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Abstract. We show that whenever δ > 0 and constants λi satisfy some necessary
conditions, there are infinitely many prime triples p1, p2, p3 satisfying the inequality
|λ0 + λ1p1 + λ2p2 + λ3p3| < (max pj)−2/9+δ. The proof uses Davenport–Heilbronn
adaption of the circle method together with a vector sieve method.
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1. Introduction. We prove the following theorem. It can be seen as a quantitative
Diophantine approximation version of the ternary Goldbach conjecture.

THEOREM 1. Suppose that λ1, λ2 and λ3 are non-zero real numbers, not all of the
same sign, that λ0 is real, and that λ1/λ2 is irrational. Let ξ = 2/9 and δ > 0. Then there
are infinitely many ordered triples of primes p1, p2, p3 for which

|λ0 + λ1p1 + λ2p2 + λ3p3| < (max pj)−ξ+δ. (1)

Results of this type were first obtained by Schwarz [14] and Baker [1]. Vaughan [15]
was the first one who managed to prove (1) with a polynomial saving (with ξ = 1/10).
The exponent was subsequently improved by Baker and Harman [2] to ξ = 1/6 and by
Harman [7] to ξ = 1/5. Baker and Harman [2] also showed that under the generalised
Riemann hypothesis (1) holds with ξ = 1/4.

Our method goes back to Vaughan [15] but we take advantage of an averaging
following [7]. The basic method builds on the Davenport–Heilbronn adaptation of
the circle method (see [16, Chapter 11]). Our improvement comes from using a sieve
method developed by Harman [6, 8, 9] combined with a vector sieve. For an earlier
work combining these see [3]. To be able to get our improved result, we also prove and
use slightly improved versions of estimates for averaged exponential sums in [7].

Let q′ be a large enough (in terms of λi) denominator of a convergent to λ1/λ2. We
write X = q′1/(3ξ ) and ε = X−ξ+δ. Then q′ = ε−3X3δ = X2/3.

Let further

Kε(x) =
(

sin(πεx)
πx

)2

.

Then Kε(x) � min{ε2, x−2}. The basis of the Davenport–Heilbronn adaption of the
circle method is the identity

max{0, ε − |x|} =
∫ ∞

−∞
Kε(y)e(xy) dy. (2)
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To set up a vector sieve, we need lower and upper bounds ρ−(n) and ρ+(n) for
the characteristic function ρ(n) of primes. Assuming ρ−(n) ≤ ρ(n) ≤ ρ+(n) we have a
simple inequality

ρ(m)ρ(n) ≥ ρ+(m)ρ−(n) + ρ−(m)ρ+(n) − ρ+(m)ρ+(n) (3)

given in [4].
We will choose the coefficients ρ±(n) so that they are divisor-bounded, as will be

all later appearing coefficients an, bn, . . . . This means, for example, that an � τ (n)C for
some constant C.

We write for i = 1, 2

S+
i (x) =

∑
n�X

ρ+(n)e(nλix), S−
i (x) =

∑
n�X

ρ−(n)e(nλix)

and

S3(x) =
∑
n�X

ρ(n)e(nλ3x).

Here n � X means that n ∈ [dX, DX ], where d and D are such that the equation
λ1x1 + λ2x2 + λ3x3 = 0 has solutions with xi ∈ (d, D). Such pairs (d, D) exist because
λ1, λ2 and λ3 are not all of the same sign.

We define further

F(x) = S+
1 (x)S−

2 (x)S3(x) + S−
1 (x)S+

2 (x)S3(x) − S+
1 (x)S+

2 (x)S3(x).

Then the basis of our method is the following implication of (2) and (3).

LEMMA 2. The number of solutions to (1) with pj � X is

≥ ε−1
∫ ∞

−∞
Kε(x)F(x)e(xλ0) dx. (4)

2. Further description of the method. Throughout the paper, we use the letter
η for a small (in terms of δ) positive constant that might not be the same at each
occurrence. However, it would be possible to give all the constants η exact values that
belong to {kδ/1000 | 1 ≤ k ≤ 100}, say.

We write τ = X−1+ηε−1 = X ξ−δ−1+η and P = ε−2Xη and divide the integral in (4)
into three regions |x| ≤ τ , τ < |x| ≤ P and |x| > P. The last integral is almost trivially
� ε2X2−η as in Section 7 of [15].

In the major arc we need Gallagher’s lemma [5, Lemma 1].

LEMMA 3. Let

S(t) =
∑

v

ave(vt)

be an absolutely convergent exponential sum and let δ > 0. Then

∫ δ

−δ

|S(t)|2dt �
∫ ∞

−∞

∣∣∣∣∣∣δ
x+1/(2δ)∑

v=x

av

∣∣∣∣∣∣
2

dx.
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Now we get a non-trivial lower bound for the integral over the major arc.

LEMMA 4. Assume that there are positive real numbers u− and u+ with 2u− > u+

such that for any ϑ ∈ [ 1
6τX , 6

τX

]
and A ≥ 0, we have

∫ DX

dX

⎛
⎝ ∑

y≤m<y+yϑ

(
ρ±(m) − u±

log m

)⎞
⎠

2

dy � X
τ 2

(log X)−A. (5)

Then

∫ τ

−τ

Kε(x)F(x)e(xλ0) dx 
 ε2 X2

(log X)3
.

Proof. Define

G(x) = (2u+u− − u+2)
3∏

j=1

I(λjx),

where

I(x) =
∫ DX

dX

e(xy)
log y

dy.

