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Pentti Haukkanen Jorma K. Merikoski

Abstract

Let l(n) be the number of lines through at least two points of an n × n rect-
angular grid. We prove recursive and asymptotic formulas for it using respectively
combinatorial and number theoretic methods. We also study the ratio l(n)/l(n−1).
All this originates from Mustonen’s experimental results.
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1 Introduction

Let l(n) be the number of lines through at least two points of an n× n rectangular grid.
Sloane’s database ([9], Sequence A018808) mentions an explicit formula

l(n) =
1
2
(f1(n)− f2(n)), (1)

where
fk(n) =

∑
−n<i,j<n

(i,j)=k

(n− |i|)(n− |j|) (2)

and (i, j) denotes the greatest common divisor of i and j. There is no proof reference in
the database but a proof of a generalization to m× n grids can be found in Mustonen’s
paper ([5], Section 3).

One would like to have a closed form expression for l(n) instead of (1) which involves
a double sum and does not in itself tell us much about the behaviour of l(n). Besides,
applying the formula (1) is computationally tedious. This motivated Mustonen [5] to
investigate l(n) experimentally and to state various conjectures concerning its behaviour.
The aim of this paper is to widen the knowledge about l(n) by proving Mustonen’s
conjectures.

We will first, in Section 2, prove recursive formulas for l(n) using combinatorial
arguments. In particular we show that the recursive formulas which Mustonen predicted
in [5, Section 6] indeed hold.
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Next, in Section 3, we will study l(n) asymptotically. Sheng [8] has shown that l(n)
is asymptotically equal to 9n4/(4π2). We will improve the error term in his asymptotic
formula. We will also show that assuming the Riemann hypothesis we obtain a still better
error term which corresponds to Mustonen’s experimental result ([5], Section 4). Our
improvements ultimately depend on known estimates on averages of averages of Euler
φ-function.

Finally, in Section 4, we will study the asymptotic behaviour of the ratio l(n)/l(n− 1).
We will confirm Mustonen’s ([5], Section 4) prediction that the ratio is asymptotically
decreasing unless all the prime factors of n − 1 are large. The proof of this fact utilizes
both recursive and asymptotic formulas for l(n).

Before going further, we introduce some notation. Since we consider only integers,
we write [a, b] = {x ∈ Z | a ≤ x ≤ b}. Given integers m,n ≥ 2, we say that a line l is a
gridline of the rectangular grid G = G(m,n) = [0,m − 1] × [0, n − 1] if it goes through
at least two points of G. We also say that l then lives in G. We write l(m,n) for the
number of these gridlines. In particular l(n, n) = l(n).

2 Recursive formulas for l(n)

We first sketch, how Mustonen ([5], Section 6) experimentally found recursive formulas
for l(n) and l(n− 1, n).

Since G(n) = G(n, n) can be constructed from G(n−1) by adding first a new column
of n−1 points and then a new row of n points, it is natural to look for a relation between
l(n), l(n−1, n) and l(n−1). Consider the data where n = 3, 4, ..., 35. A linear regression
analysis suggests that

l(n) ≈ 2l(n− 1, n)− l(n− 1). (3)

The residuals
r(n) = l(n)− 2l(n− 1, n) + l(n− 1)

are strictly increasing except for every fourth n where the same value appears twice. This
motivates to study differences

r(n)− r(n− 1).

Indeed Mustonen found a simple representation for this difference (which is (6) below).
To make (4) practically applicable, a recursive formula must be found also for l(n−

1, n). Mustonen studied this as well and found analogously to (3) that

l(n− 1, n) ≈ 2l(n− 1, n− 1)− l(n− 2, n− 1).

He also found a formula for

s(n) = l(n− 1, n)− 2l(n− 1, n− 1) + l(n− 2, n− 1)

(see (8) below).
We will rigorously prove the following theorem which shows that Mustonen’s experi-

mental formulas indeed hold for all n ≥ 2.
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Theorem 1. For all n ≥ 2,

l(n) = 2l(n− 1, n)− l(n− 1) + r(n), (4)
l(n− 1, n) = 2l(n− 1)− l(n− 2, n− 1) + s(n). (5)

Here
r(n) = r(n− 1) + 4(φ(n− 1)− e(n)), (6)

e(n) =

{
0 if n is even,
φ(n−1

2 ) if n is odd,

or explicitly

r(n) = 4
n−1∑
i=1

φ(i)− 4
bn−1

2 c∑
i=1

φ(i) = 4
n−1∑

i=bn+1
2 c

φ(i), (7)

and

s(n) =


(n− 1)φ(n− 1) if n is even,
1
2 (n− 1)φ(n− 1) if n ≡ 1 (mod 4),
0 if n ≡ 3 (mod 4),

(8)

and l(0) = l(0, 1) = r(1) = 0 and l(1) = 1.

