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Abstract

We prove that almost all integers n = 0 or 4 (mod6) can be written
in the form n = p1 + p2, where p; = k? +1% 41 with (k,1) = 1. The proof
is an application of the half-dimensional and linear sieves with arithmetic
information coming from the circle method and the Bombieri-Vinogradov
prime number theorem.

1 Introduction

After Vinogradov’s [10, 11] ground-breaking proof of the ternary Goldbach prob-
lem, several authors [2, 6, 8] proved in the late 1930’s that almost all even
numbers can be expressed as a sum of two primes. On the other hand Lin-
nik [5] has proved that there exists infinitely many prime numbers of the form
p = k? + 1% + 1. We couple these two theorems by proving

Theorem 1. Let
N={n<N|n=0 or4(mod6)}.

If E(N) is the number of numbers n € N that cannot be expressed in the form
n=p1 +ps withp, =k*+12+1, (k1) =1, then

E(N) < N(log N)=4
for any A > 0 with the implied constant depending only on A.

We use sieve methods to pick out primes of the form k% + {2 + 1 and the
circle method to pick out primes satisfying n — p € P. The sieve method we use
goes back to Iwaniec’s [3] work on quadratic forms representing prime numbers.

Consider n < N, n = 0 or 4(mod6). We can clearly assume that n >
N(log N)~A. The set {k? + 12 | (k,1) = 1} consists of numbers with no prime
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factors belonging to P3 = {p € P | p =3 (mod 4)}. Thus it is natural to attack
our current problem by applying the half-dimensional sieve to the set

A={p—1< N |p=3(mod8),n—pecP}.
As usual we write for a finite set 7 C N and a set of primes P

P(z) = H p and S(F,P,z)=|{a€ F | (a,P(z)) =1}
pEP,p<z
Then by writing Ps , = {p € P | p = 3 (mod4), p {t n—1} there are S(A, Ps ,,, N)+
O(log N) primes p such that p = k? + 12+ 1, (k,l) =1 and n — p € P. We will
conclude in Section 7 that for n > W, n € N we have

—E0)],

n

S N> ——
(A, Pon, N) > (log n)3/2

where
S IEMm)2 < N*/(log N)*,
neN
which clearly implies the theorem.
As in earlier works [3, 12] on problems involving p = k% + [2 + 1, we write
for z = N/ o € [2,4)

S(A,P37H,N) = S(.A,'Pg,n,z) —-T, (1)

and obtain a lower bound for S(A, Ps ,, z) by the half dimensional sieve and an
upper bound for T by the linear sieve. In both cases we take advantage of a
linear form of the error term.

Since each element a € A has an even number of prime factors belonging to
Ps,n and 2||a, we have for oo < 4

T={p<N|p=1+2upips, p1,p2 € P3n,p1 > p2 > N/,
po | v = po =1(mod4),n —p € P} + O(log N).
Define
L={l=2up; |u< N2 plu = p=1(mod4),
NYe < py < (NJu)/2 ps € Py},
L,={lel]|(,n—1)=1}
and for each | € £
M) ={m=1Ip1 + 1| pil < N,p; =3 (mod4),n —m € P}.

Then T is at most the number of primes in Ujez,, M., (1) together with an error
term of the order log N. Thus

T< Y (SMalD), Pall), (VDY) + OV,

lel,

where P,(I) ={p € P | (p,nl) =1}.



2 Sieving lemmata

First we introduce some more sieve notation. For a squarefree d with all its
prime factors in P, we let F4 = {n | dn € F}. Let

7 = 2D x 4 r(7, ),

where X > 1 is independent of d and w(d) is a multiplicative function that
satisfies the condition 0 < w(p) < p for each p € P. Define further

We say that a sieve is of dimension k if there exists a constant K > 2 such
that for all z > w > 2 we have

—1 K
1 K
L (-=7) () (o)
w<p<z D ogw ogw
pEP

Now we are ready to state the main theorem of the Rosser-Iwaniec sieve.
It follows as Theorem 1 of [4] by an obvious modification to the argument in
Section 3 of [4].

Lemma 2. Let s = logQ/logz. Then we have for certain functions F(s) and
f(s) depending on K

S(F,P,2) < XQ2)(F(s) +ox(1)+ Y car(F,d)
d<Q,d|P(z)

and
S(F,P,z) = XQ2)(f(s) +ox()+ Y. dyr(F,d),
d<Q,d|P(z)

where ¢cq, c; < 1 depend only on Q and k but not on |F|, P or w.

