Basics of photometry

K. Nilsson

Finnish Centre for Astronomy with ESO (FINCA)

5.2.2020

Luminosity and flux density

- An object has a total energy output = *Luminosity L* [erg s−¹].
- The observer at distance *r* sees only part of this energy as flux density (flux) *F* [erg s⁻¹ cm⁻²].

For an *isotropic source*

$$
F=\frac{L}{4\pi r^2}.
$$

- Flux is the observed quantity, luminosity calculated (with a set of assumptions).
- Typically in astronomy one talks about flux when meaning *spectral* flux.
- Spectral flux has a unit of erg s⁻¹ cm⁻² Å⁻¹ (*F*_λ) or erg s⁻¹ cm⁻² Hz⁻1 (*F_v*)
- Note that $F_{\lambda}(\lambda_0) \neq F_{\nu}(\nu_0)$ although $\lambda_0 = c/\nu_0$, because $d\lambda = -c/\nu^2 d\nu$.

CCD-cameras do not measure flux density *F* directly. They record something proportional to *energy* stored to the detector over the exposure time.

Light \rightarrow electrons \rightarrow voltage \rightarrow ADUs ("counts")

How to derive *F* from the pixel values on the CCD?

Three problems

- 1) How to measure the counts from a target? Available techniques:
- aperture photometry
- PSF photometry
- model fitting (e.g. galaxies).
- 2) How to correct the counts for
	- the atmosphere
	- instrumental response and artifacts.
- 3) Calibration: How to convert the measured counts to *F*?
	- "'Differential" vs. "absolute" calibration: In the former the calibration targets are on the same CCD frame as the target, in the latter they are on different CCD frames.

1. Counting the photons

1.1 Aperture photometry

$$
N = \sum_{i=1}^{n_{ap}} (N_i - N_{sky}), \qquad (1)
$$

where N_i = counts in the *i*th pixel inside the aperture n_{ap} = number of pixels in the aperture ($\sim \pi r_{ap}^2$) N_{sky} = average sky brightness inside the aperture.

How to choose aperture radius *rap*?

Guided by two facts:

1) *Growth curve*: *N* increases with increasing *rap*.

This means that one should use a very large aperture to include all target light, *but*

2) Maximum signal to noise is often achieved with a relatively small aperture, especially when the target is faint..

Signal to noise in aperture photometry:

$$
S/N = \frac{N}{\sqrt{N + n_{ap}\sigma_{sky}^2(1 + \frac{n_{ap}}{n_{sky}})}}
$$
 (2)

- $N =$ target counts $[e^-]$
- σ_{sky} = rms sky noise $[e^{-}]$
- n_{ap} = number of pixels in the aperture
- n_{sky} = number of pixels in the sky annulus.

Howell (1989) PASP 101, 616

IRAF phot output (bright target)

For bright targets aperture correction is not needed, the S/N is always good!

IRAF phot output (faint target)

For faint targets the S/N quickly deteriorates at large radii.

Choosing the aperture

Facts 1) and 2) give contradicting guidance:

- on one hand a large aperture should be used to obtain total *N*
- o on the other hand, best S/N is achieved with a small aperture, which does not yield total *N*.

Solution : Use *aperture correction*:

- Measure the target counts *N* inside the "best S/N" radius $r_{ap}^{(1)}$ (rule of thumb: use $r_{ap}^{(1)} = 1.5 \times$ FWHM).
- Select a *bright* star in the field and measure the counts N_{ap1} inside $r_{\text{ap}}^{(1)}$ and the counts N_{ap2} inside a "big" aperture *rap* (2) .
- Aperture correction $c(\text{ap}) = N_{\text{ap2}}/N_{\text{ap1}}$.
- Corrected counts $N_{\text{aocorr}} = c(\text{ap}) \times N$
- Works for point sources only!

1.2 PSF photometry (point sources only)

PSF = "Point Spread Function" i.e. how a point source looks through the optical system.

Stars are practically point sources \rightarrow PSF = image of a star.

PSF photometry :

- 1) Create the PSF model $= 2$ -dim image of a point source
	- Can use a theoretical model, an analytic function or an image of a sufficiently bright star in the CCD frame (the last option usually gives the best results).
	- Common analytical functions:

Gauss : $I(r) = I_0 \exp(-r^2/2\sigma^2)$ ${\sf Moffat:}\quad I(r)=I_0\left[1+K\left(\frac{r}{R}\right)^2\right]^{-\beta}\,,\,$ *R* = FWHM/2, $K=2^{1/\beta}-1$

PSF photometry

- 2) Obtain aperture photometry of your $PSF \rightarrow$ relationship between total counts and $height: N_{PSF} = k * h_{PSF}$
- 3) Fit the PSF model to the target. Free parameters of the fit : x_{tgt} , y_{tgt} , h_{tgt} .

$$
4) N_{tgt} = k * h_{tgt}
$$

1.3 Sky estimation

- Select the sky annulus as close to the target you can without introducing target light into the annulus.
- Check that there are no bright targets in the annulus.
	- IRAF can cope to some extent with stars in the sky annulus by using sigma clipping and by using mode of the sky pixel distribution as *Nsky* . In practice IRAF computes the mode from

$$
\textit{mode} = 3 \times \textit{median} - 2 \times \textit{mean}
$$

Sky estimation is important for faint targets, where it can easily be the largest source of error.