Proof. First, we prove (4). Let us call

3-lines of G(n) the lines through exactly three points of G(n) = [0, n−1]×[0, n−1],
one of them in [1, n− 1]× {0} and one in {0} × [1, n− 1],

2-lines of G(n) the lines through exactly two points of G(n), located in the bound-
aries of G(n) as above, and

1-lines of G(n) the lines through the origin and exactly one other point of G(n).

To find l(n) recursively, we first add the numbers of lines living in [1, n − 1]× [0, n − 1]
and, respectively, in [0, n−1]× [1, n−1]. The result is 2l(n−1, n), but certain lines have
been counted twice, namely

the l(n− 1) lines living in [1, n− 1]× [1, n− 1]

and

the 3-lines in G(n); let their number be r3(n).

On the other hand, the 2- and 1-lines of G(n) have been ignored; let their numbers be
respectively r2(n) and r1(n). In conclusion, we have

l(n) = 2l(n− 1, n)− l(n− 1)− r3(n) + r2(n) + r1(n). (9)

We still have to find recursive formulas for r1, r2 and r3.
Let us study r3(n). All 3-lines in G(n−1) are 3-lines also in G(n). So we obtain r3(n)

by adding to r3(n−1) the number of those 3-lines in G(n) that go through P = (0, n−1)
or Q = (n− 1, 0).
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If n is even, consider a line l = PS or l = QT where S ∈ [0, n − 1] × {0}, T ∈
{0} × [0, n − 1]. Then l meets G(n) at even number of points, and so it is not a 3-line.
Hence r3(n) = 0.

Now assume that n is odd. A line l = PS is a 3-line if and only if it meets G(n) at a
point Ml = (ml,

n−1
2 ) where ml ∈ {1, ..., n−1

2 } satisfies gcd (ml,
n−1

2 ) = 1. The number
of such lines is the number of the ml’s, that is φ(n−1

2 ). Since there are also φ(n−1
2 )

3-lines QT , we have r3(n) = 2φ(n−1
2 ).

In all,

r3(n) = r3(n− 1) +

{
0 if n is even,
2φ(n−1

2 ) if n is odd.
(10)

Using similar ideas, it can be shown that

r2(n) = r2(n− 1) + 2φ(n− 1) (11)

and

r1(n) = r1(n− 1) + 2φ(n− 1)−

{
0 if n is even,
2φ(n−1

2 ) if n is odd.
(12)

Substituting (10), (11), and (12) in (9), we obtain (4).
Second, we prove (5). Consider G(n, n−1) = [0, n−1]× [0, n−2]. To find l(n− 1, n)

recursively, we first add the numbers of lines living in G(n−1) and, respectively, in [1, n−
1]× [0, n− 2]. The result is 2l(n− 1), but the following lines have been counted twice:

the l(n− 2, n− 1) lines living in [1, n− 2]× [0, n− 2]

and

the lines going through a point P ∈ {0}× [0, n− 2], a point Q ∈ {n− 1}× [0, n− 2]
and exactly one other point of G(n, n− 1); let their number be s2(n).

On the other hand, such lines PQ that do not meet G(n, n− 1) in any other point have
been ignored; let their number be s1(n). Now

l(n− 1, n) = 2l(n− 1)− l(n− 2, n− 1)− s2(n) + s1(n). (13)

Let us study s1(n). Choose first P = (0, i). The point Q = (n − 1, j) applies if and
only if (i − j, n − 1) = 1. Since the number of such Q’s is φ(n − 1), there are φ(n − 1)
acceptable lines through P . Because P can be chosen in n− 1 ways, we have

s1(n) = (n− 1)φ(n− 1). (14)

A similar reasoning gives

s2(n) =

{
0 if n is even,
(n− 1)φ(n−1

2 ) if n is odd.
(15)

Now (5) follows by substituting (15) and (14) in (13).
Finally, we note that (7) can be shown simply by solving r(n) from the recursive

equation (6) with initial condition r(1) = 0.
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We now unite (4) and (5) into a single recursive formula for l(n) only.