We will need the lower bound in the half-dimensional (k = 1/2) case and
the upper bound for the linear (x = 1) case. In the half-dimensional case we

have for 1 < s <3
er [*° dt
$) =4/ — _
fte) V?TS/l Vit —1)

where « is Euler’s constant. In the linear case we have F'(s) = % for1 <s<3.
The following Bombieri-Vinogradov type result gives the arithmetical infor-
mation needed for the applications of the sieve.



Lemma 3. Let L < N” with 8 < 1 and |dx;| < 1. Let ay, be any sequence
satisfying (ag,, k) =1 for every k and l. Then for any A > 0 there exists a con-
stant A" > 0 such that if for every | < L we have Q; < (N/1)*/2/(log(N/1))*",
then
2
N

6n,(l7kaakl) NS
S P X 1T || < e
n=1 [I<L k<@ p1=ak,; (mod k) lqs(k) (log N)
p1ld+pz=n

where the implied constant depends only on A and (3,

n—2

1
M, (1) = -
© = log log(n —m)
and
Gl k,ary) = [] o II R 5((n — lagy, k)(n, 1))
n\t, vy s (p_ 1)2 p— 1 b 9
ptkin plkin

with §(n) the Kronecker delta symbol.

Proof. We can add summation conditions (n,l) = (n — lag, k) = 1 since if

this does not hold, then &,(l,k,ax,;) = 0 and for any n € A" at most one pair

(p1,p2) of primes satisfies the conditions p; = ax,; (mod k) and pil + p2 = n.
By writing

Jri(a) = Z e(apl) and f(a) = fi1(a)

pl<N
p=ay, (modk)

we have

1—/flcl a)e(—na)doa = 1.

pP1=ak, (mod k)
pil+p2=n

Next we divide the integral into major arcs and minor arcs. For that we write
Q = (log N)A*H, = &,

1 1

m = f——f—i—— and m=(——,1—— Mt

UUG-niem) (5=
qQ(aaq)O—l

Then I = Igy + I, where Igy corresponds to the integral on 9t and I, to the
integral on m. The claim follows by proving that
2

G (l k akl) N3
Z Z Z dkl (Ism ld)( ) Mn(l)> < (IOgN)A (2)

n=1|I1<L k<Q,



and
2

N N3
2|2 2 il < 3)

n=1 |I<L k<Q,

The proof of these occupy the following two sections.

3 Major arcs

Consider first the contribution from the major arcs. Our argument is a modifi-
cation of Tolev’s [7] argument. We have

Igy = Z Z*I(a q)

g<Q a=0

where here and later * restricts the summation to a coprime to g and
1/(nq)
I(%Q)Z/ Jr (a+a)f(a+a)e<n<a+a>)da.
—1/(nq) q 4 q

1 Yodt
77(297%@)—@/2 @

and for (m,q) = 1, m = ai, (mod (k,q)) let by; be the unique (mod [k, q])
solution to the system of congruences

{x =ag,; (modk),

x=m  (modgq).

Let

A =
(¥,q) = max max

Then for ¢ < Q, (a,q) =1 we have

(- 5 ) T %) 5 eom

p<z 1<m<q p<r
p=ar, (k) m=ap, ((k,q)) p=br;  ([k,q])
* alm 1 T
= 2 e()( / + O(A(z, [kafﬂ)))—i—O(q).
1<m<q q ¢([k7Q]) 2 logt
m=ag,; ((k,q))

Thus by partial summation we have for o] < == qn

N/l
iy (a + a) = fru <a> e(aN) — , Trly (Z) di;e(aly)dy

e [0 (0a (T o).




where l
* awm
crala, q) = Z € (q) :

1<m<q
m=ag,; (mod (k,q))

Here

/N/l 1 / Z e(am) 1/ W)
9 logy o log y/l -7 log m/l l log
N N
1 I+]alNY 1 e(am) Q
1 2::21 log( m/l +0 ( ) o an::Ql log(m/l) ql
Thus

o (§re) = 5 3 0 (08 (7 )

and in particular evaluation of the Ramanujan sum ¢ ;1 (a, q¢) = p(q) for (a,q) =

1 and an application of the prime number theorem give

¢ . _ nla) = e(am) oxp(—c(lo 1/2
f< " >‘¢< S O (N expl—eflog N)'12).

q) 5=, logm

By substituting these into the definition of I(a,q) we get

_ pl@eralag) [ an) MO0 N
I(a,q) = l¢([k7Q])¢(Q)e ( q ) /1/(77(1) mz::zz log m/l Z logm na)do