Then by rearranging and using the Cauchy–Schwarz inequality

∫ τ

−τ

|F(x) − G(x)| dx

� X3/2(log X)C

(∫ τ

−τ

|S+
1 (x) − u+I(λ1x)|2 + |S+

2 (x) − u+I(λ2x)|2

+ |S−
1 (x) − u−I(λ1x)|2 + |S−

2 (x) − u−I(λ2x)|2 + |S3(x) − I(λ3x)|2 dx

)1/2

.

Then (5) and a corresponding bound for ρ(m) (which follows from Huxley’s prime
number theorem [12, Theorem 10.5 and its proof]) imply by using Lemma 3 and
arguing as in [13, Lemma 6 and 7] that

∫ τ

−τ

|F(x) − G(x)| dx � X2(log X)−A.

Then the proof of the claim follows by showing that

∫ τ

−τ

Kε(x)G(x)e(xλ0) dx 
 ε2X2

(log X)3
,

which follows as [15, Lemma 10]. �
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We will use a sieve method to choose ρ+(n) and ρ−(n) such that they can be written
as sums of coefficients an that are either of the form

an =
∑

mk=n
m∼M

bm

with M � X7/9 (type I sums) or such that, for any Q ∈ [X1/3, X4/9], there exists M ∈
[Q, QX1/9] such that

an =
∑
lm=n
m∼M

bmcl (6)

(type II sums). Here m ∼ M means M ≤ m < 2M. The condition for type II sums is
clearly equivalent to the assumption that an can be written in form (6) with M = M1 ∈
[X4/9, X5/9] and with M = M2 ∈ [X1/3, X4/9] satisfying M1/M2 ≤ X1/9.

REMARK 5. For a general ξ the bound for type I sums would be M ≤ X1−ηε and
the width of the type II information would be X1−ηε4. The upper bound for Q would
be Xηε−2 and the interval must cover those values of Q for which Lemma 14 below is
used.

We write for i = 1, 2,

Si(x) =
∑
n�X

ane(nλix),

where an is of one of the above types.
Thus we have to show besides (5) only that

∫ P

τ

|S1(x)S2(x)S3(x)Kε(x)| dx � ε2X2(log X)−A.

This follows from

PROPOSITION 6. We can write [1, P] = A1 ∪ A2 ∪ A3 such that
(i) If |x| ∈ A1, then min{|S1(x)|, |S2(x)|, |S3(x)|} ≤ εX1−η;

(ii)

∫
|x|∈A2

|S1(x)S2(x)|2|Kε(x)| dx � ε3X3−η;

(iii)

∫
|x|∈A3

|S1(x)S2(x)S3(x)Kε(x)| dx � ε2X2−η.

Furthermore, if |x| ∈ [τ, 1], then min{|S1(x)|, |S2(x)|} ≤ X1−η.
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3. Auxiliary results. We have the following result for exponential sums.

LEMMA 7. Suppose that |x − a/q| < 1/q2 for some integers a, q with q ≥ 1 and
(a, q) = 1. Then, for any complex sequences bm, cl � 1, we have∑

lm∼Y
m∼M

bmcle(mlx) � (Yq−1/2 + (Yq)1/2 + YM−1/2 + (YM)1/2)(log Y )2, (7)

∑
lm∼Y
m∼M

bme(mlx) � (M + Yq−1 + q)(log(2qY )) (8)

and ∑
p∼Y

e(px) � ((Yq)1/2 + Yq−1/2 + Y 4/5)(log Y )3. (9)

Proof. See for example [12, Section 13.5]. �
We also need classical mean value results for Dirichlet polynomials.

LEMMA 8. We have

∑
χ (mod q)

∫ T

0

∣∣∣∣∣
∑
n∼N

anχ (n)nit

∣∣∣∣∣
2

dt � (N + qT)(log N)3
∑
n∼N

|an|2 (10)

and

∑
q≤Q

∑∗

χ (mod q)

∫ T

0

∣∣∣∣∣
∑
n∼N

anχ (n)nit

∣∣∣∣∣
2

dt � (N + Q2T)(log N)3
∑
n∼N

|an|2, (11)

where here and later ∗ indicates that summation is over primitive characters.

Proof. These follow for example from [12, Theorem 9.12]. �
We write ‖ ‖ for the distance from the nearest integer. We need the following lemma

in the course of the proof of an average result for exponential sums.

LEMMA 9. Let h ≤ Q, M ≥ 1 and δ > 0. Let further Q be a set of distinct integers
contained in [Q, 2Q) and for each q ∈ Q, a(q) be an integer satisfying gcd(a(q), q) = 1.
Define Qh = {q | qh ∈ Q} and

Aδ,h =
{

(q, m) ∈ Q × [M, 2M) | gcd(q, m) = h,

min
(q1,m1)∈Q×[M,2M)

q1=q =⇒ m1 �≡m (mod q)
gcd(q1,m1)=h

∥∥∥∥ma(q)
q

− m1a(q1)
q1

∥∥∥∥ < δ

}
.

Then

|Aδ,h| ≤ 8|Qh|2(M + Q)δQ
h2

.
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Proof. Clearly, we can assume that h = 1 since the result for h > 1 follows from
the one with h = 1 by considering the set Qh × [M/h, 2M/h].

We write Aδ = Aδ,1. If (q, m) ∈ Aδ, then there exists (q1, m1) ∈ Aδ with either
q1 �= q or m1 �≡ m (mod q) such that∥∥∥∥ma(q)

q
− m1a(q1)

q1

∥∥∥∥ < δ ⇐⇒ ma(q)q1 − m1a(q1)q ≡ k (mod qq1) (12)

for some |k| < δqq1. Since gcd(m1a(q1), q1) = gcd(ma(q), q) = 1, conditions on q1 and
m1 let us assume that k �= 0.

Fix q1, q ∈ Q. If (12) holds, then

ma(q)q1 ≡ k (mod q)

This is soluble only if gcd(q1, q) | k. In that case it has a unique solution
(mod q/ gcd(q1, q)). Thus there are at most

M gcd(q, q1)
q

+ 1

possible values m ∈ [M, 2M]. Thus for fixed q, q1 ∈ Q, the inequality in (12) has at
most

2δqq1

(q1, q)

(
M(q1, q)

q
+ 1

)
≤ 8δQ(M + Q)

solutions. This proves the lemma. �

LEMMA 10. Suppose that x is a real number with |x − a/q| ≤ q−2 for some integers
a, q, q ≥ 1 with (a, q) = 1. Let A and Q be positive integers with AQ � qC and let Q be
a set of distinct integers q1 with q1 ∼ Q. Then, for every η > 0 and θ < 1/2 the number
of solutions to

‖q1nx‖ < θ with q1 ∈ Q, 1 ≤ n ≤ A

is

� |Q|Aθ + qη(Q + AQq−1 + qθ ),

where the implied constant depends only on x, C and η.

Proof. The proof is as that of Lemma 4 of [7]. We get an additional term AQqη−1

since we did not assume that A, Q ≤ q. �

In the following lemma S ⊂ � may have repetitions, so we call it a multiset. We
use the notation

∑
(S) = ∑

x∈S x and S = S1
.∪ S2 means that S is a disjoint union of

the multisets S1 and S2. If for example S = {1, 2, 2}, then
∑

(S) = 5 and {1, 2} �= S =
{1, 2} .∪ {2}.

LEMMA 11. Let n > k and S = {α1, . . . , αn} with

0 < αn ≤ αn−1 ≤ · · · ≤ αk+1 ≤ 1/9 < αk ≤ · · · ≤ α1 < 2/9.
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We assume that the multiset S satisfies the following three conditions
(i)

∑
(S) = 1;

(ii) α1 + αk+1 + αk+2 + · · · + αn > 2/9;
(iii) S = S1

.∪ S2, where
∑

(S1) ∈ [4/9, 5/9].
Then we can write

S = S′
1

.∪ S′
2 = S′′

1

.∪ S′′
2 ,

where∑
(S′

1) ∈ [1/3, 4/9],
∑

(S′′
1 ) ∈ [4/9, 5/9] and

∑
(S′′

1 ) −
∑

(S′
1) ≤ 1/9.

Proof. If
∑n

i=k+1 αi ≥ 1/9, the claim is easily verified. Otherwise, by combining
αk+1, . . . , αn, we can assume that 0 < αn < 1/9 < αn−1 ≤ αn−2 ≤ · · · ≤ α1 < 2/9 and
α1 + αn > 2/9.

Let U1 be a sub-multiset of S with minimal
∑

(U1) ∈ [4/9, 5/9] and T1 a sub-
multiset of S with maximal

∑
(T1) < 4/9.

If αn ∈ U1, the claim follows immediately by taking S′′
1 = U1 and S′

1 = U1 \ {αn}.
If there is αi < αj, i �= n, such that αi �∈ U1 and αj ∈ U1, the claim follows by taking
S′′

1 = U1 and S′
1 = U1 ∪ {αi} \ {αj}. Thus we can assume that U1 = {αk, αk+1, . . . , αn−1}

for some k. Similarly we can assume that T1 = {α1, α2, . . . , αl, αn} for some l. By our
assumptions on the sizes of αi we have αn + α1 + α2 + α3 > 2/9 + 1/9 + 1/9 = 4/9, so
T1 = {α1, αn} or T1 = {α1, α2, αn}. But the first case cannot hold, since otherwise the
fact that α1 + αn < α1 + α2 < 4/9 contradicts the maximality of T1. Thus

T1 = {α1, α2, αn}.

Since

0 < 1 −
∑

(U1) −
∑

(T1) < 1 − 4/9 − (2/9 + 1/9) = 2/9,

we see that

S = U1
.∪ {α3}

.∪ T1.

Here

α3 = 1 −
∑

(U1) −
∑

(T1) < 1 − 4/9 − 2/9 − α3,

which implies that α3 < 1/6.
Let S′ = {α2, α4, α5, αn}. Then∑

(S′) =
∑

(T1) − α1 + α4 + α5

<
∑

(T1) + αn − 2/9 + 2α3 <
∑

(T1) + 1/9 + αn.

Thus ∑
(S′) ∈

(∑
(T1),

∑
(T1) + 1/9 + αn

)
.
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If
∑

(S′) ≤ 4/9, this contradicts the choice of T1. Otherwise the proof is completed by
choosing S′

1 = T1 and

S′′
1 =

{
S′ if

∑
(S′) ≤ ∑

(T1) + 1/9,

S′ \ {αn} else. �

4. Averages of type II exponential sums. In this section we consider an average of
the exponential sum

S(x) =
∑
n∼X

ane(nx) =
∑

ml∼X
m∼M

bmcle(mlx) (13)

over a certain set. Let M, Q ∈ [1, X ] and β ≤ Q−2. We use the following notation.
The set Q ⊂ [Q, 2Q) consists of distinct integers. For each q ∈ Q, a(q) is an integer
satisfying (a(q), q) = 1 and βq is a real number satisfying |βq| ∼ β. Then we define

αq = a(q)
q

+ βq

and are interested in bounding

S =
∑
q∈Q

|S(αq)|.