Theorem 2. For all n ≥ 2,

l(n) = l(n− 1) + 2
n∑

i=1

s(i) + 2
n−1∑
i=1

r(i) + r(n). (16)

Proof. By adding (4) and (5), we obtain

l(n) = l(n− 1) + l(n− 1, n)− l(n− 2, n− 1) + r(n) + s(n),

and further, replacing n with n− 1, n− 2, ..., 2 gives

l(n) = l(n− 1, n) +
n∑

i=1

(r(i) + s(i)). (17)

On the other hand, by (4),

l(n− 1) = 2l(n− 2, n− 1)− l(n− 2) + r(n− 1).

Adding this to (5) and proceeding as above yields

l(n− 1, n) = l(n− 1) + l(n− 2, n− 1)− l(n− 2) + r(n− 1) + s(n),

and further

l(n− 1, n) = l(n− 1) +
n−1∑
i=1

r(i) +
n∑

i=1

s(i). (18)

Substituting (18) into (17) gives (16).

3 An asymptotic formula for l(n)

Asymptotic behaviour of l(n) has been studied by Sheng [8]. His more general Lemma 7
implies the following result.

Theorem 3. For all n ≥ 2,

l(n) =
3n4

8ζ(2)
+ O(n3 log n) =

9n4

4π2
+ O(n3 log n). (19)

Here ζ(s) denotes Riemann’s zeta function.

In this paper we are able to improve the error term as follows.

Theorem 4. Let n ≥ 2. Then

l(n) =
9n4

4π2
+ O(n3 exp(−A(log n)

3
5 (log log n)−

1
5 ))

for certain constant A > 0. Assuming the Riemann hypothesis we have

l(n) =
9n4

4π2
+ O(n

5
2+ε) (20)

for any ε > 0.
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Based on his experiments, Mustonen ([5], Section 4) has predicted earlier that (20)
indeed holds.

We prove Theorem 4 using the presentation (1) for l(n), so we study fk(n) defined
by (2). We need the following elementary lemma (which is [1, Exercise 2.16]).

Lemma 5. For all n ≥ 2,
n∑

i=1
(i,n)=1

i = 1
2nφ(n).

Proof. Simply note that

2
n∑

i=1
(i,n)=1

i =
n∑

i=1
(i,n)=1

i +
n∑

i=1
(i,n)=1

(n− i) =
n∑

i=1
(i,n)=1

n = nφ(n).

Now we are able to dispose of the double summation in (2).

Lemma 6. Let k ≥ 1. For all n ≥ 2,

fk(n + 1) = 8
bn/kc∑
i=1

(n + 1− ki)(n + 1− ki
2 )φ(i)

Proof. We have

fk(n + 1) =
∑

−n≤i,j≤n
(i,j)=k

(n + 1− k|i|)(n + 1− k|j|)

= 4
∑

1≤i,j≤bn/kc
(i,j)=1

(n + 1− ki)(n + 1− kj) + 4(n + 1− k)(n + 1)

= 8
bn/kc∑
i=2

(n + 1− ki)
i∑

j=1
(j,i)=1

(n + 1− kj)

+ 4(n + 1− k)2 + 4(n + 1− k)(n + 1).

By Lemma 5 we see that

fk(n + 1) = 8
bn/kc∑
i=2

(n + 1− ki)(n + 1− ki
2 )φ(i) + 4(n + 1− k)(2n + 2− k)

= 8
bn/kc∑
i=1

(n + 1− ki)(n + 1− ki
2 )φ(i).
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Next we apply the partial summation formula

N∑
i=1

aibi =
( N∑

i=1

ai

)
bN −

N−1∑
i=1

( i∑
j=1

aj

)
(bi+1 − bi) (21)

to reach sums

Φ(k) =
k∑

i=1

φ(i).

Lemma 7. For all n ≥ 2,

f1(n + 1) = 4(n + 2)
n∑

i=1

Φ(i) + 8
n−1∑
i=1

i∑
j=1

Φ(j). (22)

If n is odd, then

f2(n + 1) = 8(n + 3)

n−1
2∑

i=1

Φ(i) + 32

n−3
2∑

i=1

i∑
j=1

Φ(j). (23)

If n is even, then

f2(n + 1) = 4(n + 2)Φ( 1
2n) + 8(n + 5)

n
2−1∑
i=1

Φ(i) + 32

n
2−2∑
i=1

i∑
j=1

Φ(j). (24)

Proof. By Lemma 6

f1(n + 1) = 8
n+1∑
i=1

(n + 1− i)(n + 1− 1
2 i)φ(i).