AN NI

For 0 < |a| < 1/2 we have by partial summation

‘ Z log m/l < e mE::le(am) < ol
Thus using this for [ and [ = 1 we get
/(g N N
/ Z Z e(am) na)do
1/(19) =gy og /)m : logm
/2 X o e(am)
= d 0] M, (1 0 )
/1/2 log m/l Z:Q logm (—na)da + O(ng) = My (1) + O(nq)
Then by writing
q—1
* na
bk l Ck,l ()
a=0 q



we have for ¢ < @Q

q—1

. 1(@)bra(a)
;I(a,q) (o, D(Mn(l)JrO(nq))

+0 (N exp(—c(log N)¥/2) + ("fA <];[ [hq]))

We consider first the main term. There the function by ;(q) is multiplicative
with respect to ¢ and by the assumption (n,l) = (n — lag, k) = 1 we have

1, if p 1 kin,
bk,l(p): 1_p7 1fpfk7p|ln7
-1, if p| k.

Let further

p(@bri(@)o(k) _ 1(@)bri(9)((F; 9))
#(a)¢([k, q]) ¢(q)? ’

which is a multiplicative function of q. We also notice that for a square-free
number ¢ we have |by ;(q)¢((k, q))| = ¢((kin, q)).
Then we have an Euler product

D k(@) =D Akalg) + O (Z |)‘k,l(Q)|)

Mei(q) =

a<Q geN >Q
¢((kin, q))
:GR(l,k,ak71)+O Z ) .
(q>Q ¢(9)?
Thus
Ton — Gn(ll;fk;kz +O<Z P((kin q Uk, ) Z nq¢ kln q

+ Z %exp( c(log N)'/?) + Z ?A (17, [k;,q]))

9<Q 9<Q
Gn(l,k,akl)
=" M,(l O(FE E FEs+ Ey),
l¢(k) ()+ (1+ o+ L3 + 4)
say. Write

Zi logNng;v (zg;k;?lE) |

Here the logarithmic factor allows us to change each ¢(r) to r. Then the estimate
(2) follows by showing that >, < ﬁ fori=1,2,3,4.



Consider first ). Since

D

geN s|r qeN

s
(gs)?
we have

9 kin,
DD DIDID I

n<N \I<Lk<Q; ¢>Q

<N (log N 33030 30 W) g vy S TB}]” > e

n<NI<SL k<N ¢>Q r<N3 >Q

I<LE<Q kl >Q

Next we divide the summation according to s = (r,¢) < Q or s > @ getting

> <N3(logN) (Z 3 7a(rs) 3 (qZ)Q

s<Qr<N3/s >Q/s
73(rs) 5 N3(log N)? e
+ Z Z Z 2) < < yag
Q<s<N3r<N/s ' ° geN (gs) Q (log N)

Next we consider ) ,. Since

Z ZZ 7<<7_ )log N,

9<Q s|r q<Q/S

we have
2

nt(kin) N3(log N)13 N3
———=log N .
S SRD O PP DRI ISR AL L

n<N \I<L k<Q,

We have trivially >, < ﬁ. Finally by the Bombieri-Vinogradov prime
number theorem [1] we have for sufficiently large A’
2

YN Y Y A(N k-) <<L3
s K (log N)A+T”

ISLE<SQiQ

Thus (2) holds.

4 Minor arcs

In this section we show that (3) holds. In order to do that we first change the
order of summation and integration giving

2
N

N 2
Z Z Z dilm| = Z / f(a)z Z dii fei(e) | e(—na)da

n=1 [I<L k<Q; n=1 I<L kL@



By Bessel’s inequality the right hand side is at most

2

/m f(a)z Z di g fra(@)| da < (glg%(f(aﬂ)z

ISL kE<Q:

Z Z |dk1,lldk2,lz| Z Z / llpl l2p2))da'
(k2)

11<L k1<Qy, p1li<N p2l2a<N
2L kp<Qy, P1=ak;,i; (k1) p2=ak,,1,

The integral on the right hand side disappears unless pil; = psols and is 1
otherwise.

Consider first the contribution from summands with p; = ps. Then [} = Io
and thus by writing k = [k, k2] the contribution of these terms is

4mu)zzm S
I<L p<Q? pl<N
D=k ko lq,15  (K)

< (maxlfta )KZM;NTB (5 +1) < (ma @) Moot

Consider then the contribution from the terms with p; # ps. By writing
r = Il1p1 = laps = sp1p2 we see that contribution from these terms is

< (max | f(a)])?[S], (5)
aem
where
S ={(s,p1.p2.k1,k2) | p1 = aky spy (K1), D2 = Qigpopy (K2),
1/2 1/2
k1 < (S%) sk < (%) ,spip2 < N'}

We define further S(S, Py, P2, k1,k2) = {(s,p1,02,k1,k2) € S| s~ S;p1 ~
Py, py ~ Py}, where m ~ M <= M < m < 2M. Then

T
|S| < IOgN Z Z Snf'l’?,)lgz |S S P17P27k17k2)| (6)
kISNl/Q szNl/z

where T indicates the conditions
SP Py <N, SP,<N/ki and SP; < N/k3.