2. Correcting the counts

2.1 Atmosphere

Absorbs light in an altitude-dependent way.

Parameterized through *airmass X*.

$$
z=0 \text{ deg} \to X=1
$$

$$
z = 60 \text{ deg} \rightarrow X = 2
$$

2.2 Instrumental effects

- Bias, dark, "cosmic rays" create artificial signal.
- **•** Pixels have different gains.

 \rightarrow Corrected by image processing.

Filter mismatch: e.g. "r-band flux" is a *monochromatic* quantity [erg s⁻¹ cm⁻² Å⁻¹] defined at some wavelength.

However, it is measured with a broad filter \rightarrow the result depends on the transmission curve of the filter.

3. Calibration

3.1 Magnitudes

Traditionally, the calibration is done using magnitudes. The relationship between fluxes *F* and magnitudes *m* is

$$
F = F_0 10^{-m/2.5},\tag{3}
$$

where F_0 is the flux corresponding to magnitude 0. By taking the logarithm and multiplying by -2.5 we get

$$
m = 2.5 \log_{10} F_0 - 2.5 \log_{10} F = m_0 - 2.5 \log_{10} F. \tag{4}
$$

If we observe *N^s* counts/s from a target, we can write

$$
F = c N_s , \qquad (5)
$$

where *c* is a constant. Thus

$$
m = \underbrace{m_0 - 2.5 \log_{10} c}_{zp} - 2.5 \log_{10} N_s \,. \tag{6}
$$

$$
m_c = zp - 2.5 \log N - k \times X - C \times Color + 2.5 \log T_{exp} ,
$$
 (7)

where

- $N =$ observed counts
- $X = \text{airmass}$
- $Color = difference of target magnitude in two filters, e.g. (B-V)$
	- T_{exn} = exposure time
		- Zp = system zero point (drifts slowly with time)
			- $k =$ extinction coefficient (varies from night to night)
			- $C =$ color term of the filter (does no change).

Calibration = determine zp , k and C.

- You have obtained CCD-images of several calibration targets ("standard stars") with known *m* and *color*. The goal is to determine *zp*, *k* and *C* from these observations.
- This method works only of the night is *photometric*, i.e. extinction *k* stays constant.
- It is important to cover a wide range of airmasses (from 1 to 2) and colors.

Absolute calibration : *zp*, *k* and *C*.

- Measure *N* for each standard star.
- Compute *instrumental magnitudes mⁱ* from

$$
m_i = m_0 - 2.5 \log_{10} N + 2.5 \log_{10} T_{exp} , \qquad (8)
$$

where m_0 is an arbitrary zero point (IRAF default 25.0).

- Plot each observation in a 3-d space with *X*, *color* and *m* − *m*_{*i*} as axes, where *m* is the catalog magnitude of the star. The points should fall on a plane (Eq. [7\)](#page-20-0).
- Fitting a plane to this 3-d data will give you *zp*, *k* and *C*.

Absolute calibration : *zp*, *k*

- Usually *C* is know for the system and it doesn't vary. It is then sufficient to determine only *zp* and *k* from a 2-d fit.
- For each standard star observation, plot *X* in the x-axis and $m - m_i + C \times color$ in the y-axis. A linear fit will then yield *zp* and *k*.

- Assume that we have on the CCD image the target and a another target with known magnitude *mref* .
- **If we mark with** *m* **the magnitude of our target of interest,** we get from Eq. [\(7\)](#page-20-0)

$$
m = m_{ref} + 2.5 \log \frac{N_{ref}}{N} - C \times (Color - Color_{ref}) \qquad (9)
$$

 \rightarrow *m* can be easily computed if *C* is known.

Advantages of differential calibration

- The zero point and atmospheric effects are almost completely eliminated. In practice small residual effects persist at ∼ 0.01-0.02 mag level and below.
- Works well even through clouds.
- No need for calibration observations if good quality survey data exist for the observed field and filters (e.g. SDSS).
- No need for aperture correction.

Tuorla blazar monitoring

$$
F = F_0 * 10^{-0.4 * m_c}, \qquad (10)
$$

where F_0 is a filter-dependent zero point, for instance:

