Basics of photometry

K. Nilsson

Finnish Centre for Astronomy with ESO (FINCA)

5.2.2020

Luminosity and flux density

- An object has a total energy output = Luminosity L [erg s⁻¹].
- The observer at distance r sees only part of this energy as flux density (flux) F [erg s⁻¹ cm⁻²].

• For an isotropic source

$$F=rac{L}{4\pi r^2}.$$

- Flux is the observed quantity, luminosity calculated (with a set of assumptions).
- Typically in astronomy one talks about flux when meaning *spectral* flux.
- Spectral flux has a unit of erg s⁻¹ cm⁻² Å⁻¹ (F_λ) or erg s⁻¹ cm⁻² Hz⁻¹ (F_ν)
- Note that $F_{\lambda}(\lambda_0) \neq F_{\nu}(\nu_0)$ although $\lambda_0 = c/\nu_0$, because $d\lambda = -c/\nu^2 d\nu$.

CCD-cameras do not measure flux density *F* directly. They record something proportional to *energy* stored to the detector over the exposure time.

Light \rightarrow electrons \rightarrow voltage \rightarrow ADUs ("counts")

How to derive F from the pixel values on the CCD?

Three problems

- 1) How to measure the counts from a target? Available techniques:
- aperture photometry
- PSF photometry
- model fitting (e.g. galaxies).
- 2) How to correct the counts for
 - the atmosphere
 - instrumental response and artifacts.
- 3) Calibration: How to convert the measured counts to F?
 - "Differential" vs. "absolute" calibration: In the former the calibration targets are on the same CCD frame as the target, in the latter they are on different CCD frames.

1. Counting the photons

1.1 Aperture photometry

$$N = \sum_{i=1}^{n_{ap}} (N_i - N_{sky}) , \qquad (1)$$

where N_i = counts in the *i*th pixel inside the aperture n_{ap} = number of pixels in the aperture ($\sim \pi r_{ap}^2$) N_{sky} = average sky brightness inside the aperture.

How to choose aperture radius r_{ap} ?

Guided by two facts:

1) Growth curve: N increases with increasing r_{ap} .

This means that one should use a very large aperture to include all target light, *but*

2) Maximum signal to noise is often achieved with a relatively small aperture, especially when the target is faint..

Signal to noise in aperture photometry:

$${
m S/N}=rac{N}{\sqrt{N+n_{ap}\sigma_{sky}^2(1+rac{n_{ap}}{n_{sky}})}}$$
 (2)

- N = target counts [e⁻]
- σ_{sky} = rms sky noise [e^{-}]
 - n_{ap} = number of pixels in the aperture
- n_{sky} = number of pixels in the sky annulus.

Howell (1989) PASP 101, 616

IRAF phot output (bright target)

	r _{an}				N	mag	mag er	r		
	70.00	1634051.	15393.9	9 563	3164.4	10.623	0.003	0	NoError	*
	60.00	1345367.	11309.8	31 558	3592.4	10.632	0.003	0	NoError	* \
	45.00	994715.1	6362.06	5 552	2134.4	10.645	0.002	0	NoError	* \
	40.00	899088.	5026.66	59 549	9404.6	10.650	0.002	0	NoError	* \
	35.00	813511.4	3848.45	58 545	5791.	10.657	0.001	0	NoError	* \
	30.00	738392.7	2827.51	L 541	695.2	10.660	0.001	0	NoError	* \
	27.50	703837.6	2376.03	3 538	8547.6	10.672	0.001	0	NoError	* \
	25.00	671305.	1963.71	L8 534	1697.8	10.680	0.001	0	NoError	* \
	22.50	641928.2	1590.73	38 531	267.5	10.687	0.001	0	NoError	* \
	20.00	615294.3	1256.85	51 527	7860.7	10.694	0.001	0	NoError	* \
	17.50	590793.5	962.500	03 523	3836.5	10.702	0.001	0	NoError	* \
	15.00	568272.6	707.141	L 519	9079.9	10.712	0.001	0	NoError	* \
	12.50	547029.8	491.286	51 512	2853.2	10.725	0.001	0	NoError	* \
	10.00	525029.1	314.458	39 503	8153.6	10.746	0.001	0	NoError	* \
	7.50	496859.1	176.991	L1 484	1546.6	10.787	0.001	0	NoError	* \
	5.00	442399.4	78.8014	19 436	5917.6	10.899	0.001	0	NoError	* \
	1.	INDEF		INDEF		1	NDEF			\
	69.56563	6.31807	9	2.23149	93	4689 36		0	NoError	\
	451.193	304.201	-0.607	2.401	0.006	0.006		0	NoError	\
c_	e_20110206	5_16_1_1_1.f45	1.800	301.800) 1	nullfile			0	\

For bright targets aperture correction is not needed, the S/N is always good!

IRAF phot **output** (faint target)

r _{ap}				N	mag	mag er	r		
70.00	1067326.	15394.0	69 582	8.265	15.5	36 0.298	0	NoError	*
60.00	785383.	11310.	65 548	8.602	15.6	51 0.242	0	NoError	* \
45.00	444207.3	6362.04	46 553	0.06	15.6	43 0.150	0	NoError	* \
40.00	351731.4	5026.3	92 515	0.483	15.7	20 0.134	0	NoError	* \
35.00	270491.6	3848.04	48 516	0.146	15.7	18 0.110	0	NoError	* \
30.00	200351.3	2827.04	48 542	0.033	15.6	65 0.085	0	NoError	* \
27.50	169155.7	2376.6	65 527	9.284	15.6	94 0.077	0	NoError	* \
25.00	140757.4	1963.2	96 538	3.831	15.6	72 0.067	0	NoError	* \
22.50	114996.9	1591.08	84 528	8.081	15.6	92 0.060	0	NoError	* \
20.00	91834.17	1256.52	21 519	4.255	15.7	11 0.053	0	NoError	* \
17.50	71445.58	962.71	72 506	4.095	15.7	39 0.047	0	NoError	* \
15.00	53700.28	706.86	41 496	0.433	15.7	51 0.040	0	NoError	* \
12.50	38558.43	491.390	04 467	5.975	15.8	25 0.035	0	NoError	* \
10.00	26254.11	314.31	69 458	1.261	15.8	48 0.029	0	NoError	* \
7.50	16638.16	176.983	13 443	4.906	15.8	33 0.023	0	NoError	* \
5.00	9369.124	78.845	62 393	2.542	16.0	13 0.019	0	NoError	* \
1.	INDER	7	INDEF			INDEF			\
68.95222	6.232	297	2.63239	3	4703	20	0	NoError	\
195.618	483.560	-0.582	-0.640	0.070	0.068		0	NoError	\
c e 20110200	5 16 1 1 1.1	196.200	484.200	2	nullfi	le		0	\

For faint targets the S/N quickly deteriorates at large radii.

Choosing the aperture

Facts 1) and 2) give contradicting guidance:

- on one hand a large aperture should be used to obtain total N
- on the other hand, best S/N is achieved with a small aperture, which does not yield total *N*.

Solution : Use aperture correction:

- Measure the target counts *N* inside the "best S/N" radius $r_{ap}^{(1)}$ (rule of thumb: use $r_{ap}^{(1)} = 1.5 \times \text{FWHM}$).
- Select a *bright* star in the field and measure the counts N_{ap1} inside $r_{ap}^{(1)}$ and the counts N_{ap2} inside a "big" aperture $r_{ap}^{(2)}$.
- Aperture correction $c(ap) = N_{ap2}/N_{ap1}$.
- Corrected counts $N_{apcorr} = c(ap) \times N$
- Works for point sources only!

1.2 PSF photometry (point sources only)

PSF = "Point Spread Function" i.e. how a point source looks through the optical system.

Stars are practically point sources \rightarrow PSF = image of a star.

PSF photometry :

- 1) Create the PSF model = 2-dim image of a point source
 - Can use a theoretical model, an analytic function or an image of a sufficiently bright star in the CCD frame (the last option usually gives the best results).
 - Common analytical functions:

Gauss:
$$I(r) = I_0 \exp(-r^2/2\sigma^2)$$

Moffat: $I(r) = I_0 \left[1 + K \left(\frac{r}{R}\right)^2\right]^{-\beta}$, $R = FWHM/2$, $K = 2^{1/\beta} - 1$

PSF photometry

- Obtain aperture photometry of your PSF → relationship between total counts and height : N_{PSF} = k * h_{PSF}
- Fit the PSF model to the target. Free parameters of the fit : x_{tgt}, y_{tgt}, h_{tgt}.

$$4) \quad N_{tgt} = k * h_{tgt}$$

1.3 Sky estimation

- Select the sky annulus as close to the target you can without introducing target light into the annulus.
- Check that there are no bright targets in the annulus.
 - IRAF can cope to some extent with stars in the sky annulus by using sigma clipping and by using mode of the sky pixel distribution as *N*_{sky}. In practice IRAF computes the mode from

$$mode = 3 \times median - 2 \times mean$$

 Sky estimation is important for faint targets, where it can easily be the largest source of error. 2. Correcting the counts

2.1 Atmosphere

Absorbs light in an altitude-dependent way.