Further, we write β ′ = max{β, 1/X}. By partial summation we can indeed assume in
the proofs of the following lemmata that |βq| ∼ β ′. The following result improves [7,
Lemma 3] for type II sums.

LEMMA 12. We have

S2 � |Q|2X2+ηβ ′
(

M + Q2

M

)
+ |Q|X3+ηβ ′

(
1
Q

+ 1
M

)
.

Proof. The method of the proof is similar to that of [7, Lemma 3]. Actually, we
follow that proof until (30) of [7] to get

S � max
|t|≤X10

X1/2+ηβ ′1/2
∑

h≤2Q

∑
q∈Q

∑
m∼M

(q,m)=h

∣∣∣∣∣∣
∑

l≤X/M

cll−ite
(

mla(q)
q

)∣∣∣∣∣∣ + |Q|Xη.

Instead of using the Cauchy–Schwarz inequality here directly as in [7, Lemma 3],
we first divide the summation over pairs (q, m) ∈ Q × [M, 2M] into sets Aδi+1,h \ Aδi,h

for δi = 2i/Q, δi ∈ [h2/(4Q2), 1], where Aδj,h is defined as in Lemma 9. Then we have
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by the large sieve

∑
(q,m)∈Aδi+1 ,h\Aδi ,h

∣∣∣∣∣∣
∑

l≤X/M

cll−ite
(

mla(q)
q

)∣∣∣∣∣∣
2

�
(

M
Q

+ 1
) (

1
δi

+ X
M

)
X1+η

M

�
(

1
Q

+ 1
M

) (
1
δi

+ X
M

)
X1+η.

By Lemma 9 and an elementary argument we have∑
h≤2Q

|Aδi,h|1/2 � Xη min{|Q|((M + Q)Qδi)1/2, (|Q|M)1/2}.

Hence by the Cauchy–Schwarz inequality we get

S2 � X2+ηβ ′
(

1
Q

+ 1
M

)
· max

1
4Q2 ≤δ′≤1

{(
1
δ′ + X

M

)
· min{|Q|2(M + Q)Qδ′, |Q|M}

}

� X2+ηβ ′
(

1
Q

+ 1
M

)
(|Q|2(M + Q)Q + |Q|X),

which implies the claim. �
The previous lemma is useful when Q is large. For smaller values of Q, we will use

the following lemma.

LEMMA 13. We have

S2 � |Q|2QX2+ηβ ′2 + |Q|X1+η

Q
max

1≤T ′≤Xβ ′

1
T ′ (M + QT ′)

(
X
M

+ Q2T ′
)

. (14)

Proof. We use the identity

1
φ(q)

∑
χ (mod q)

τ (χ )χ̄(m) =
{

e(m/q) if (m, q) = 1,

0 else,

where

τ (χ ) =
∑

k (mod q)

e
(

k
q

)
χ (k)

is the Gauss sum. This gives

|S(αq)| ≤
∑
g|q

∑
χ (mod q/g)

|τ (χ )|
φ(q/g)

∣∣∣∣∣∣
∑

n∼X/g

χ (n)ange(ngβq)

∣∣∣∣∣∣ .
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Changing to primitive characters leads to

|S(αq)| ≤
∑
rg|q

r1/2

φ(q/g)

∑∗

χ (mod r)

∣∣∣∣∣∣∣∣∣
∑

n∼X/g
(n,

q
rg )=1

χ (n)ange(ngβq)

∣∣∣∣∣∣∣∣∣
≤

∑
rgd|q

r1/2

φ(q/g)

∑∗

χ (mod r)

∣∣∣∣∣∣
∑

n∼X/(gd)

χ (n)angde(ngdβq)

∣∣∣∣∣∣
� Xη

∑
rg|q

gr1/2

q

∑∗

χ (mod r)

∣∣∣∣∣∣
∑

n∼X/g

χ (n)ange(ngβq)

∣∣∣∣∣∣ .
We write c = 1 + (log X)−1 and T = X2. Then by the Perron formula and partial

integration

∑
n∼X/g

χ (n)ange(ngβq) =
∫ 2X/g

X/g
e(βqgy)

1
2π i

∫ c+iT

c−iT

∑
n∼X/g

χ (n)ang

ns
ys−1 ds dy

+ O(X1+ηβ ′).

The error term contributes to S the first term in (14). Thus we can assume that the
main term dominates here.

We write

h(s) =
∫ 2X/g

X/g
e(βqgy)ys−1 dy.

Then h(s) is an entire function of s and for s = σ + it we have by the first and second
derivative tests ([12, Lemma 8.10] and partial summation)

h(s) �
⎧⎨
⎩

(
X
g

)σ

min{1, |t|−1/2} if |t| < 8πXβ ′,(
X
g

)σ

min{1, |t|−1} if |t| ≥ 8πXβ ′.
(15)

Hence

S � max
1≤T ′≤X2

X1+η

T ′1/2

∑
gr≤2Q

∑
q∈Q
gr|q

r1/2

q

∑∗

χ (mod r)

∫ c+2iT ′

c+iT ′

∣∣∣∣∣∣
∑

n∼X/g

χ (n)ang

ns

∣∣∣∣∣∣ |ds|

� max
1≤T ′≤X2

G1g2R≤2Q

X1+ηR1/2

T ′1/2Q

⎛
⎜⎜⎜⎜⎝

∑
q∈Q

∑
g1r|q
r∼R

g1∼G1

∑∗

χ (mod r)

∫ 2T ′

T ′

∣∣∣∣∣∣
∑

m∼M/g1

bmg1χ (m)
mc+it

∣∣∣∣∣∣
2

dt

⎞
⎟⎟⎟⎟⎠

1/2

×

⎛
⎜⎝Q

R

∑
r∼R

∑∗

χ (mod r)

∫ 2T ′

T ′

∣∣∣∣∣∣∣
∑

l∼ X
Mg2

clg2χ (l)
lc+it

∣∣∣∣∣∣∣
2

dt

⎞
⎟⎠

1/2



DIOPHANTINE APPROXIMATION BY PRIMES 97

by the Cauchy–Schwarz inequality. Applying (10) and (11), we get

S � max
1≤T ′≤X2

g1g2R≤4Q

X1/2+η(g1g2)1/2H1/2

T ′1/2Q1/2

(
M
g1

+ RT ′
)1/2 (

X
Mg2

+ R2T ′
)1/2

� max
1≤T ′≤X2

X1/2+ηH1/2

T ′1/2Q1/2

(
M + QT ′)1/2

(
X
M

+ Q2T ′
)1/2

.

The bound (15) allows us to replace T ′1/2 in the denominator by T ′ for T ′ ≥ 4Xβ ′

and thus we can assume that the maximum is attained for some T ′ ≤ 4Xβ ′. �

5. Large values of type II exponential sums. In this section, we apply the general
results in Section 4 to our specific needs. Recall that ε = X−ξ+δ = X−2/9+δ. The
definitions in the beginning of the previous section still hold. Besides, we now assume
that |S(αq)| ≥ Z for each q ∈ Q. We also assume that

Z ≥ εX1−η, Q ≤
(

X1+η

Z

)2

and β ′ � X1+η

QZ2
.

Our aim is to bound |Q|. The lemmata in the previous section give bounds for
|Q|Z and imply bounds for |Q| in many cases.

LEMMA 14. Assume that M ∈ [Q, QX1/9]. Then

|Q| � X4+η

Z4Q2
.

Proof. By Lemma 12 we have

(|Q|Z)2 � |Q|2X2+ηβ ′
(

M + Q2

M

)
+ |Q|X3+ηβ ′

(
1
Q

+ 1
M

)

� |Q|2X19/9+ηβ ′Q + |Q|X3+ηβ ′

Q
.

By our assumptions on Z and β ′, the first term cannot dominate. Thus

|Q| � X3+ηβ ′

Z2Q
� X4+η

Z4Q2
.

�

LEMMA 15. Assume that M ∈ [X1/3, X4/9]. Then

|Q| � X2+η

QZ2
+ X13/9+ηQ

Z2
.
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Proof. By Lemma 13 we have

(|Q|Z)2 � |Q|X1+η

Q
max

1≤T ′≤Xβ ′

1
T ′ (M + QT ′)

(
X
M

+ Q2T ′
)

� |Q|X1+η

(
X
Q

+ X4/9Q + X2/3 + Q2β ′X
)

� |Q|X1+η

(
X
Q

+ X4/9Q
)

,

which implies the claim. �

6. Proof of Proposition 6. The last assertion of Proposition 6 follows as [2,
Lemma 7]. To prove the first assertion, we adapt the method of Section 3 of [7]. We
use our improved results for averaged exponential sums and we also need to develop a
different argument for the case, where both |Si(x)| are large.

We consider first the more difficult case that both S1(x) and S2(x) are type II
sums. We define A1 to be the subset of the interval [1, P] satisfying the condition (i)
of Proposition 6. Let A = [1, P] \ A1 and A(Z1, Z2, Z3) be the subset of A satisfying
|Sj(x)| ∼ Zj for j = 1, 2, 3. Clearly, we can assume that

Z1 ≥ Z2 ≥ εX1−η. (16)

Then by (7) and Dirichlet’s theorem in Diophantine approximation, for each x ∈
A(Z1, Z2, Z3), there exist integers a1, q1, a2, q2 depending on x such that

|qjλjx − aj| � X1+η

Z2
j

, (aj, qj) = 1, aj �= 0

and

qj � X2+η

Z2
j

. (17)

We let A′ = A(Z1, Z2, Z3, Q1, Q2, k) be the subset of A(Z1, Z2, Z3) for which
qj(x) ∼ Qj and aj � kQj. To prove the proposition we need to show that for every
combination of Z1, Z2, Z3, Q1, Q2 and k that can arise either

Z2
1Z2

2μ(A′) min{ε2, k−2} � X3−ηε3 (18)

or

Z1Z2Z3μ(A′) min{ε2, k−2} � X2−ηε2. (19)

Thus we are led to estimate the Lebesgue measure μ(A′) of A′. First, we notice
that for each x ∈ A′ we have∣∣∣∣a2q1

λ1

λ2
− a1q2

∣∣∣∣ =
∣∣∣∣q1q2

(
a2/q2

λ2x

(
λ1x − a1

q1

)
− a1/q1

λ2x

(
λ2x − a2

q2

))∣∣∣∣
� X1+η max

{
Q1

Z2
2

,
Q2

Z2
1

}
= θ,

say.
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Let Q1 be the set of q1 such that |S1(x)| can be as large as Z1. By Lemma 10 the
inequality ∥∥∥∥a2q1

