ON THE GREATEST PRIME FACTOR OF ab + 1

K. MATOMÄKI

Department of Mathematics, 20014 University of Turku, Finland e-mail: ksmato@utu.fi

(Received September 8, 2008; accepted November 11, 2008)

Abstract. We prove that whenever \mathcal{A} and \mathcal{B} are dense enough subsets of $\{1,\ldots,N\}$, there exist $a\in\mathcal{A}$ and $b\in\mathcal{B}$ such that the greatest prime factor of ab+1 is at least $N^{1+|\mathcal{A}|/(9N)}$.

1. Introduction

Let \mathcal{A} and \mathcal{B} be subsets of $\{1, \ldots, N\}$. Denote the sizes of \mathcal{A} and \mathcal{B} by A and B respectively. We investigate whether the members of the set

$$\{ab+1 \mid a \in \mathcal{A}, b \in \mathcal{B}\}$$

have large prime factors. To this end, we write P(n) for the largest prime factor of n. Sárközy and Stewart [7, Conjecture 1] have made the following conjecture.

CONJECTURE. For each $\varepsilon > 0$ there exists $N_0(\varepsilon)$ and $c(\varepsilon)$ such that if $N \ge N_0$ and min $\{A, B\} > \varepsilon N$, then there exists $a \in \mathcal{A}$ and $b \in \mathcal{B}$ such that

$$P(ab+1) > c(\varepsilon)N^2$$
.

Key words and phrases: greatest prime factor, Kloosterman sums, linear sieve. 2000 Mathematics Subject Classification: 11N36, 11N13.

This is also Conjecture 44 in Sárközy's collection of open problems [6]. Conjecture 45 in the same collection is the much weaker claim that, under the same assumptions, one finds $a \in \mathcal{A}$ and $b \in \mathcal{B}$ such that

(1)
$$P(ab+1) > c(\varepsilon)N^{1+c'}$$

for some c' independent of ε .

However, even this remains unsolved. The best result by now is the following theorem due to Stewart [8].

Theorem. Let $Z = \min\{A, B\}$. There are effectively computable positive numbers N_0 , C_0 and c_2 such that if $N \ge N_0$ and

$$Z > C_0 \frac{N}{\sqrt{\log N/\log \log N}},$$

then there are $a \in \mathcal{A}$ and $b \in \mathcal{B}$ such that

$$P(ab+1) > N^{1+c_2(Z/N)^2}$$
.

We will improve this by proving the following theorem.

Theorem 1. Let $N \ge N_0$ and assume that

$$A \geqq \frac{200N}{\log N} \quad and \quad B \geqq \frac{A}{N^{A/(200N)}}.$$

Then there exist $a \in A$ and $b \in B$ such that

$$P(ab+1) \ge N^{1+A/(9N)}.$$

Actually we will prove slightly more.

Theorem 2. Assume that

(2)
$$A \ge \frac{C_0 N}{\log N} \quad and \quad B \ge \frac{A}{N^{c_1 A/N}}$$

for some positive constants C_0 and c_1 . Then there exist $a \in \mathcal{A}$ and $b \in \mathcal{B}$ such that

$$P(ab+1) \ge N^{\sqrt{1+c_2A/N}}$$

for any

(3)
$$c_2 < \frac{1 - 4c_1 - \frac{2}{C_0}}{4}$$

and $N \geq N_0(c_2)$.

Acta Mathematica Hungarica 124, 2009

Theorem 1 follows immediately from Theorem 2, since

$$1 + \frac{\alpha}{9} \le \sqrt{1 + \frac{19}{81}\alpha}$$

for any $\alpha \in [0, 1]$ and $c_2 = 19/81$ satisfies (3) for $C_0 = 1/c_1 = 200$.

We use Chebysev's method to prove Theorem 2. More precisely, we will evaluate the sum

$$S = \sum_{a \in \mathcal{A}, b \in \mathcal{B}} \sum_{p|ab+1} \log p.$$

in two different ways. First directly and then splitting it up

$$S = S_1 + S_2 + S_3$$

according to the summation ranges

$$p < E$$
, $p \in [E, N\eta]$ and $p > N\eta$,

where

$$E = o(N)$$
 and $\eta = 1/(E \log^2 N)$

will be defined later. Our improvement comes mainly from the treatment of S_3 . For that sum Stewart [8] gave upper bound by first replacing both \mathcal{A} and \mathcal{B} by $\{1,\ldots,N\}$. We use this replacement only for \mathcal{A} but are able to take advantage of the thinness of the set \mathcal{B} . This is what lets us improve $c_2(Z/N)^2$ to A/(9N) in the exponent.

Besides, we use a different argument from the previous works [7, 8] for S_1 and S_2 as well. This makes our result applicable for a wider range of A and B.

