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Abstract

We prove that, for any € > 0, there exist a constant C' > 0 such that
the interval [z, z 4+ C+/z| contains numbers whose all prime factors are
smaller than z'/GVe+e,

1 Introduction

Let (A, y) denote the number of y-smooth integers in the set A C [z, 2x]. With
y-smooth integer we mean an integer whose all prime factors are at most y. For
a typical set 4, one would expect that

0 9) ~ A, 20] ). )

Besides being of theoretical interest, smooth numbers play a prominent role
in computational number theory. For such applications, see for instance the
recent survey [5]. The interval A = [z,x + /] arises in many cases. Harman
[6] has shown that

(o, + Valy) > 22

for y = 2'/(4V®)_ He also gave a result for slightly shorter intervals.

When the length of the interval is greater than /x, powerful Dirichlet poly-
nomial methods can be applied. Friedlander and Granville [4] used them to
show that (1) holds for A = [z, + z] with

exp((logz)®/t°My <y <2 and Vay?exp((logz)'/®) < z < z.

For intervals of length < /2 such small values of y seem to be a distant
target. However some progress has been made: Recently Croot [2] proved that
there exists a constant C' = C(¢) such that

([, 2+ OV, a OOV > /r(loga) et
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for all sufficiently large 2. Notice that 47/190 = 0.247, so this slightly improves
the smoothness parameter y in Harman’s result at the cost of a bit longer interval
and a lower bound which is not of the expected order. In this paper we show
how Croot’s new approach can be refined to get the following result.

Theorem 1.1. Let € > 0. There exists a constant C' = C/(e) such that
Y([e,x + CVa), ot OVIT) > (logx) ~lost o)
for all sufficiently large x.

The improvement comes from taking advantage of a result on sums over
arithmetic progressions in [1].

2 Proof of Theorem 1.1

First we introduce some notation. Let § be a small positive constant,

Z=[(1+06)"Va, (1 + VAl N Z,

D = {pipaps | pi € [a1/107¢/5 g1/10=¢/10}

)

and
h(n)=1[{g€ D | q|n}

The expected value of h(n) over n € Z is

s s s (12 oy o Lo (P 5w
B0 = 177 2, M) |Z|q€ZD(q+O(”> > Lro(im) >

qeD

We will show that h behaves in expected manner in almost all very short
intervals.

Lemma 2.1. For ¢ € (0,00(€)) and k > ko(e,d), we have

2

V=> [ > hm)-((k+DEM) | <PEMR)(k+1)Z]

2€Z \n€(z,z+k]
for all sufficiently large x.

This means that for most z € Z, the interval [z, z + k] contains about ex-
pected number of integers that are divisible by a member of D. These are
automatically z1/273/1043¢/5 — 21/5+3¢/5_gmooth. However, in considerations
of smooth numbers it is often possible to reduce the smoothness parameter by
the factor 1/4/e, which is the case also here. Indeed, by the method of [2, Sec-
tion 2.4], Lemma 2.1 implies that at least (§ + 62)\/z of the integers z € Z
satisfy

U([z, 2 + k], 2/ OVO+e) > 0, (2)



Now we know that a bit more than a half of the integers z € Z satisfy (2). As
shown in [2, Section 2.2], this immediately implies that there are > z'/? pairs
21, #2 satisfying (2) such that zo = [z/z1]. Then (21 + j1)(22 + j2) € A and
is y-smooth for some ji,jo € {1,2,...,k}. As in [2, Section 2.1], this implies
Theorem 1.1. Hence we only need to prove Lemma 2.1.

Proof of Lemma 2.1. Squaring out, we see that
2

V=>"| > hm)| —2k+DEMR)Y . D h(n)+ (k+1)’E(h)*|Z]
2€Z \n€lz,z+k] 2€Z n€(z,2+k]

=S Y S| -k +1)%EMm?Z]+ Ok)

z2€Z \ n€lz,z+k] q€D

qln
k
=23 (k+1-4) > > 1= (k+1)’E(h)Z|+O(k|Z]).
j=1 q,9'€D  nEZ

aln,q'|n+j

Hence we need to consider the sum

> oL (3)

geD qg'eD dq€Z
dgq=—j (mod q’)
The dependence dq € Z between d and ¢ can be removed by splitting summa-
tions to short ranges as in [2, Section 2.5].

At this stage Croot handles the congruence condition using a finite Fourier
transform and then applying the bound [3, Theorem 2] on bilinear forms with
Kloosterman fractions.

However, sums of the type (3) have been studied in a greater depth in a series
of papers by Bombieri, Friedlander and Iwaniec. In our situation [1, Theorem
5] is applicable. Letting ¢’ = p|phps, we can take n = ¢, r = p} and ¢ = php% in
that theorem. Then

XYY =YY o 3 1+ 0(Zitesn)

qeD q’eD dqeZ qeD q’eD dqeZ
dg=—j (modq’) (dg,q")=1

= (1+ 0c5(1)E(h)*| Z].
Hence
V = 0cs((k +1)?E(h)*|Z]) + O(k| Z)).
This finishes the proof of Lemma 2.1 and therefore that of Theorem 1.1. O
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