Under these conditions

+5

Py ) SPP, SP SP,

P, P <S{—+1) (- +1 B ks
S(S, P1, Pa, k1, ko) 5( +)<k2+ kiky ki ko

N N N (N V2N 1/2<4N
“hiky | kikZ | KPhy |\ Pok? Pik2 = ks




This together with (4), (5) and (6) implies
2
N 2
5[50 duta| < Nltow N (maxl )

n=1[I<L k<Q,

This gives (3) since by Dirichlet’s approximation theorem (Lemma 2.1 of [9])
and Theorem 3.1 of [9] we have

N(log N)*
max|[f(a)| < oz

5 A lower bound for S(A,Ps,,2)

Proposition 4. Let 1 <« <6 and let M, () be defined as above. Then

301 (n) /2 dt

S(A, P3p,2) > ——=X —— M, (1)(1 +0(1)) + E1(n),
(AP 2) 2 gt [ s M)+ 0(1) + Ba(o)
where
1\ ! 1 1\
e T i) W) 1L (-5
pln P10 P=1%) i p-2
p=1l (4) p>3
p=3 (4)
1— L 1 1/2
p—2
07 ()
p>3 P p=3 (4)
p=3 (4)
and

3 B < N*/(log )™
neN

Proof. As mentioned above, we use the half-dimensional sieve. Let n € N. Let
d be a squarefree integer with all the prime factors belonging to Ps ,,. Let a4 be
the unique residue class (mod 8d) such that ag = 3 (mod 8) and ag = 1 (mod d).
Then

Ad =y € Flp= a0 (sd),n—p Y = 000,01 4 1, (a)
_M,(1) 1 1 s .

~ 46(d) pgno (p_1)2>pgn(1+p_1>5(( 3,8)(n —1,d)) + Ru(d)
-2+ o)

10



where

wa(d) 1 1+ 1 1Nt
7w 1= =a 11 (55)

pl T, d) fd) o T, d) n(,id)

and
g () I o) 0

pl2n
() I (k) e

Hence for p € P3,

and
n 1 1
Q)= ][] (1—“’ (p)): 11 (1—1> (1—2>
PEP3 n P p<z,p|n p= <z,pt(n—1)n p=
p<z p=3 (4) p=3 (4)
=(1+01) [ ! II (¢ Ly 11 L
e p—1 p—2 p—2
pln pl(n—1)n 3<p<z
p=3 (4) %>3(4) p=3 (4)
p=

By writing L(x, 1;y) = Hp<y(1 — x(p)/p)~! with x the non-trivial character
(mod 4), we have

I (-2 T (500D

p<=z p<=z p<=z
p=3 (mod 4) p=3 (mod 4)
1/2
am 1
—(1+0(1),/— 1-
(1+0(1)) 2e7log N H ( p2>
p=3(mod 4)

by Mertens’ formula and the fact L(x,1) = . Thus by the half-dimensional
sieve (Lemma 2 with x = 1/2) we have by choosing Q = N/2/(log N)#’

3Ci(n) [/ dt ,
S(A, Psn,2) > M,(1)(1+0(1)) + R, (d).
Thus the claim follows from Lemma 3 with L = 1. O

11



6 An upper bound for T
Proposition 5. Let o > 1 and let T, Ci(n) and M, (1) be defined as above.
fhen 120 ()W (a) + o(1)
1(n «)+ o
< M, (1) + E.
- (log N)1/2 n(1) + Ez(n),

t—2+( tfl)log(tfl)
dt
W) 8\[/ 2(t— 1)(1 — t/a)l/?

where

and

> |Ex(n)? < N?/(log N)*
neN

Proof. We use the linear sieve to obtain an upper bound for 7. Let [ € £ and
let d be a squarefree integer satisfying (d,1) = 1. Let ad , be the unique residue
class (mod4d) such that laj;; = —1 (mod d) and ag,; = 3 (mod4). Write

(M (D)al = [{pr € P | Ip1 < N,p1 = ag,; (mod4d),n — 1 —Ip, € P}

anl(lallda a/, ) _ ’ﬂ(l) 1
=g MO+ Rl = g T (1‘<p1>2>

ptddl(n—1)

