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Abstract

We prove that, for any irrational number α, there are infinitely many primes p such that
‖αp‖ < p−1/3+ε . Here ‖y‖ denotes the distance from y to the nearest integer. The proof uses
Harman’s sieve method with arithmetical information coming from bounds for averages of
Kloosterman sums.

1. Introduction

Let α be an irrational number and let ‖y‖ denote the distance from y to the nearest integer.
In this paper we will investigate when the Diophantine inequality

‖αp + β‖ < p−τ

has infinitely many prime solutions p for β = 0. We prove the following theorem.

THEOREM 1. Let ε > 0 and τ = 1/3 − ε. Then there exist infinitely many primes p such
that

‖αp‖ < p−τ . (1·1)

The first result of this form was obtained by Vinogradov [12] with the exponent −1/5+ ε

and the latest published result is the exponent −16/49 + ε due to Heath–Brown and Jia [7].
Mikawa has claimed a proof of −1/3 using a different method (see [9]) but it has never been
published.

We start by defining a set whose prime elements satisfy (1·1). Let a/q be a convergent to
the continued fraction for α with a large enough denominator. Let

x = q2/(1+τ) and R = x (1−τ)/2,

so that q = x2/3−ε/2 and R = x1/3+ε/2.
We write

A = {n | x < n � 2x, (n, q) = 1, an ≡ r (mod q) for some r ∈ [1, 3R]}. (1·2)

If n ∈ A, then

‖αn‖ �
∥∥∥∥
(

α − a

q

)
n

∥∥∥∥ +
∥∥∥∥a

q
n

∥∥∥∥ � 2x

q2
+ 3R

q
� n−τ ,
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so it is enough to find a non-trivial lower bound for the number of primes in A. To this end
we will use Harman’s sieve method. Actually Harman introduced his sieve method while
considering the current problem in [2], where he proved the theorem with the exponent
−3/10. He further developed the sieve method in [3] leading to the exponent −7/22. For a
comprehensive account of Harman’s sieve method, see [4].

When we apply the sieve method in Section 5, we need information about the sum∑
mn∈A

m∼M,n∼N

a(m)b(n), (1·3)

where the coefficients are supported on integers that are co-prime to q. The notation m ∼ M
means that M < m � 2M . We will also use the notation m � M to indicate that cM <

m < C M for some positive constants c and C .
We write B = (x, 2x] � N. Then one would expect that (1·3) is asymptotically equivalent

to
3R

q

∑
mn∈B

m∼M,n∼N

a(m)b(n). (1·4)

We will assume that all the coefficient a(m), b(n), . . . are bounded. The sequences in
Section 5 are actually only divisor-bounded, so that the coefficients are � xη. However, this
makes no difference since in all asymptotic formulae that we use the order of the error term
is x−δ times the main term and we can take η < cδ for a very small positive constant c.

We call sums in which one of the coefficients is the characteristic function of an interval
type I sums. Here and later the characteristic function is taken to be supported only on
integers that are co-prime to q. Such conditions can be handled using Möbius inversion.
Sums with arbitrary coefficients are called type II sums.

A classical way to show an asymptotic formula relating (1·3) to (1·4) is to use a Fourier
expansion to transfer the problem to that of considering the exponential sum

H∑
h=1

∣∣∣∣∣
∑

mn∈B
a(m)b(n)e(αhmn)

∣∣∣∣∣ . (1·5)

All the results, until Heath–Brown’s and Jia’s work [7], were based on Vinogradov’s estim-
ates on these trigonometric type I and type II sums.

The advantage of methods depending only on estimates on (1·5) is that the results hold
for arbitrary β ∈ R. Vaughan’s arguments in [11] lead to the following type I and type II
information.

LEMMA 2. There exists C > 0 such that for any δ > 0∑
mn∈A

m∼M,n∼N

a(m)b(n) = 3R

q

∑
mn∈B

m∼M,n∼N

a(m)b(n) + O(x1−τ−2δ) (1·6)

for x2τ+Cδ � M � x1−τ−Cδ.

LEMMA 3. Let I be a subinterval of [N , 2N ]. Assume that

b(n) =
{

1 if n ∈ I and (n, q) = 1,

0 otherwise.

Then there exists C > 0 such that (1·6) holds for M � x1−τ−Cδ.
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The problem with the type II information coming from Lemma 2 is that it disappears as
τ approaches 1/3. Our methods will not give much more genuine type II information but
instead we have results for tri-linear sums, that is sums with

a(m) =
∑
m=yz

y∼Y,z∼Z

c(y)d(z). (1·7)

Heath–Brown and Jia reduced showing (1·6) to estimation of sums with Kloosterman
fractions and used a result from the geometry of numbers to prove the following type II
result [7, lemma 6].