Throughout the proof we will assume that the bounds (2) hold for some positive constants C_0 and c_1 and that N is sufficiently large. Furthermore, ε will be a small positive constant, not necessarily the same at each occurrence.

2. Treatment of S, S_1 and S_2

We start with S. Let $\Lambda(n)$ be the von Mangoldt function. Then

$$S = \sum_{a \in \mathcal{A}, \ b \in \mathcal{B}} \ \sum_{n \mid ab+1} \Lambda(n) - \sum_{k \geqq 2} \ \sum_{p \in \mathbb{P}} \ \sum_{\substack{a \in \mathcal{A}, \ b \in \mathcal{B} \\ ab \equiv -1 \, (\text{mod} \, p^k)}} \log p$$

$$\geq \sum_{a \in \mathcal{A}, b \in \mathcal{B}} \log (ab+1) - \sum_{\substack{p^k \leq N^2 + 1 \\ k \geq 2}} B \log p \left(\frac{N}{p^k} + 1 \right)$$

$$\geq (2 - c_1 A/N + o(1)) AB \log N - BN \left(1 + \sum_{\substack{p^k < N^2 \\ k \geq 2}} \frac{\log p}{p^k} \right)$$

$$\geq (2 - c_1 A/N + o(1)) AB \log N - \frac{AB \log N}{C_0} \left(1 + \sum_{\substack{p < 6N \\ p^2 - p}} \frac{\log p}{p^2 - p} \right).$$

Hence

(4)
$$S \ge \left(2 - c_1 - \frac{2}{C_0}\right) AB \log N.$$

For S_1 , we have

(5)
$$S_{1} = \sum_{p < E} \sum_{\substack{p \mid ab+1 \\ a \in \mathcal{A}, b \in \mathcal{B}}} \log p \leq \sum_{b \in \mathcal{B}} \sum_{\substack{p < E \ pr \equiv 1 \pmod{b} \\ pr \leq Nb+1}} \log p$$
$$\leq \sum_{b \in \mathcal{B}} \sum_{\substack{p < E \ p \leq E}} \log p \left(\frac{Nb+1}{bp} + 1 \right) \leq \left(1 + o(1) \right) BN \log E.$$

On the other hand, orthogonality of characters gives

$$S_{2} = \sum_{a \in \mathcal{A}, b \in \mathcal{B}} \sum_{E \leq p \leq N\eta} \frac{1}{\phi(p)} \sum_{\chi \pmod{p}} \chi(ab) \overline{\chi}(-1) \log p$$

$$\leq AB \sum_{E \leq p \leq N\eta} \frac{\log p}{\phi(p)} + \sum_{E \leq p \leq N\eta} \frac{\log p}{\phi(p)} \sum_{\chi \pmod{p}}^{*} \left| \sum_{a \in \mathcal{A}} \chi(a) \sum_{b \in \mathcal{B}} \chi(b) \right|.$$

By the Cauchy–Schwarz inequality and the large sieve (see [5, Theorem 7.13]), we have

$$\sum_{q \le Q} \frac{q}{\phi(q)} \sum_{\chi \pmod{q}}^* \left| \sum_{a \in \mathcal{A}} \chi(a) \sum_{b \in \mathcal{B}} \chi(b) \right| \le (Q^2 + N) (AB)^{1/2}.$$

Hence by partial summation

(6)
$$S_2 \le (1 + o(1)) AB \log N + 2N\eta (AB)^{1/2} \log N + N(AB)^{1/2} \frac{\log E}{E}$$
$$= (1 + o(1)) AB \log N + \frac{N(AB)^{1/2}}{E} \left(\frac{2}{\log N} + \log E\right).$$

Acta Mathematica Hungarica 124, 2009

Choosing $E = N^{c_1 A/(2N)}$, we see from (5) that

(7)
$$S_1 \le (1 + o(1)) BN \log E \le (1 + o(1)) \frac{c_1 AB \log N}{2}$$

and from (6) that

(8)
$$S_2 \le (1 + o(1)) AB \log N + A^{1/2} B^{1/2} N^{1 - c_1 A/(2N)} \left(\frac{c_1 A}{2N} \log N\right)$$
$$= \left(1 + o(1) + \frac{c_1 A^{1/2}}{2B^{1/2} N^{c_1 A/(2N)}}\right) AB \log N \le (1 + o(1) + c_1/2) AB \log N$$
by (2).