λ1

λ2

∥∥∥∥ ≤ θ, q1 ∈ Q1, a2 � kQ2

has

H � |Q1|kQ2θ + q′η(Q1 + kQ1Q2q′−1 + q′θ ) (20)

solutions. Then A′ consists of � HXη intervals of at most length

min
{

X1+η

Z2
1Q1

,
X1+η

Z2
2Q2

}
= γ,

say. We notice that

θγ = X2+η

Z2
1Z2

2

. (21)

We split into cases according to which term dominates in (20).
Case 1: H � q′1+ηθ . In this case

Z2
1Z2

2μ(A′) min{ε2, k−2} � X2+ηε2q′ � X2+3δ+ηε−1 � X3−ηε3,

which proves (18).
Case 2: H � q′η(Q1 + kQ1Q2q′−1). If k > ε−1Xη, then the left-hand side of (19) is

� X1−ηε2 Z2Z3

Z1
+ εX1−η Q2Z2Z3

Z1q′ � X2−ηε2.

So we can assume that k ≤ ε−1Xη in which case kQ1Q2q′−1 � Q1. Thus H �
q′ηQ1. Then the left-hand side of (18) is

� X1+ηε2 min
{

Z2
2, Z2

1
Q1

Q2

}
,

which is � X3−ηε3 if Z2 < X1−ηε1/2. Thus we can assume that

Z1 ≥ Z2 ≥ X1−ηε1/2, (22)

which implies that

Qj � X2+η

Z2
j

� ε−1Xη. (23)

On the other hand, the left-hand side of (19) is

� X1+ηε2 Z2Z3

Z1
,

which is � X2−ηε2 if Z3 � X1−η. So we can further assume that Z3 ≥ X1−η. Then we
find by (8) and Dirichlet’s theorem in Diophantine approximation integers q3 ≤ Xη
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and a3 �= 0 with (a3, q3) = 1 such that

|q3λ3x − a3| � X1+η

Z2
3

.

As above we have∣∣∣∣a3q1
λ1

λ3
− a1q3

∣∣∣∣ � X1+η max
{

q3

Z2
1

,
Q1

Z2
3

}
� ε−1Xη−1,

where the last estimate follows from (22), (23) and bounds for Z3 and q3. Since

a3q1 � kq3Q1 ≤ ε−2Xη = o(X1−ηε),

the number a1q3

a3q1
is a convergent to λ1/λ3. This implies that there are � Xη possibilities

for a1q3
a3q1

. Say it is a0/q0, where (a0, q0) = 1. Then

{
a1q3 = la0,

a3q1 = lq0.

Here (q1, q0q3) = (q1, q0a1q3) = (q1, q0la0) = q1 and thus q1 | q0q3. Hence there are
� Xη possibilities for q1 and similarly for q2.

Consider then the inequality∣∣∣∣a2q1
λ1

λ2
− a1q2

∣∣∣∣ � θ. (24)

Consider solutions with gcd(a1, a2) = ag ∼ A. If we had θ/ag = o(1/q′) and
kQ1Q2/ag = o(q′), this would give too good a convergent to λ1/λ2 by the law of the
best approximation. Thus we can assume that

A � Xηθq′ + XηkQ1Q2

q′ . (25)

By (22) and (23) we have

θ = X1+η max
{

Q1

Z2
2

,
Q2

Z2
1

}
� X3+η

(Z2Z2)2
� Xη−1ε−2 = o(Xηε2) = o(1/(kQ2)),

so (24) implies ∣∣∣∣q1
λ1

λ2
− a1q2

a2

∣∣∣∣ <
1
2

(
ag

kQ2

)2

.

Thus a1q2/a2 is a convergent to q1λ1/λ2, and so there are � AXη possible triples
(a1, q2, a2). This implies that H � AXη. If the first term dominates in the estimate
(25), we are led back in Case 1. Thus we can assume that the second term dominates
in (25). Then the left-hand side of (18) is

� γ Xη Q1Q2

q′ ε(Z1Z2)2 � X1+ηε

q′ min
{
Q2Z2

2, Q1Z2
1

} � X3+ηε

q′ � X3−ηε3,

where the penultimate estimate follows from (17).
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Case 3: H � |Q1|kQ2θ . In this case, we use the lemmata in Section 5 in order to
estimate |Q1|.

Case 3a: Z1 > X1−ηε1/2. Now Q1 ≤ Xηε−1. If Q1Q2 ≤ X1−ηε2, we have by the
trivial estimate |Q1| ≤ Q1 that the left-hand side of (18) is

� γ HZ2
1Z2

2 min{ε2, k−2} � X2+ηQ1Q2ε � X3−ηε3.

Thus we can assume that Q1 
 X1−ηε2/Q2.
By Lemma 15 we have

|Q1| � X2+η

Q1Z2
1

+ X13/9+ηQ1

Z2
1

.

Thus,

γ HZ2
1Z2

2 min{ε2, k−2} � X4+ηQ2ε

Q1Z2
1

+ X31/9+ηQ1Q2ε

Z2
1

� X1+ηQ2
2

ε2
+ X13/9+ηQ1Q2 (26)

� X1+η

ε6
+ X13/9+η

ε3
� X3−ηε3.

