the synthetic data
that were not addressed here

11.08.2023 11:27

projectredcap.org

REDCap

17



Assessment of bias and reporting quality

Please complete the survey below.

C.4 Assessment of bias and reporting quality

Page 1

For more information, see "Risk of bias in individual studies" in the review protocol.

Selection bias

Does the study show evidence of selection bias?

Assumption: The data used and the choice of model(s)
should always be justified.

Examples:

Using a data set that is known in advance to perform
poorly with another method that is used as a reference
for the developed method Post hoc alteration of data
or model inclusion based on arbitrary or subjective
reasons Using different training, validation, or test
sets when evaluating the method performance

O Yes

O No

O Possibly

(The option "Possibly" can be used in a situation
where there is no clear evidence of bias, but there
is something to point out about the subject.)

Describe the (possible) selection bias present

Performance bias

Does the study show evidence of performance bias?

Assumption: Method comparison procedures should be
fair and carefully described.

Examples:

No fine-tuning is performed on the reference methods
while the method in question is fine-tuned.

O Yes

O No

O Possibly

(The option "Possibly" can be used in a situation
where there is no clear evidence of bias, but there
is something to point out about the subject.)

Describe the (possible) performance bias present

In how many comparisons out of all reported

comparisons did the method perform worse than another

comparison method.

(Give a fraction worse/total or write 0/1 if the
method performed best/worst in every comparison)

List the situations in which the method performed
worse than the other methods or write all and give the
amount of comparisons reported, if the method
performed worst in every comparison.

11.08.2023 11:27

projectredcap.org hEDCap”
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Page 2

Reporting bias

Does the study show evidence of reporting bias?

Assumption: All metrics used in the study to
evaluate the performance of the method should be
described in the study and the results for these
should be available to the reader.

Examples:

The performance of the method has been found to be

measured in some way, but the results are only
partially or not at all presented.

O Yes

O No

O Possibly

(The option "Possibly" can be used in a situation
where there is no clear evidence of bias, but there
is something to point out about the subject.)

Describe the (possible) reporting bias present

Inconsistency, imprecision and indirectness of reporting

Did the study show evidence of

[] Inconsistency of reporting
[ Imprecision of reporting
[ Indirectness of reporting
[] None of the above

Describe the type of inconsistency present

Describe the type of imprecision present

Describe the type of indirectness present

Competing interests

Were competing interests reported?

11.08.2023 11:27

O Yes
O No
O Not available

REDCap

projectredcap.org

19



D Risk of bias and reporting quality assessment

D.1 Risk of bias assessment framework

Table 1. The framework used to assess the risk of bias. This table outlines different biases that may influence the evaluation of the methods’ performance. The risk of these
biases were assessed from the included publications. The table presents the fundamental principles (Rationale) that guided the assessment as well as the challenges involved in
recognizing each type of bias (Assessment plausibility), along with illustrative examples of each type of bias.

Bias

Rationale

Assessment plausibility

Examples

Selection bias

Assessing the method’s performance requires
fairness in data representation, use of suitable
metrics, and equal potential across methods to
perform specific tasks. This necessitates clear
justifications for input data, metrics, and
reference method selection.

Detecting selection bias is difficult because any assessment
approaches taken prior to the final publication may not be fully
disclosed, making it difficult to assess favoritism towards the
primary method. The reviewers may also be unaware of
instances where a particular dataset did not work well with a
particular method.

Adjusting data or models based
on arbitrary factors.

Using different datasets to
evaluate different methods
Selectively using data or
methods to favor the primary
method.

Performance
bias

To ensure a fair performance evaluation across
methods, it is essential that a transparent and
detailed description of the comparison and
training procedures has been provided.

Detecting performance bias is challenging when the model
selection and training details are incomplete or not reported. It
becomes possible when the authors provide these details and
mention using reference methods without task optimization.

Not giving the reference
methods a fair opportunity to
perform well, e.g., through
intentionally inadequate model
training compared to the primary
method.

Reporting bias

To ensure research transparency, it is
important that all research evaluation metrics
are comprehensively documented and the
results are shared.