I1 (1 + p11> 5((n—1—1lajy;,4d)(n — 1,1)) + Ru (1, d).

pl4dl(n—1)

Then we have for [ € £,, and d such that all the prime factors of d belong
to Pn(l)

wp(l,d
Matal = 28D x4 R,
where .
wa(l,d) 1 I L+
d  ¢d 1— —L
# )p|<d,1<i—1>> (p=1)
and
S () I ()
X, (1) = 1-—— ) J[ (1+—
_12 -1
2 ptdl(n—1) (p ) plal(n—1) p
ST (AR ()
= 1- —— ) [[(1-— IT (1- .
12 — —
S =12/ 25 p=1) p—1
p>2

Hence for p € P, (1)

12



pEPL (1) pln—1 pH(n—1)n
pP<z ptl,p<=z p<z
1 1\ 1 \!
S [T (-—=) T (-—) 11 (--%
p—1 p—2 p—2
pln—1 pll,pin pl(n—1)n
p>3 p>3
1— L 1
p—2
I -510-)
3<p<z P p<z

The linear sieve (Lemma 2 with & = 1) gives for Q; = (N/1)/2/(log N/1)*
S(My (1), Pu(D), (N/DMV*) <Qu (1, (N/D)V*) X (e (1 + 0(1))
Z C(“R"(l,d).

d<Qq,d|Py(l)

Using Mertens’ formula and summing over [ € L,, gives

T§(12+0(1))H(1—(p11)2) I (1_1)12>_1H11_p%2

p>2 pl(n=1)n p>3 p
p>3
N l 1/4
Z Zlog N/l Z Z ca iR ( Z O((N/1)™'7)), (7)
leL, €Ly d<Q,d|Pr (1) leL,
where
-1 -1
1 1
- - —-1)=1
I (--5) IO (-55)  fma-n-t
fn(m) = { plmp>2 plm,pin
p>3
0, if (myn—1) > 1.

To evaluate the sum over [ in the main term we need two more lemmata that
correspond to Lemmata 3 and 4 of [12]. The following result follows similarly
to Lemma 3 of [12].

Lemma 6. Let u(m) be the characteristic function of integers whose prime
factors are of the form 4k + 1. Then

Z u(m) fn(m) = mcn +0 (W) ;

m<z

13



where

B NGO WO

p=3 (mod 4) p=1 (mod 4
pln—1
1— L 1-1
11 I i
_ 1 _ 1 -
p=1 (mod 4) P—1 p=1(mod4) p—2

pln

The proof of the following lemma is analogous to Lemma 4 of [12]. The only
change is the use of the previous Lemma in the place of Wu’s Lemma 3.

Lemma 7. Let L,, fo(m), W(a) and C,, be defined as above and let m >
N(log N)~A. Then

_ W(a)Ch +0(1)
Z llogm/l (logm)3/2  ~

By using log(N/l) > log(m/l) for m < N and using the previous lemma for
m > N(log N)~4 arising from M, (1), the first sum over [ in (7) is

Z C,W(a) _ CpuW(a)+o(1)

3/2 —m 1/2
s (logm)3/2log(n — m) (log N)

< (1+0(1) Mnl)
This implies
T < 12C1(n)W(a) + O(l)Mn(1)+ Z Z Cd,an(lad)+Z O((N/l)1/4)'

1/2
(log N) IE€L, d<Qu.d[Py (1) leL

Since |R,(I,d)| < 1ifl € L\ L, or (d,n) > 1, we can change the summation
over [ to go over the set £ and the summation over d to go over d < @y, (d,l) =1
with error < N(log N)~4. Thus the claim follows from Lemma 3 by choosing
there

caq, iflel, (dl)=1and |u(d)| =1,
dg; =
0, else.

7 Proof of the theorem

By (1) and Propositions 4 and 5 we have, for n > i and 1 < a <6,

N
log N)4
e (]
2\2log N \ V2 t—1

t—2+(t—1)log(t —1)
_a/‘z 2t —1)(1—t/a)/? dt>+El(”)—Ez(n),

S('Aa PS,n7 N) 2(1 + 0(1))

14



where 3\ (|E1(n)| + |E2(n)|)* < N3/(log N)*. By evaluating the integrals
with @ = 9/4 and noticing that C1(n) > 1 for n € N, we obtain
M, (1)

S(A o), N) > (o

= |Ei(n)] = [Ea(n)],

which implies the claim as stated in the introduction.
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