Case 3b: max{Z1, Z2} ≤ X1−ηε1/2. We can argue as in the beginning of this section
with roles of q1 and q2 swapped to conclude that we can assume that

H � kθ min{|Q1|Q2, Q1|Q2|}.

We renumber such that Q1 ≥ Q2 (we do not anymore assume that Z1 ≥ Z2).
For Q2 ≤ Q1 ≤ X1/3 the expression on the first line of (26) is

� X4+ηε

Z2
1

+ X31/9+ηQ2
1ε

Z2
1

� X2+η

ε
+ X13/9+ηQ2

1

ε
� X3−ηε3

by (16).
For Q1 ≥ X1/3 we use Lemma 14 giving

|Q1| � X4+η

Z4
1Q2

1

.

Thus the left-hand side of (18) is

� X2+ηεQ2
X4

Z4
1Q2

1

� X2+η

ε3Q1
� X3−ηε3

by (16) and we have proved Proposition 6 for type II sums.
If one or both of S1(x) and S2(x), say S2(x), (we do not assume at this point that

Z1 ≥ Z2 or Q1 ≥ Q2) is a type I sum, we use (8) and Dirichlet’s theorem in Diophantine
approximation. They let us find integers a2, q2 depending on x such that

|q2λ2x − a2| � Xη

Z2
, (a2, q2) = 1,
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and

q2 � X1+η

Z2
.

Then we have adopting the notation above that

θ = max
{

Q1

Z2
,

Q2X
Z2

1

}
Xη, γ = min

{
1

Z2Q2
,

X
Z2

1Q1

}
Xη

and

γ θ = X1+η

Z2
1Z2

.

By Lemma 10 the inequality ∥∥∥∥a2q1
λ1

λ2

∥∥∥∥ ≤ θ

has at most

� Q1kQ2θ + q′η(min{Q1, Q2} + kQ1Q2q′−1 + q′θ )

solutions. By the discussion in the beginning of this section, we can assume that the
first term dominates here. Then we need to bound

γ XηQ1kQ2θZ2
1Z2

2 min{ε2, k−2} � XηQ1Q2Z2
1Z2

2ε
X

Z2
1Z2

� X1+ηQ1(Q2Z2)ε � X2+ηQ1ε � X3−ηε3.

This concludes the proof of Proposition 6. �

7. Sieve asymptotic formulae. The lower and upper bound functions ρ+(n) and
ρ−(n) arise from applications of Buchstab’s identity

ρ(u, z) = ρ(u, w) −
∑

w≤p<z

ρ(u/p, p),

where for u ∈ �, z > 1

ρ(u, z) =
{

1 if (u, P(z)) = 1,

0 otherwise,
with P(z) =

∏
p<z

p

and ρ(u, z) = 0 for u �∈ �.
We have the following

LEMMA 16. Let K ≤ X5/9, L ≤ X1/3, KL ≤ X7/9 and z = X1/9. Assume further that
K(s) = ∑

k∼K akk−s and L(s) = ∑
l∼L bll−s are products of � 1 Dirichlet polynomials of
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length ≤ X2/9. Then the sum

∑
klm∼X

k∼K,l∼L

akblρ(m, z)e(klmx)

can be written as a sum of � (log X)C type I and type II sums.

Proof. We use Buchstab’s identity with w = 1 to decompose the sum into a sum of
� log X sums of the form

∑
klmp1···pj∼X

k∼K,l∼L
pj<pj−1<···<p1<z

akble(klmp1 · · · pjx).

We split each of these into � log X sums

∑
klmp1···pj∼X

k∼K,l∼L
z>p1>p2>···>pj

kp1···pi≤X4/9<kp1···pi+1

akble(klmp1 · · · pjx).

In the case i = j, we have a type I sum since then klp1 · · · pj ≤ X7/9. Otherwise,
Kp1 · · · pi+1 ∈ [X4/9, X5/9] and KLp1 · · · pi ≤ X7/9. We further split the sum to �
(log X)C sums by combining pi to at most 20 variables in the interval [X1/30, X1/9]
(and at most one ≤ X1/30) and then restricting these in dyadic manner. Then we see
from Lemma 11 that we have a type II sum. Possible cross-conditions in type II sums
can be handled by the Perron formula as in [8, Lemma 1]. �

For n ∼ X , we can write the characteristic function of primes as ρ(n) = ρ(n, 2X1/2).
Our aim is to give lower and upper bounds for this such that they are sums of type I
and type II sums. To get a lower bound, we start by applying Buchstab’s identity twice
giving

ρ(n) = ρ(n, z) −
∑

z≤p<2
√

X

ρ

(
n
p
, z

)
+

∑
z≤p2<p1<2

√
X

ρ

(
n

p1p2
, p2

)

= an,1 − an,2 + an,3.

Using Heath-Brown’s generalised Vaughan identity [10] we see that sums arising
from applications of Buchstab’s identity can always be split into sums of products,
where all the terms of magnitude ≥ X2/9 have coefficients that arise from a characteristic
function of an interval. Thus sums having terms of length ≥ X2/9 lead to type I sums.
So by the previous lemma we can write the sum

∑
n∼X an,ie(λjnx) for i = 1, 2 as a sum

of type I and type II sums.
We write a′

n,3 for the part of an,3 with p1p2
2 < X . We write pi = Xαi . Some parts

of
∑

n∼X a′
n,3e(λjnx) are already satisfactory type II sums. For example, in the part

satisfying

α1 + α2 ∈ [4/9, 5/9] and α1 ∈ [7/18, 4/9],
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we have 1 − α1 − α2 ∈ [4/9, 5/9], α1 ∈ [1/3, 4/9] and

(1 − α1 − α2) − α1 ≤ 1 − 2 · 7/18 − 1/9 = 1/9.