3. Treatment of S_3

Let Y be the largest prime factor of the product $\prod_{a\in\mathcal{A}}\prod_{b\in\mathcal{B}}(ab+1)$. Then

(9)
$$S_{3} = \sum_{N\eta
$$\leq \int_{\frac{N\eta}{1+\delta}}^{Y} \frac{\log ((1+\delta)y)}{y \log(1+\delta)} \left(\sum_{\substack{p \sim y\\a \in \mathcal{A}, b \in \mathcal{B}}} \sum_{\substack{p|ab+1\\a \in \mathcal{A}, b \in \mathcal{B}}} 1\right) dy,$$$$

where $p \sim P$ means $P \leq p < (1 + \delta)P$. Thus we are led to consider

(10)
$$\sum_{p \sim P} \sum_{\substack{p \mid ab+1 \\ a \in \mathcal{A}, b \in \mathcal{B}}} 1 \leq \sum_{b \in \mathcal{B}} \sum_{\substack{ps \equiv 1 \pmod{b} \\ p \sim P \\ s \leq (Nb+1)/P}} 1,$$

where $P \ge N\eta/(1+\delta)$. We will apply the linear sieve to the set

$$\mathcal{F}^{(b)} = \left\{ n \sim P \mid ns \equiv 1 \, (\operatorname{mod} b), \ s \leqq (Nb+1)/P \right\},\,$$

which is counted by multiplicity.

To apply the sieve, we need information about the sets

$$\mathcal{F}_d^{(b)} = \left\{ n \in \mathcal{F}^{(b)} \mid d \mid n \right\}.$$

Lemma 3. Let

$$X = \frac{\delta N\phi(b)}{b}$$
 and $\omega(d) = \begin{cases} 1 & \text{if } \gcd(b,d) = 1, \\ 0 & \text{otherwise.} \end{cases}$

Then

$$\left|\mathcal{F}_{d}^{(b)}\right| = \frac{\omega(d)}{d}X + O(b^{1/2+\varepsilon}).$$

PROOF. The claim is obvious if (d,b) > 1. Thus we can assume that (d,b) = 1. Then

$$\begin{split} \left| \mathcal{F}_{d}^{(b)} \right| &= \sum_{\substack{dks \equiv 1 \, (\text{mod } b) \\ s \leqq (Nb+1)/P \\ dk \sim P}} 1 = \frac{1}{b} \sum_{l=0}^{b-1} \sum_{\substack{k \sim P/d \\ (k,b) = 1}} e \left(\frac{l\overline{k}d}{b} \right) \sum_{\substack{s \leqq \frac{Nb+1}{P}}} e \left(\frac{-ls}{b} \right) \\ &= \frac{1}{b} \left(\frac{\delta P}{d} \cdot \frac{\phi(b)}{b} + O(b^{\varepsilon}) \right) \left(\frac{Nb+1}{P} + O(1) \right) \\ &+ O\left(\frac{1}{b} \sum_{0 < |l| \leqq b/2} \left| \sum_{\substack{k \sim P/d \\ (k,b) = 1}} e \left(\frac{l\overline{k}d}{b} \right) \right| \left| \sum_{\substack{s \leqq \frac{Nb+1}{P}}} e \left(\frac{-ls}{b} \right) \right| \right). \end{split}$$

By a bound for incomplete Kloosterman sums (see [3, p. 36]), we have

$$\sum_{\substack{M_1 \leq m \leq M_2 \\ (m,q)=1}} e\left(\frac{c\overline{m}}{q}\right) \ll q^{\frac{1}{2} + \varepsilon}(c,q)^{1/2}.$$

Hence

$$\begin{split} & \left| \mathcal{F}_d^{(b)} \right| = \frac{\delta N}{d} \frac{\phi(b)}{b} + O\left(\frac{P}{bd} + \frac{Nb^{\varepsilon}}{P} + b^{\varepsilon - 1}\right) \\ & + O\left(\frac{1}{b} \sum_{0 < |l| \le b/2} b^{1/2 + \varepsilon} (b, l)^{1/2} \min\left\{\frac{Nb + 1}{P}, \frac{b}{l}\right\}\right) \\ & = \frac{\delta N}{d} \frac{\phi(b)}{b} + O\left(b^{1/2 + \varepsilon}\right) = \frac{\omega(d)}{d} X + O\left(b^{1/2 + \varepsilon}\right), \end{split}$$

which completes the proof. \Box

We write further

$$V(z) = \prod_{p < z} \left(1 - \frac{\omega(p)}{p} \right) = \prod_{p < z, p \nmid b} \left(1 - \frac{1}{p} \right)$$
$$= \frac{e^{-\gamma}}{\log z} \prod_{p \mid b} \left(1 - \frac{1}{p} \right)^{-1} \left(1 + o(1) \right) = \frac{e^{-\gamma}}{\log z} \frac{b}{\phi(b)} \left(1 + o(1) \right)$$

by Mertens' formula.

Now we are ready to apply the linear sieve (Theorem 1 of [4] with $\kappa=1$). It gives

$$\left| \mathcal{F}^{(b)} \cap \mathbb{P} \right| \leq F \left(\frac{\log N^{1/2 - \varepsilon}}{\log P^{1/2}} \right) \frac{e^{-\gamma} \delta N}{\log P^{1/2}} + \sum_{d \leq N^{1/2 - \varepsilon}} b^{1/2 + \varepsilon/2},$$

where $F(s) = 2e^{\gamma}/s$ for $0 < s \le 3$.

