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Abstract

We prove that, for any ε > 0, there exist a constant C > 0 such that
the interval [x, x + C

√
x] contains numbers whose all prime factors are

smaller than x1/(5
√

e)+ε.

1 Introduction

Let ψ(A, y) denote the number of y-smooth integers in the set A ⊂ [x, 2x]. With
y-smooth integer we mean an integer whose all prime factors are at most y. For
a typical set A, one would expect that

ψ(A, y) ≈ |A|
x
ψ([x, 2x], y). (1)

Besides being of theoretical interest, smooth numbers play a prominent role
in computational number theory. For such applications, see for instance the
recent survey [5]. The interval A = [x, x +

√
x] arises in many cases. Harman

[6] has shown that
ψ([x, x+

√
x], y) � x1/2

for y = x1/(4
√

e). He also gave a result for slightly shorter intervals.
When the length of the interval is greater than

√
x, powerful Dirichlet poly-

nomial methods can be applied. Friedlander and Granville [4] used them to
show that (1) holds for A = [x, x+ z] with

exp((log x)5/6+o(1)) ≤ y ≤ x and
√
xy2 exp((log x)1/6) ≤ z ≤ x.

For intervals of length �
√
x such small values of y seem to be a distant

target. However some progress has been made: Recently Croot [2] proved that
there exists a constant C = C(ε) such that

ψ([x, x+ C
√
x], x47/(190

√
e)+ε) >

√
x(log x)− log 4−o(1)
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for all sufficiently large x. Notice that 47/190 ≈ 0.247, so this slightly improves
the smoothness parameter y in Harman’s result at the cost of a bit longer interval
and a lower bound which is not of the expected order. In this paper we show
how Croot’s new approach can be refined to get the following result.

Theorem 1.1. Let ε > 0. There exists a constant C = C(ε) such that

ψ([x, x+ C
√
x], x1/(5

√
e)+ε) >

√
x(log x)− log 4−o(1)

for all sufficiently large x.

The improvement comes from taking advantage of a result on sums over
arithmetic progressions in [1].

2 Proof of Theorem 1.1

First we introduce some notation. Let δ be a small positive constant,

Z = [(1 + δ)−1
√
x, (1 + δ)

√
x] ∩ Z,

D = {p1p2p3 | pi ∈ [x1/10−ε/5, x1/10−ε/10]},

and
h(n) = |{q ∈ D | q | n}|.

The expected value of h(n) over n ∈ Z is

E(h) =
1
|Z|

∑
n∈Z

h(n) =
1
|Z|

∑
q∈D

(
|Z|
q

+O(1)
)

=
∑
q∈D

1
q

+O

(
|D|
|Z|

)
� ε3.

We will show that h behaves in expected manner in almost all very short
intervals.

Lemma 2.1. For δ ∈ (0, δ0(ε)) and k > k0(ε, δ), we have

V =
∑
z∈Z

 ∑
n∈[z,z+k]

h(n)− (k + 1)E(h)

2

≤ δ2E(h)2(k + 1)2|Z|

for all sufficiently large x.

This means that for most z ∈ Z, the interval [z, z + k] contains about ex-
pected number of integers that are divisible by a member of D. These are
automatically x1/2−3/10+3ε/5 = x1/5+3ε/5-smooth. However, in considerations
of smooth numbers it is often possible to reduce the smoothness parameter by
the factor 1/

√
e, which is the case also here. Indeed, by the method of [2, Sec-

tion 2.4], Lemma 2.1 implies that at least (δ + δ2)
√
x of the integers z ∈ Z

satisfy
ψ([z, z + k], x1/(5

√
e)+ε) > 0. (2)
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Now we know that a bit more than a half of the integers z ∈ Z satisfy (2). As
shown in [2, Section 2.2], this immediately implies that there are � x1/2 pairs
z1, z2 satisfying (2) such that z2 = dx/z1e. Then (z1 + j1)(z2 + j2) ∈ A and
is y-smooth for some j1, j2 ∈ {1, 2, . . . , k}. As in [2, Section 2.1], this implies
Theorem 1.1. Hence we only need to prove Lemma 2.1.

Proof of Lemma 2.1. Squaring out, we see that

V =
∑
z∈Z

 ∑
n∈[z,z+k]

h(n)

2

− 2(k + 1)E(h)
∑
z∈Z

∑
n∈[z,z+k]

h(n) + (k + 1)2E(h)2|Z|

=
∑
z∈Z

 ∑
n∈[z,z+k]

∑
q∈D
q|n

1


2

− (k + 1)2E(h)2|Z|+O(k)

= 2
k∑

j=1

(k + 1− j)
∑

q,q′∈D

∑
n∈Z

q|n,q′|n+j

1− (k + 1)2E(h)2|Z|+O(k|Z|).

Hence we need to consider the sum∑
q∈D

∑
q′∈D

∑
dq∈Z

dq≡−j (mod q′)

1. (3)

The dependence dq ∈ Z between d and q can be removed by splitting summa-
tions to short ranges as in [2, Section 2.5].

At this stage Croot handles the congruence condition using a finite Fourier
transform and then applying the bound [3, Theorem 2] on bilinear forms with
Kloosterman fractions.

However, sums of the type (3) have been studied in a greater depth in a series
of papers by Bombieri, Friedlander and Iwaniec. In our situation [1, Theorem
5] is applicable. Letting q′ = p′1p

′
2p
′
3, we can take n = q, r = p′1 and q = p′2p

′
3 in

that theorem. Then∑
q∈D

∑
q′∈D

∑
dq∈Z

dq≡−j (mod q′)

1 =
∑
q∈D

∑
q′∈D

1
φ(q)

∑
dq∈Z

(dq,q′)=1

1 +O(|Z|(log x)−A)

= (1 + oε,δ(1))E(h)2|Z|.

Hence
V = oε,δ((k + 1)2E(h)2|Z|) +O(k|Z|).

This finishes the proof of Lemma 2.1 and therefore that of Theorem 1.1.
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