Thus we have a type II sum. We do not need to consider such areas further.
In certain areas we can use Buchstab’s identity to decompose twice more

∑
z≤p2<p1<2

√
X

(p1,p2)∈A

ρ

(
n

p1p2
, p2

)
=

∑
z≤p2<p1<2

√
X

(p1,p2)∈A

ρ

(
n

p1p2
, z

)

−
∑

z≤p3<p2<p1<2
√

X
(p1,p2)∈A,p1p2p2

3<2X

ρ

(
n

p1p2p3
, z

)
+

∑
z≤p4<p3<p2<p1<2

√
X

(p1,p2)∈A,p1p2p2
3<2X

ρ

(
n

p1p2p3p4
, p4

)
.

Since the second term on the right-hand side has a negative sign, we cannot discard it
when we are looking for a lower bound for ρ(n). So we can decompose this way only if
that term can be written as a sum of type I and type II sums. This is the case, if we can
combine α1, α2 and α

(M)
3 = min{α2,

1−α1−α2
2 } to two variables satisfying the conditions

of Lemma 16. We can do this, for example, in the part, where α1 + 2α2 ≤ 7/9 and
α1 + α2 ≤ 5/9. In some parts we can still decompose further.

Even if the conditions of Lemma 16 are not immediately satisfied, we can still
decompose twice more in some parts. This is the case if for some α′

3 < α
(M)
3 we can

combine α1, α2 and α′
3 to satisfy the conditions of Lemma 16 and for every α3 ∈

(α′
3, α

(M)
3 ) we are in type II area. This holds for example when α1 ≤ 1/3 and α1 + α2 ∈

[5/9, 11/18]: Then, α
(M)
3 ≤ 2/9 and we can take α′

3 = 4/9 − α1.
Discarding the regions with a positive sign that are not type II sums and where

we cannot decompose further, we are led to a lower bound ρ−(n) ≤ ρ(n). We still
need to show that (5) holds for an appropriate constant u−. To that end, we write
A = [y, y + yϑ) and B = [y, y + yϑ ′), where ϑ ′ = exp(−(log X)4/7). We will first show
that

∫ DX

dX

(∑
m∈A

ρ−(m) − ϑ

ϑ ′
∑
m∈B

ρ−(m)

)2

dy � X
τ 2

(log X)−A. (27)

Clearly, it is enough to show that this holds when ρ− is replaced by our type I
and type II sums. If we have a type I sum with M ≤ X7/9 < X1−ηϑ , this holds by an
elementary argument. Thus we need to consider only type II sums

∑
mn∈A,m∼M ambn

with M ∈ [X4/9, X5/9]. These kinds of integrals arise in considerations on primes in
almost all short intervals (compare the following with Lemma 9.3 of [9]). Since the
length of our interval is now long, yϑ � X7/9, the task is easy. We get by the Perron
formula and changing the order of integrations that the left-hand side of (27) is for
T0 = exp(log1/3 X) and T = ϑ−1Xη apart from an admissible error

� τ−2
∫ T

T0

|F(1/2 + it)|2dt � τ−2 max
t∈[T0,T ]

∣∣∣∣∣
∑

m∼M

amm−1/2−it

∣∣∣∣∣
2 (

X
M

+ T
)

logC X.
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This is � X
τ 2 (log X)−A assuming that

∑
m∼M

amm−1/2−it � M1/2(log X)−A,

which holds in interesting cases since the coefficient arise from the characteristic
function of primes. For results of this type, see for example [11, Lemma 19].

By (27) we obtain (5) if we can show that

∑
m∈B

ρ−(m) = u−ϑ ′

ϑ

∑
m∈A

1
log m

+ O(X exp(−2(log X)1/3))

= u−yϑ ′

log y
+ O(X exp(−2(log X)1/3)).

By the construction of the weights ρ−(m), we have∑
m∈B

ρ−(m) =
∑
m∈B

ρ(m) −
∑

j

ρ ′
j (m), (28)

where the terms corresponding to discarded regions are of the form

ρ ′
j (m) =

∑
yν<pj<···<p1<yλ

ρ

(
n

p1 · · · pj
, pj

)

with some additional summation conditions. By the prime number theorem

∑
m∈B

ρ(m) = ϑ ′y
log y

(1 + O(1)).

For other sums standard methods (see [9, Section 1.4]) give for example

∑
n∈B

∑
yν<pj<···<p1<yλ

ρ

(
n

p1 · · · pj
, pj

)

= ϑ ′y
log y

∫ λ

α1=ν

∫ α1

α2=ν

. . .

∫ αj−1

αj=ν

ω

(
1 − α1 − · · · − αj

αj

)
dαj · · · dα1

α1 · · · αj−1α
2
j

+ O(y exp(−2(log y)1/3)),

where ω(u) is Buchstab’s function.
Hence we find the constant u− by subtracting from 1 the integrals corresponding

to ρ ′
i . Employing a computer to do the decompositions and numerical integration, we

are led to a lower bound consisting of type I and type II sums with u− > 0.60
Similarly, we find an upper bound by starting to apply Buchstab’s identity three

times. In the case of the upper bound, we can discard only terms with a negative
sign. This leads to u+ < 1.19. Thus 2u− − u+ > 0 and the proof of the theorem is
completed. �
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