Detecting the bias should be straightforward when a publication
or its supplementary material lacks or incompletely presents
results for the evaluation approaches mentioned in the study.

Results are either incomplete or
missing
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D.2 Risk of bias in individual studies (detailed explanations)

Table 2. Detailed explanations of the identified risk of bias present within each study.

Authors P.e rformance Explanation R.eportmg Explanation
bias bias
Certain outcomes were exclusively or incompletely reported
The method was compared to other across methods and/or datasets. For instance, not all
Lietal. [6] Possibly methods but the training processes were Yes outcomes of t-tests were fully given, and patient trajectories
not described. were displayed only for the primary method and using only
the MIMIC-III data.
The method was compared to other
Bhanot et al. [7] Possibly methods but the training processes were
not described.
Certain findings, such as those shown in Table 2, pertained
The method was compared to other only to the primary method. Furthermore, the outcomes
Yu, He & Raghunathan [8] Possibly methods but the training processes were Yes pertaining to IVEWare were excluded from the tabulated
not described. results of Tables 3 and 4. These specific outcomes were also
omitted from the supplemental materials.
The method was compared to other The primary method “Baseline + CFR + RS” was omitted
Zhang, Yan & Malin [9] Possibly methods but the training processes were Yes from Figure 5 illustrating the drift in time.
not described.
The authors asserted in their work (page 602, top of the
Zhang et al. [10] Yes second column) that statistical insignificance of FPR and

TPR was observed. However, we could not find information
about the specific statistical test they used in this context.
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Biswal et al. [11] Possibly

The method was compared to other
methods but the training processes
were not described.

Yes

In Figure 2, the VAE-Deconv component is absent. Within
Figure 3, the depiction of outcomes is partial across
various methods, and the rationale for excluding specific
subfigures has not been presented. The evaluation of
privacy remains either unaddressed or, at minimum, the
outcomes pertaining to the alternative comparative
methods and EVA. are absent from the presentation.

Gootjes-Dreesbach et al. [12]

Yes

Comparative analyses between the actual patients and
virtual patients were only shown for the PPMI dataset. In
Figure 6, the depiction of decoded real patients was
missing from the subset pertaining to SP513.

Sood et al. [13]

Yes

Comparisons between synthetic and original variables
were selectively delineated for a subset of the variables
under consideration.

Fisher et al. [14]

Raab, Nowok & Dibben[15]

Yes

Yes

The authors had decided to confine the outcome section to
a subset of data characterized as partially synthetic.
Notably, some of the evaluation techniques could have
been suitably extended to encompass fully synthetic data.
The rationale behind this decision remains unclear.
Analyses concerning the marginal distributions and the
preservation of temporal correlations of discrete variables
were not presented.
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D.3 Individual study reporting quality assessment (detailed explanations)

Table 3. Detailed explanations of the identified reporting quality deviations within each study. Inconsistency of reporting refers to utilization of 1) identical terminology
or notations to signify distinct phenomena and lacking clarification (e.g., using "noise" for both original data variation and additional privacy mechanism-induced noise
without clear differentiation) or 2) disparate notations to represent the same phenomenon, both 1 and 2 introduce a potential risk of misunderstanding. Imprecision of
reporting refers to the lack of precision (e.g. p-values reported with varying accuracies) or clarity in the presentation of information, which may lead to ambiguity or difficulty
in understanding the reported data. Indirectness of reporting involves conveying information in a manner that is not straightforward or explicit, albeit to a lesser extent than
observed in reporting bias, potentially requiring the reader to infer or deduce certain details. This can introduce a level of uncertainty or make the interpretation less direct.

Authors Inconsistency Explanation Imprecision Explanation Indirectness Explanation
The meaning of mean and standard
deviation for a discrete-valued feature
is unclear (page 13, section 4.3).
Figure 5 states that the y-axis
represents the probability distribution
. - of Mechanical Ventilation and
Statistically significant p- ) i
Vasopressor being applied ("On"). It's
. values are not reported as X
Lietal. [6] Yes . Yes unclear how the y-axis can exceed the
precisely as values above £10.1]
0.05. range of [0,1].