Therefore

$$\left| \mathcal{F}^{(b)} \cap \mathbb{P} \right| \leq \frac{(4+\varepsilon)\delta N}{\log N},$$

so that by (9)

(11)
$$S_3 \leq \sum_{b \in \mathcal{B}} \int_{\frac{N\eta}{1+\delta}}^{Y} \frac{\log y}{y \log (1+\delta)} \frac{(4+\varepsilon)\delta N}{\log N} \leq \frac{(4+\varepsilon)BN}{\log N} \left(\log^2 Y - \log^2(N\eta)\right).$$

4. Proof of Theorem 2 and further thoughts

By (4), (7) and (8) we have

(12)
$$S_3 = S - S_1 - S_2 \ge \left(1 - 2c_1 - \frac{2}{C_0} + o(1)\right) AB \log N.$$

Together with (11) this implies that

$$\left(1 - 2c_1 - \frac{2}{C_0} + o(1)\right) AB \log N \le \frac{(4 + \varepsilon)BN}{\log N} \left(\log^2 Y - \log^2(N\eta)\right),\,$$

so that

$$\log^2 Y \ge \left(1 + \frac{1}{4} \left(1 - 4c_1 - \frac{2}{C_0} - \varepsilon\right) \frac{A}{N}\right) \log^2 N.$$

Acta Mathematica Hungarica 124, 2009

Thus for some $a \in \mathcal{A}$ and $b \in \mathcal{B}$, we have

$$P(ab+1) \ge N^{\sqrt{1+c_2A/N}},$$

which completes the proof. \Box

The most critical ingredient of the proof was the treatment of S_3 . As long as we have to make an estimate like (10), we cannot hope to get anything better than $P(ab+1) \ge N^{1+cA/N}$ for some positive constant c. In order to prove something like (1) using Chebysev's method, one would need an upper bound of the type

$$\sum_{p \sim P} \sum_{\substack{p|ab+1\\a \in \mathcal{A}, b \in \mathcal{B}}} 1 \le \frac{C\delta AB}{\log N}$$

for some positive constant C.

The left hand side here equals

$$\sum_{p \sim P} \sum_{\substack{ab \equiv -1 \, (\text{mod } p) \\ a \leq N, b \leq N}} \chi_{\mathcal{A}}(a) \chi_{\mathcal{B}}(b),$$

where $\chi_{\mathcal{F}}(n)$ is the characteristic function of the set \mathcal{F} . This resembles the kind of sums that Bombieri, Friedlander and Iwaniec have considered (see for example [1, Theorem 3] and a recent variant by Harman and the author [2, Lemma 2.3] avoiding a Siegel-Walfisz type condition). Unfortunately, they do not have results where the ranges of a and b are almost equal. However, if a large enough subset of either \mathcal{A} or \mathcal{B} factors as a product of two appropriate sets, then one would get a result like (1).

Another approach to S_3 would be to use the linear sieve as we have done. Then in order to prove (10), one would need an asymptotic formula for the sum

$$\sum_{\substack{kds=ab+1\\a\in\mathcal{A},\ b\in\mathcal{B}\\s\sim S}}a_d$$

for $S \in \left[N^{1-\theta_1}, N^{1+\theta_1}\right]$ on average over $d \leq N^{\theta_2}$ for some $\theta_1, \theta_2 > 0$.

Acknowledgements. The author thanks Glyn Harman for suggesting the problem. The author was supported by the Finnish Cultural Foundation.

References

- [1] E. Bombieri, J. B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli II, *Math. Ann.*, **227** (1987), 361–393.
- [2] G. Harman and K. Matomäki, Some problems of analytic number theory on arithmetic semigroups, Funct. Approx. Comment. Math., 38 (2008), 21–40.
- [3] C. Hooley, Applications of Sieve Methods, volume 70 of Cambridge Tracts in Mathematics, Cambridge University Press (Cambridge, 1976).
- [4] H. Iwaniec, Rosser's sieve, Acta Arith., 36 (1980), 171-202.
- [5] H. Iwaniec and E. Kowalski, Analytic Number Theory, volume 53 of American Mathematical Society Colloquium Publications (Providence, Rhode Island, 2004).
- [6] A. Sárközy, Unsolved problems in number theory, Period. Math. Hungar., 42 (2001), 17–35.
- [7] A. Sárközy and C. L. Stewart, On prime factors of integers of the form ab+1, Publ. Math. Debrecen, **56** (2000), 559–573.
- [8] C. L. Stewart, On the greatest prime factor of integers of the form ab + 1, Period. Math. Hungar., 43 (2001), 81-91.