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Abstract. We prove that whenever A and B are dense enough subsets of
{1, . . . , N}, there exist a ∈ A and b ∈ B such that the greatest prime factor of
ab + 1 is at least N1+|A|/(9N).

1. Introduction

Let A and B be subsets of {1, . . . ,N}. Denote the sizes of A and B by A
and B respectively. We investigate whether the members of the set

{ab + 1 | a ∈ A, b ∈ B}
have large prime factors. To this end, we write P (n) for the largest prime
factor of n. Sárközy and Stewart [7, Conjecture 1] have made the following
conjecture.

Conjecture. For each ε > 0 there exists N0(ε) and c(ε) such that if
N = N0 and min {A,B} > εN , then there exists a ∈ A and b ∈ B such that

P (ab + 1) > c(ε)N2.
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This is also Conjecture 44 in Sárközy's collection of open problems [6].
Conjecture 45 in the same collection is the much weaker claim that, under
the same assumptions, one �nds a ∈ A and b ∈ B such that

(1) P (ab + 1) > c(ε)N1+c′

for some c′ independent of ε.
However, even this remains unsolved. The best result by now is the fol-

lowing theorem due to Stewart [8].
Theorem. Let Z = min{A,B}. There are e�ectively computable positive

numbers N0, C0 and c2 such that if N = N0 and

Z > C0
N√

log N/ log log N
,

then there are a ∈ A and b ∈ B such that

P (ab + 1) > N1+c2(Z/N)2 .

We will improve this by proving the following theorem.
Theorem 1. Let N = N0 and assume that

A = 200N

log N
and B = A

NA/(200N)
.

Then there exist a ∈ A and b ∈ B such that

P (ab + 1) = N1+A/(9N).

Actually we will prove slightly more.
Theorem 2. Assume that

(2) A = C0N

log N
and B = A

N c1A/N

for some positive constants C0 and c1. Then there exist a ∈ A and b ∈ B such
that

P (ab + 1) = N
√

1+c2A/N

for any

(3) c2 <
1− 4c1 − 2

C0

4

and N = N0(c2).
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Theorem 1 follows immediately from Theorem 2, since

1 +
α

9
5

√
1 +

19
81

α

for any α ∈ [0, 1] and c2 = 19/81 satis�es (3) for C0 = 1/c1 = 200.
We use Chebysev's method to prove Theorem 2. More precisely, we will

evaluate the sum
S =

∑

a∈A, b∈B

∑

p|ab+1

log p.

in two di�erent ways. First directly and then splitting it up
S = S1 + S2 + S3

according to the summation ranges

p < E, p ∈ [E, Nη] and p > Nη,

where
E = o(N) and η = 1/(E log2 N)

will be de�ned later. Our improvement comes mainly from the treatment
of S3. For that sum Stewart [8] gave upper bound by �rst replacing both
A and B by {1, . . . , N}. We use this replacement only for A but are able
to take advantage of the thinness of the set B. This is what lets us improve
c2(Z/N)2 to A/(9N) in the exponent.

Besides, we use a di�erent argument from the previous works [7, 8] for
S1 and S2 as well. This makes our result applicable for a wider range of A
and B.

Throughout the proof we will assume that the bounds (2) hold for some
positive constants C0 and c1 and that N is su�ciently large. Furthermore, ε
will be a small positive constant, not necessarily the same at each occurrence.

2. Treatment of S, S1 and S2

We start with S. Let Λ(n) be the von Mangoldt function. Then

S =
∑

a∈A, b∈B

∑

n|ab+1

Λ(n)−
∑

k=2

∑

p∈P

∑

a∈A, b∈B
ab≡−1 (mod pk)

log p

=
∑

a∈A, b∈B
log (ab + 1)−

∑

pk5N2+1
k=2

B log p

(
N

pk
+ 1

)
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=
(
2− c1A/N + o(1)

)
AB log N −BN


1 +

∑

pk<N2

k=2

log p

pk




=
(
2− c1A/N + o(1)

)
AB log N − AB log N

C0

(
1 +

∑

p<6N

log p

p2 − p

)
.

Hence

(4) S =
(

2− c1 − 2
C0

)
AB log N.

For S1, we have

S1 =
∑

p<E

∑

p|ab+1
a∈A, b∈B

log p 5
∑

b∈B

∑

p<E

∑

pr≡1 (mod b)
pr5Nb+1

log p(5)

5
∑

b∈B

∑

p<E

log p

(
Nb + 1

bp
+ 1

)
5

(
1 + o(1)

)
BN log E.

On the other hand, orthogonality of characters gives

S2 =
∑

a∈A, b∈B

∑

E5p5Nη

1
φ(p)

∑

χ (mod p)

χ(ab)χ(−1) log p

5 AB
∑

E5p5Nη

log p

φ(p)
+

∑

E5p5Nη

log p

φ(p)

∑∗

χ (mod p)

∣∣∣∣∣
∑

a∈A
χ(a)

∑

b∈B
χ(b)

∣∣∣∣∣.

By the Cauchy�Schwarz inequality and the large sieve (see [5, Theorem 7.13]),
we have

∑

q5Q

q

φ(q)

∑∗

χ (mod q)

∣∣∣∣∣
∑

a∈A
χ(a)

∑

b∈B
χ(b)

∣∣∣∣∣ 5 (Q2 + N)(AB)1/2.

Hence by partial summation

S2 5
(
1 + o(1)

)
AB log N + 2Nη(AB)1/2 log N + N(AB)1/2 log E

E
(6)

=
(
1 + o(1)

)
AB log N +

N(AB)1/2

E

(
2

log N
+ log E

)
.
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Choosing E = N c1A/(2N), we see from (5) that

(7) S1 5
(
1 + o(1)

)
BN log E 5

(
1 + o(1)

) c1AB log N

2

and from (6) that

S2 5
(
1 + o(1)

)
AB log N + A1/2B1/2N1−c1A/(2N)

(
c1A

2N
log N

)
(8)

=

(
1 + o(1) +

c1A
1/2

2B1/2N c1A/(2N)

)
AB log N 5

(
1 + o(1) + c1/2

)
AB log N

by (2).

3. Treatment of S3

Let Y be the largest prime factor of the product
∏

a∈A
∏

b∈B(ab + 1).
Then

S3 =
∑

Nη<p5Y

log p
∑

p|ab+1
a∈A, b∈B

1 =
∑

Nη<p5Y

log p
∑

p|ab+1
a∈A, b∈B

∫ p(1+δ)

p

dy

y log (1 + δ)

(9)

5
∫ Y

Nη
1+δ

log
(
(1 + δ)y

)

y log (1 + δ)


 ∑

p∼y

∑

p|ab+1
a∈A, b∈B

1


 dy,

where p ∼ P means P 5 p < (1 + δ)P . Thus we are led to consider

(10)
∑

p∼P

∑

p|ab+1
a∈A, b∈B

1 5
∑

b∈B

∑

ps≡1 (mod b)
p∼P

s5(Nb+1)/P

1,

where P = Nη/(1 + δ). We will apply the linear sieve to the set

F (b) =
{

n ∼ P | ns ≡ 1 (mod b), s 5 (Nb + 1)/P
}

,

which is counted by multiplicity.
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To apply the sieve, we need information about the sets

F (b)
d =

{
n ∈ F (b) | d | n}

.

Lemma 3. Let

X =
δNφ(b)

b
and ω(d) =

{
1 if gcd (b, d) = 1,

0 otherwise.

Then
|F (b)

d | = ω(d)
d

X + O
(
b1/2+ε

)
.

Proof. The claim is obvious if (d, b) > 1. Thus we can assume that
(d, b) = 1. Then

|F (b)
d | =

∑

dks≡1 (mod b)
s5(Nb+1)/P

dk∼P

1 =
1
b

b−1∑

l=0

∑

k∼P/d
(k,b)=1

e

(
lkd

b

) ∑

s5 Nb+1
P

e

(−ls

b

)

=
1
b

(
δP

d
· φ(b)

b
+ O(bε)

)(
Nb + 1

P
+ O(1)

)

+ O


 1

b

∑

0<|l|5b/2

∣∣∣∣∣∣
∑

k∼P/d
(k,b)=1

e

(
lkd

b

) ∣∣∣∣∣∣

∣∣∣∣∣
∑

s5 Nb+1
P

e

(−ls

b

) ∣∣∣∣∣


 .

By a bound for incomplete Kloosterman sums (see [3, p. 36]), we have
∑

M15m5M2

(m,q)=1

e

(
cm

q

)
¿ q

1
2
+ε(c, q)1/2.

Hence

|F (b)
d | = δN

d

φ(b)
b

+ O

(
P

bd
+

Nbε

P
+ bε−1

)

+ O

(
1
b

∑

0<|l|5b/2

b1/2+ε(b, l)1/2 min
{

Nb + 1
P

,
b

l

})

=
δN

d

φ(b)
b

+ O
(
b1/2+ε

)
=

ω(d)
d

X + O
(
b1/2+ε

)
,

which completes the proof. ¤

Acta Mathematica Hungarica 124, 2009



ON THE GREATEST PRIME FACTOR OF ab + 1 121

We write further

V (z) =
∏
p<z

(
1− ω(p)

p

)
=

∏

p<z,p-b

(
1− 1

p

)

=
e−γ

log z

∏

p|b

(
1− 1

p

)−1 (
1 + o(1)

)
=

e−γ

log z

b

φ(b)
(
1 + o(1)

)

by Mertens' formula.
Now we are ready to apply the linear sieve (Theorem 1 of [4] with κ = 1).

It gives

|F (b) ∩ P| 5 F

(
log N1/2−ε

log P 1/2

)
e−γδN

log P 1/2
+

∑

d5N1/2−ε

b1/2+ε/2,

where F (s) = 2eγ/s for 0 < s 5 3.
Therefore

|F (b) ∩ P| 5 (4 + ε)δN
log N

,

so that by (9)

S3 5
∑

b∈B

∫ Y

Nη
1+δ

log y

y log (1 + δ)
(4 + ε)δN

log N
5 (4 + ε)BN

log N

(
log2 Y − log2(Nη)

)
.

(11)

4. Proof of Theorem 2 and further thoughts

By (4), (7) and (8) we have

(12) S3 = S − S1 − S2 =
(

1− 2c1 − 2
C0

+ o(1)
)

AB log N.

Together with (11) this implies that
(

1− 2c1 − 2
C0

+ o(1)
)

AB log N 5 (4 + ε)BN

log N

(
log2 Y − log2(Nη)

)
,

so that
log2 Y =

(
1 +

1
4

(
1− 4c1 − 2

C0
− ε

)
A

N

)
log2 N.
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Thus for some a ∈ A and b ∈ B, we have

P (ab + 1) = N
√

1+c2A/N ,

which completes the proof. ¤
The most critical ingredient of the proof was the treatment of S3. As long

as we have to make an estimate like (10), we cannot hope to get anything
better than P (ab + 1) = N1+cA/N for some positive constant c. In order to
prove something like (1) using Chebysev's method, one would need an upper
bound of the type

∑

p∼P

∑

p|ab+1
a∈A, b∈B

1 5 CδAB

log N

for some positive constant C.
The left hand side here equals

∑

p∼P

∑

ab≡−1 (mod p)
a5N,b5N

χA(a)χB(b),

where χF (n) is the characteristic function of the set F . This resembles the
kind of sums that Bombieri, Friedlander and Iwaniec have considered (see for
example [1, Theorem 3] and a recent variant by Harman and the author [2,
Lemma 2.3] avoiding a Siegel�Wal�sz type condition). Unfortunately, they
do not have results where the ranges of a and b are almost equal. However, if
a large enough subset of either A or B factors as a product of two appropriate
sets, then one would get a result like (1).

Another approach to S3 would be to use the linear sieve as we have done.
Then in order to prove (10), one would need an asymptotic formula for the
sum ∑

kds=ab+1
a∈A, b∈B

s∼S

ad

for S ∈ [
N1−θ1 , N1+θ1

]
on average over d 5 Nθ2 for some θ1, θ2 > 0.
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