In reference to differential privacy, it is
stated that delta < 0.001 (p. 21), but it
is unclear what the exact delta was in
each situation, e.g. if the delta remains

constant for all values of epsilon
presented in Figure 7b.
The number of patients was
Bhanot et al. Yes not reported precisely (“The
[7] data set has over 30 K
records”, page 2).

The data description in Table 1 shows

the gender distribution, but the article
Zhang et al. . . .
[10] Yes lacks clarity on whether this variable

was utilized in data synthesis or
analyses.
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Biswal et al.

[11]

Yes

The number of clinicians
used to evaluate the realism
score was not reported.
Information on the minimum
and maximum number of
visits per patient and the
minimum number of codes
per visit was not given.

Yes

Full details about the presence

disclosure test were not provided.

Abbreviations like ELBO were

remained unclear.

unspecified. The nature of preliminary
evaluations mentioned in the appendix

Gootjes-
Dreesbach et
al. [12]

Yes

Utilized three distinct
notations for the
differential privacy budget
parameter.

Yes

Subfigure 9.1 did not specify
the epsilon used in that
figure.

Sood et al.
[13]

Yes

The number and types of
variables employed in the
actual synthesis of data
remained unclear.

Wendland et
al. [16]

Yes

The p-value on page 3, right
column, first paragraph, is
reported with different
precision compared to the
subsequent p-values (which
have two significant
figures).

24



E Study selection: excluded publications

The primary reason for exclusion was wrong data type (n = 165), mostly cross-sectional [17-20],
survival [21-24] or time-series data [25—27]. Publications compromising the temporal structure in
longitudinal data were categorized as having wrong data type [28—30]. Publications lacking SDG (n
= 81) were typically introductions of a specific synthetic data framework [31-34] or data
simulations [35-37]. Exclusions due to partially synthetic data (n = 49) were largely related to data
augmentation using techniques such as Synthetic Minority Over-Sampling Technique (SMOTE)
[38] or its variants [39—43].

We excluded 29 publications as we could not determine their eligibility, stemming from incomplete
data, incomplete method description, or restricted access to the cited references, data, or algorithms
[44—47]. Additionally, 28 studies were excluded for relying solely on standard probability
distributions to simulate data [48—51]. Furthermore, 14 studies were excluded for failing to
acknowledge the longitudinal nature of data [52—57], although the original datasets included
variables with repeated measurements. Lastly, we identified three duplicates and two publications
of wrong literature type (thesis or an extended abstract).

F Primary methods

F.1 Generative adversarial networks

Generative Adversarial Networks (GANs) [58] are a class of deep learning (DL) models of two
neural networks. The generator network is trained to create synthetic data while the discriminator
network learns to distinguish between real and generated data. The two networks are trained in a
competitive setting, where the generator aims to produce increasingly realistic samples and the
discriminator strives to improve its ability to differentiate between real and fake data.

AC-GAN

AC-GAN [59] (auxiliary classifier GAN) generates continuous synthetic data that includes a
stratifying variable, e.g., a treatment group. Notably, AC-GAN offers options for both differentially
private and non-private training approaches. The method models temporal relationships through
convolutional layers [60] and by assuming that variables in the input dataset are ordered by time.
Given that the objective is to concurrently generate realistic synthetic data while maintaining the
inherent data stratification, its applicability in producing more generic longitudinal patterns is
difficult to determine.

EHR-M-GAN

EHR-M-GAN [6] first maps variables into a shared latent space of reduced dimension using a dual
variational autoencoder [61]. The method then generates correlated patient trajectories of different
variable types through a coupled recurrent network that specifically focuses on learning temporal
dependencies in the data. As EHR-M-GAN requires filtering outliers from the input data, it is not
clear how well the method performs under data with long-tailed distributions.