To show (22), we start by applying partial summation (21) with

N = n + 1, ai = φ(i), bi = (n + 1− i)(n + 1− 1
2 i).

This gives

f1(n + 1) = −8
n∑

i=1

{(n− i)[n + 1− 1
2 (i + 1)]− (n + 1− i)(n + 1− 1

2 i)}Φ(i)

= 8
n∑

i=1

( 3
2n− i + 1)Φ(i).

Then we apply partial summation (21) with

N = n, ai = Φ(i), and bi = 3
2n− i + 1
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getting

f1(n + 1) = 8( 1
2n + 1)

n∑
i=1

Φ(i)− 8
n−1∑
i=1

(−1)
i∑

j=1

Φ(j)

= 4(n + 2)
n∑

i=1

Φ(i) + 8
n−1∑
i=1

i∑
j=1

Φ(j).

Similarly, for even n, we get

f2(n + 1) = 8

n
2∑

i=1

(n + 1− 2i)(n + 1− i)φ(i)

= 8(n
2 + 1)Φ(n

2 ) + 8

n
2−1∑
i=1

(3n− 4i + 1)Φ(i)

= 4(n + 2)Φ(n
2 ) + 8(n + 5)

n
2−1∑
i=1

Φ(i) + 8 · 4
n
2−2∑
i=1

i∑
j=1

Φ(j).

The case of odd n can be handled analogously.

Remark 8. Lemma 7 would also follow from Theorem 2. However we have decided to
take a more analytic path in proving the asymptotic formula.

Let us now define

EΦ(n) = Φ(n)− 3n2

π2
. (25)

At this point we would get Sheng’s result (Theorem 3) by applying the following classical
result (see e.g. [4], § I.21).

Lemma 9. For all n ≥ 2,
EΦ(n) = O(n log n).

This has been improved and so we could already reach a refinement of Theorem 3.

Lemma 10 (Walfisz [12], p. 144, Satz 1). For all n ≥ 2,

EΦ(n) = O(n(log n)
2
3 (log log n)

4
3 ).

Saltykov [7] presented a sharper formula but its correctness was controversial; see [2],
p. 314. Finally Pétermann ([6], Section 5) falsified it.

To continue our journey toward proof of Theorem 4, we consider averages of averages
of Euler φ-function. To this end we define

ER(n) =
n∑

i=1

EΦ(i)− 3n2

2π2
.

Next we express f1 and f2 using EΦ and ER.
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Lemma 11. For all n ≥ 2,

f1(n + 1) =
6
π2

(n + 1)4 + 4(n + 2)ER(n) + 8
n−1∑
i=1

ER(i) + O(n2).

If n is odd, then

f2(n + 1) =
3

2π2
(n + 1)4 + 8(n + 3)ER(

n− 1
2

) + 32

n−3
2∑

i=1

ER(i) + O(n2).

If n is even, then

f2(n + 1) =
3

2π2
(n + 1)4 + 8(n + 5)ER( 1

2n− 1)

+ 32

n
2−2∑
i=1

ER(i) + 4(n + 2)EΦ( 1
2n) + O(n2).

Proof. By definitions of EΦ(n) and ER(n) we have

K∑
k=1

Φ(k) =
K∑

k=1

(
3k2

π2
+ EΦ(k)

)
=

3
π2

· K(K + 1)(2K + 1)
6

+
3K2

2π2
+ ER(K)

=
K3 + 3K2

π2
+ ER(K) + O(K)

and
L∑

l=1

l∑
k=1

Φ(k) =
L∑

l=1

(
l3 + 3l2

π2
+ ER(l) + O(l)

)

=
L2(L + 1)2

4π2
+

L(L + 1)(2L + 1)
2π2

+
L∑

l=1

ER(l) + O(L2)

=
L4 + 6L3

4π2
+

L∑
l=1

ER(l) + O(L2).

The claims follow by substituting these into Lemma 7.

Replacing n with n− 1, we have the following

Theorem 12. Let n ≥ 3. Define El(n) by

l(n) =
9n4

4π2
+ El(n). (26)

If n is even, then

El(n) = 2(n + 1)ER(n− 1)− 4(n + 2)ER( 1
2n− 1)

− 12

n
2−2∑
i=1

ER(i) + 4
n−2∑

i= n
2−1

ER(i) + O(n2).
(27)
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If n is odd, then

El(n) = 2(n + 1)ER(n− 1)− 4(n + 4)ER(
n− 3

2
)

− 12

n−5
2∑

i=1

ER(i) + 4
n−2∑

i= n−3
2

ER(i)− 2(n + 1)EΦ(
n− 1

2
) + O(n2).