• Parameterized through airmass X.

$$z = 0 \deg \rightarrow X = 1$$

 $z = 60 \text{ deg} \rightarrow X = 2$

2.2 Instrumental effects

- Bias, dark, "cosmic rays" create artificial signal.
- Pixels have different gains.

 \rightarrow Corrected by image processing.

 Filter mismatch: e.g. "r-band flux" is a monochromatic quantity [erg s⁻¹ cm⁻² Å⁻¹] defined at some wavelength.

However, it is measured with a broad filter \rightarrow the result depends on the transmission curve of the filter.

3. Calibration

3.1 Magnitudes

Traditionally, the calibration is done using magnitudes. The relationship between fluxes F and magnitudes m is

$$F = F_0 \, 10^{-m/2.5},\tag{3}$$

where F_0 is the flux corresponding to magnitude 0. By taking the logarithm and multiplying by -2.5 we get

$$m = 2.5 \log_{10} F_0 - 2.5 \log_{10} F = m_0 - 2.5 \log_{10} F .$$
 (4)

If we observe N_s counts/s from a target, we can write

$$F = c N_s , \qquad (5)$$

where *c* is a constant. Thus

$$m = \underbrace{m_0 - 2.5 \log_{10} c}_{zp} - 2.5 \log_{10} N_s .$$
 (6)

$$m_c = zp - 2.5 \log N - k \times X - C \times Color + 2.5 \log T_{exp}, \quad (7)$$

where

- **N** = observed counts
- X = airmass
- *Color* = difference of target magnitude in two filters, e.g. (B-V)
 - T_{exp} = exposure time
 - *zp* = system zero point (drifts slowly with time)
 - **k** = extinction coefficient (varies from night to night)
 - *C* = color term of the filter (does no change).

Calibration = determine zp, k and C.

- You have obtained CCD-images of several calibration targets ("standard stars") with known *m* and *color*. The goal is to determine *zp*, *k* and *C* from these observations.
- This method works only of the night is *photometric*, i.e. extinction *k* stays constant.
- It is important to cover a wide range of airmasses (from 1 to 2) and colors.

Absolute calibration : *zp*, *k* and *C*.

- Measure *N* for each standard star.
- Compute *instrumental magnitudes m_i* from

$$m_i = m_0 - 2.5 \log_{10} N + 2.5 \log_{10} T_{exp}$$
, (8)

where m_0 is an arbitrary zero point (IRAF default 25.0).

- Plot each observation in a 3-d space with X, color and m - m_i as axes, where m is the catalog magnitude of the star. The points should fall on a plane (Eq. 7).
- Fitting a plane to this 3-d data will give you *zp*, *k* and *C*.

Absolute calibration : *zp*, *k*

- Usually C is know for the system and it doesn't vary. It is then sufficient to determine only zp and k from a 2-d fit.
- For each standard star observation, plot X in the x-axis and m - m_i + C × color in the y-axis. A linear fit will then yield zp and k.

- Assume that we have on the CCD image the target and a another target with known magnitude m_{ref}.
- If we mark with *m* the magnitude of our target of interest, we get from Eq. (7)

$$m = m_{ref} + 2.5 \log \frac{N_{ref}}{N} - C \times (Color - Color_{ref})$$
 (9)

 \rightarrow *m* can be easily computed if *C* is known.

Advantages of differential calibration

- The zero point and atmospheric effects are almost completely eliminated. In practice small residual effects persist at ~ 0.01-0.02 mag level and below.
- Works well even through clouds.
- No need for calibration observations if good quality survey data exist for the observed field and filters (e.g. SDSS).
- No need for aperture correction.

Tuorla blazar monitoring

$$F = F_0 * 10^{-0.4 * m_c} , \qquad (10)$$

where F_0 is a filter-dependent zero point, for instance:

Filter	<i>F</i> ₀ [Jy]
U	1790
В	4263
V	3636
R	3064
I	2416
SDSS u,g,r,i,z	3631