HealthGAN

HealthGAN [62], applied in Bhanot et al. [7], implements a Wasserstein GAN gradient penalty
(WGAN-GP) [63] and data transformation to generate mixed-type data. The transformation
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involves scaling all variables to a unit range and reversing them back to their original scales after
synthesis. HealthGAN, not initially developed for longitudinal data, relies on its ability to learn the
multivariate distribution underlying the input data to capture temporal correlations. It may face
challenges in learning and generating subpopulations.

Health Gym GAN

Health Gym GAN [64] generates mixed-type data and utilizes WGAN-GP and a bi-directional long
short-term memory (biLSTM) network [65—-67] to model dependencies in both temporal directions.
To model multiple correlated categorical variables, Health Gym GAN requires fine-tuning.

MTGAN

Multi-label time series GAN (MTGAN) [68] generates patient-level illness sequences (diagnosis
code indicator vectors). MTGAN utilizes a gated recurrent unit (GRU) generator [69] to recursively
generate diagnosis probabilities and applies a conditional transition matrix to better address rare
diagnoses. GRU also models temporal correlations between visits and diagnoses via latent variables
and probabilities from previous iterations. The current MTGAN version is restricted to categorical
variables and cannot generate continuous variables.

F.2 Autoencoders

Autoencoders (AEs) [70] are a type of neural network architecture that consists of an encoder and a
decoder network, collectively trained to learn an efficient data representation that captures the most
salient features of the input data. The encoder maps input data to a lower-dimensional latent space,
while the decoder reconstructs the original input from the latent space. The goal of an autoencoder
is to minimize the reconstruction error.

Variational autoencoders (VAEs) [61] differ from AEs by employing probabilistic encodings that
capture uncertainty through probability distributions over latent variables. This approach offers
greater flexibility in handling mixed-type data and enables VAEs to generate new samples by
sampling from the latent space and decoding to the data domain.

EVA

EHR Variational Encoder (EVA) [11] generates patient-level visit sequences (indicator vectors of
diagnosis codes, medications, and procedures) as autoregressive time-ordered transitions, with
latent variables accounting for between-patient heterogeneity across the sequences. EVA models
the temporal structure by incrementally expanding the latent space's spatial dimensions
(deconvolution). While EVA can generate unbalanced data, it does not model the actual time
between the visits. In addition, EVA’s performance may be suboptimal when dealing with less
frequent sequences in input data.

F.3 Bayesian Networks

Bayesian Networks (BNs) [71] are probabilistic modeling techniques that capture relationships
between variables using a directed acyclic graph (DAG). The graph’s nodes represent random
variables while the edges indicate between-node dependencies. Each node is associated with a
conditional probability distribution that describes the probability of the variable given its parental
nodes.
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MBN

A Modular Bayesian Network (MBN) [13] generates Gaussian and categorical synthetic data by
learning conditional probabilities between predefined modules of semantically similar variables.
Learning the network structure is improved by enforcing edge constraints, such as the correct
temporal order of the nodes, and by reducing the module dimensionality via sparse autoencoders. In
the case of non-Gaussian variables, MBN performs better when these variables are discretized, but
this process also reduces data resemblance. Moreover, defining the modules and constraints requires
expert knowledge.

VAMBN

A Variational Autoencoder Modular Bayesian Network (VAMBN) [12] expands on MBN by
introducing a variational autoencoder (HI-VAE) [72] that considers data heterogeneity and
missingness within modules. Temporal ordering is maintained by preventing edges from pointing
backward in time for variables with repeated measurements. Similarly to MBN, VAMBN requires
expert knowledge. In addition, the current implementation does not allow Gaussian nodes to have
discrete-node children and necessitates a modern parallel computing architecture.

GMB model

Wang et al. [73] used a Generative Markov-Bayesian-based (GMB) approach to generate disease
progression sequences (diagnosis codes). The method is a hierarchical model, with three layers:
disease progression is modelled as a continuous-time Markov jump process [74], possible
complications as conditionally independent Markov processes [74], and the presence of
comorbidities is inferred through a bipartite noisy-or Bayesian Network [75,76]. GMB transforms
unbalanced discrete-time input data into continuous-time illness sequences. For improved
computational efficiency, expert knowledge is needed to establish prior probabilities that link
complications and observed comorbidities.