(28)

In a sense, (26), (27) and (28) together give the best possible asymptotic formula
for l(n). But to apply it in practice requires knowledge about EΦ and ER. We already
mentioned results concerning EΦ. Next lemma gives us the necessary information about
ER.

Lemma 13. Let n ≥ 2. Then

ER(n) = O(n2 exp[−A(log n)
3
5 (log log n)−

1
5 ])

for certain constant A > 0. Furthermore,

ER(n) = O(n
3
2+ε)

for all ε > 0 if and only if the Riemann hypothesis is true.

Proof. The first result is due to Suryanarayana and Sitaramachandra Rao [11, eq. (1.11)].
The if-part of the second claim was proved by Suryanarayana [10, eq. (3.41)] (there should
be 2π2 instead of π2 there). The converse was shown to hold by Codecà [3].

Now we can turn to El. By Theorem 12,

El(n) = O

(
max
m≤n

(n|ER(m)|+ n|EΦ(m)|) + n2

)
.

Theorem 4 follows now from Lemmas 9 and 13.
Conversely, does (20) imply the Riemann hypothesis? This would give an interesting

geometric characterization of the Riemann hypothesis. Techniques used in [3] are likely
to work also in this case.

4 The ratio l(n)/l(n− 1)

Mustonen ([5], Section 4) showed experimentally that the function l(n)
l(n−1) is asymptoti-

cally decreasing unless all the prime factors of n− 1 are large. We prove this conjecture:

Theorem 14. If
l(n)

l(n− 1)
>

l(n− 1)
l(n− 2)

, (29)

then n is even and
φ(n− 1)

n
>

9
π2

+ o(1). (30)
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Let p1, ..., pk be the distinct prime factors of n− 1. Then,

φ(n− 1)
n

≈ φ(n− 1)
n− 1

=
(

1− 1
p1

)
· · ·

(
1− 1

pk

)
,

and so (30) is asymptotically equivalent with(
1− 1

p1

)
· · ·

(
1− 1

pk

)
>

9
π2

.

of Theorem 14. Consider the difference

l(n)
l(n− 1)

− l(n− 1)
l(n− 2)

=
l(n)l(n− 2)− l(n− 1)2

l(n− 2)l(n− 1)
.

As the denominator is positive, it is enough to study the numerator. By Theorem 2,

l(n)− l(n− 1) = l(n− 1)− l(n− 2) + 2s(n) + r(n− 1) + r(n).

Hence

l(n)l(n− 2)− l(n− 1)2 = l(n)(l(n− 2)− l(n− 1)) + l(n− 1)(l(n)− l(n− 1))

= l(n)(2s(n) + r(n− 1) + r(n))− (l(n)− l(n− 1))2.

To continue, notice that (7) and (25) imply r(n) = 9n2

π2 + O(EΦ(n)), and so

r(n− 1) + r(n) =
18n2

π2
+ O(|EΦ(n)|+ |EΦ(n− 1)|).

Also, we have

l(n)− l(n− 1) =
9n3

π2
+ O(|El(n)|+ |El(n− 1)|).

Consequently,

l(n)(2s(n) + r(n− 1) + r(n))− (l(n)− l(n− 1))2 = − 81
2π4 n6 + 9

2π2 n4s(n)

+ O(n4 (|EΦ(n)|+ |EΦ(n− 1)|)) + O(n3(|El(n)|+ |El(n− 1)|))
+ O((|EΦ(n)|+ |EΦ(n− 1)|)El(n)) + O(El(n)2 + El(n− 1)2).

We know from Section 3 that

EΦ(n)n4, El(n)n3, EΦ(n)El(n), El(n)2 = o(n6),

so (29) can hold only if the main term is > −o(n6). If n is even, substituting s(n) =
(n− 1)φ(n− 1) = nφ(n− 1) + O(n) we get the asymptotic condition:

φ(n− 1)
n

>
9
π2

.

On the other hand, if n is odd, then s(n) = 1
2 (n − 1)φ(n − 1) or = 0 depending on

the residue of n modulo 4. Asymptotically, the condition never holds as

9
π2

>
φ(n− 1)

2n
.

Experiments also falsify (29) for small odd values of n.
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