F.4 Ensembles

Ensemble methods are machine learning techniques that combine multiple individual models [77].
The underlying idea is that by aggregating predictions or decisions from multiple models, the
overall performance is improved over a single model. Common ensemble methods include bagging,
boosting, and stacking [77]. Bagging involves training multiple models independently on different
subsets of the training data and averaging their predictions. Boosting focuses on sequential model
training, where each subsequent model tries to correct mistakes made by the previous models.
Stacking combines predictions from multiple models using another model, called a meta-learner.

LS-EHR

The Longitudinal Simulation framework for EHR (LS-EHR) [9] combines GAN and recurrent
neural network (RNN) with condition fuzzing and regularization (CFR) [9] to generate patient-level
visit sequences (indicator vectors of diagnosis and procedure codes). To further improve data
quality, LS-EHR incorporates Gaussian noise to add variability to synthetic observations and uses
rejection sampling to improve data resemblance. CFR enables learning from both previous and
subsequent episodes, mitigating gradual synthetic sequence divergence (drift) from the real
sequence. While the LS-EHR was developed to address drifting, the problem was not fully
resolved. Additionally, the performance of LS-EHR on datasets with high sparsity or a mix of
categorical and continuous variables remains uncertain.
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MultiNODEs

The Multimodal Neural Ordinary Differential Equations (MultiNODESs) [16] uses latent NODEs
[78] to generate continuous repeated measurements, HI-VAE [72] to generate static variables (both
categorical and numerical) and an imputation layer to replace any missing values present in the
input data. The method is currently limited to generating continuous repeated measurements and its
optimal performance depends on tuning several sensitive hyperparameters.

SynTEG

The Synthetic Temporal EHR Generator (SynTEG) [10] utilizes a self-attention architecture of
transformer encoders [79] and a recurrent model to generate patient-level visit sequences (diagnosis
code indicator vectors) conditionally on the previous visits. Subsequently, GAN is used to capture
the multivariate distribution and to generate the sequences. SynTEG is limited to generate only
diagnosis codes and it is possible that the method generates sequences conflicting with medical
knowledge.

F.5 Other
CRBM

Fisher et al. [14] used a Conditional Restricted Boltzmann Machine (CRBM) to generate mixed-
type disease progression data. CRBM is a probabilistic graphical model that incorporates latent
variables and conditional distributions. The temporal dependence structure was learned by training
the model with all possible pairs of two consecutive observations. As such, CRBM can generate
both static and time-varying variables. However, the method requires balanced, numerically
formatted data.

SCM

Barrientos et al. [80] used Sequential Conditional Modeling (SCM) to generate synthetic career
data. Specifically, they modelled each input variable based on its type, utilizing techniques like
classification and regression trees (CARTSs) [81] and parametric probability distributions. Data were
generated sequentially, variable-by-variable, and the future values of any time-varying variables
were assumed to depend on the past only through the variables’ current values. This method
resembles traditional simulation and relies on expert knowledge to determine the approach and
sequence for modeling each variable.

SPMI

Yu, He and Raghunathan [8] used Semiparametric Multiple Imputation (SPMI) to generate
synthetic mixed-type survey data. Missing observations were first imputed using a Sequential
Regression Multiple Imputation (SRMI) [82] framework. Subsequently, a Bayesian bootstrap
sample [83] was extracted from these data and Alternating Conditional Expectation (ACE) [84] and
a Ridge-Penalized Logistic (RPL) [85] imputation models were used to generate synthetic
observations of continuous and discrete variables, respectively. Temporal dependencies were
assumed to be learned by the imputation models as part of the overall correlation structure. SPMI is
designed for datasets with around a hundred variables and may not be suitable for significantly
larger or smaller datasets. Additionally, the method’s generalizability beyond specific types of
survey data, such as EHR or census data, is uncertain.
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Synthea

Synthea [86] generates synthetic EHR data using modules and state-transition machines to model
patient data. The modules are built based on Publicly Available Data Approach to the Realistic
Synthetic EHR (PADARSER) framework [33] utilizing publicly available data and predefined
healthcare trajectory templates (care maps). Users can build their own disease models using a
dedicated module builder, but this requires expert knowledge of the disease. Synthea's module-
based approach may not fully capture real-world complexity, and it primarily generates snapshots of
patients at specific times, lacking long-term health data representation.

Synthpop

Raab, Nowok and Dibben [15] generated mixed-type data with Synthpop [87]. This R-package
enables the use of several different parametric and non-parametric methods for generating synthetic
mixed-type data by drawing each variable sequentially from its conditional distribution given the
already synthesized variables. The authors applied both non-parametric (CART) and parametric
(polychotomous, logistic, and linear regression) models to estimate these conditional distributions.
Temporal modeling is based on the models’ abilities to learn the general correlation structure.
Applying methods provided by Synthpop requires expert knowledge akin to SCM. In addition, the
parametric methods may oversimplify the underlying distributions and structure in the input data
and thus may not work with complex datasets.

G Reference methods

Table 4. Reference methods used to benchmark the primary method.

Study Primary method Reference methods

C-RNN-GAN [88]
R(C)GAN [89]
TimeGAN [90]
medGAN [91]
seqGAN[92]
SynTEG [10] (included)
DualAEE [93]
PrivBayes [20]
medGAN [91]
CTGAN [9%4]
EMR-WGAN [95]
Lu et al. [68] MTGAN RDP-CGAN [96]
WGAN-GP [63]
TimeGAN [90]
T-CGAN [97]
EVA.

biLSTM [65]
VAE-LSTM [98]
VAE-Deconv [99]

Wendland et al. [16] MultiNODEs VAMBN [12] (included)

IVEware Version 0.3 [100]
Synthpop [87] (included)

Li at al. [6] EHR-M-GAN

Biswal et al. [11] EVA

Yu, He & Raghunathan [8] SPMI
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H Datasets used in the included publications

Table S. Details regarding the datasets utilized within the studies.

Datasets  Data type Availability  Study  Subjects (iRt (TR asirements - measurements
[59] 8260 9 1 9 5
[6] 28 344 78 20 98 24
MIMIC-III Clinical database Public [68] 7 493 0 4 880 4 880 avg. 2.6
[64] 3910 9 13 20 48
[64] 2 164 35 11 42 2-20
[13] 362 NA NA 38 2-12
PPMI Patient data Public [16] 354 53 15 25 5-12
[12] 557 NA NA 38" 5
VUMC EHR data No [9] 59617 0 1276 1276 25-200
Synthetic derivate  No [10] 2 187 629 0 1799 1799 avg.12.1
ADNI Patient data Public [13] 689 NA NA 18 4
All of Us EHR data Public [9] 59617 0 526 526 10-200
ASD Health data No [7] > 280 000 7 2 7 10
ATUS Behavioral data Public [7] >30 000 1 4 1 30
CDC EHR data No [73] 9298 1 100 88 2-11
CODR-AD Clinical database No [14] 1 909 38 6 36 7
elCU Clinical database Public [6] 99 015 55 19 74 24
HiRID Clinical database Public [6] 14 129 50 39 89 24
HIV PuResistintegrated  pypiic [64] 8916 3 12 13 10-100
HRS Longitudinal survey No [8] 12 652 7 41 11 2-3
MIMIC-IV Clinical database Public [68] 10 000 0 6102 6102 avg. 3.6
Multi-census Census data No [86] NA NA NA NA NA
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NACC Patient data Public [16] 2284 4 3 3 4

PAMF EHR EHR data No [11] 258 555 0 10 437 10 437 avg. 53.8
SP513 Clinical trial data ~ No [12] 560 NA NA 35" 2-11"
SPRINT Clinical trial data ~ No [59] 6502 3 1 3 12
Status File Employment data ~ No [80] 3511824 5 24 22 24

UK LS Admin-census data No [15] > 186 000 1 4 5 2

NA: not available; avg.: average; *: calculated from presented materials by the corresponding author
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