LEMMA 4. Let

N � q and Y 5 Z 5(Y + Z) � x2.

Then (1·6) holds.

We will follow Heath–Brown and Jia’s approach, but use estimates on averages of
Kloosterman sums from [1] to get more type I and type II information. Our results es-
sentially supersede other new arithmetical information obtained by Heath–Brown and
Jia.

2. Reduction of the problem

In the introduction we simplified matters a bit. Indeed we need to add some smooth
weights in order to use results on averages of Kloosterman sums.

Definition 5. We call a function f (x) a test function on interval [X, 2X ] if f (x) ∈ [0, 1]
for all x ,

f (x) =
⎧⎨
⎩

1 if x ∈ [X, 2X ],
0 if x � [X/2, 3X ],

f (x) is smooth and its derivatives satisfy f ( j)(x) � X− j . The definiton is extended to
multivariable functions in an obvious way.

Let h(r) be a test function on [R, 2R]. We modify the definion of A in (1·2) a bit by
letting each element of A to be counted with weight h(r). Then we would expect that (1·3)
is asymptotically equivalent to

ĥ(0)

q

∑
mn∈B

m∼M,n∼N

a(m)b(n),

where

ĥ(x) =
∫ ∞

−∞
h(y)e(xy) dy

is the Fourier transform of h(r). Lemmas 2, 3 and 4 can be easily modified to this situation
using partial summation.

In this section we reduce the problem of getting an asymptotic formula into the problem
of bounding certain exponential sums. In the following proposition and later we write η
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and δ for small enough positive constants satisfying η < δ < ε. The constant η is not
necessarily the same at each occurrence. Further, for complex coefficients a(m) means the
complex conjugate, but for summation variables and other integers m usually means the
multiplicative inverse.

PROPOSITION 6. Define

�2 =
∑

m ′
1,m

′
2∼M ′

(m ′
1,m

′
2)=1

|μ(βm ′
1m ′

2)|=1

a(ρm ′
1)a(ρm ′

2)
∑
|k|∼K
|l|∼L

g(|k|, |l|, m ′
1, m ′

2)e

(−qklm2′

m ′
1

)
.

Assume that M, N � q and that for any positive integer ρ = βd2 � M we have for
M ′ = M/ρ, K � M ′1+η/R and L � 10RM ′/q the bound

�2 � M ′2x
1−3τ

2 −5δ (2·1)

whenever g(k, l, m ′
1, m ′

2) is a smooth function supported on [K , 2K ]×[L , 2L]×[M ′, 2M ′]×
[M ′, 2M ′] satisfying

∂ j1+ j2+ j3+ j4 g

∂k j1∂l j2∂m ′ j3
1 ∂m ′ j4

2

� x ( j1+ j2)η K − j1 L− j2 M ′− j3− j4 for ji � 0.

Then ∑
mn∈A

m∼M,n∼N

a(m)b(n) = ĥ(0)

q

∑
mn∈B

m∼M,n∼N

a(m)b(n) + O(x1−τ−2δ). (2·2)

Remark 7. The proof of the proposition can be easily modified to show that a similiar
claim holds if the summation condition |μ(βm ′

1m ′
2)| = 1 is replaced by |μ(β ′z′

1z′
2)| = 1.

Some modifications to the statement are necessary, but they are obvious from the proof.
For instance a(ρm ′

i) in �2 have to be replaced by c(ρYi y
′
i ) and d(ρZi z

′
i) by ρYi � Y and

ρZi � Z .

Proof of the proposition. We start by writing

�1 =
∑

mn∈A
m∼M,n∼N

a(m)b(n) − ĥ(0)

q

∑
mn∈B

m∼M,n∼N

a(m)b(n)

=
∑

d�2M1/2

∑
m∼M/d2

|μ(m)|=1

∑
n∼N

a(md2)b(n)

(
�(md2, n) − ĥ(0)

q

)
,

where

�(m, n) =
∑

r≡amn (mod q)

h(r).

Here we have eliminated the condition mn ∼ x that can be done by Perron’s formula.
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Following Heath–Brown and Jia [7, section 3] we use the dispersion method. By the
Cauchy–Schwarz inequality

|�1|2 � N
∑
n∼N

∑
d�2M1/2

d1+η

∣∣∣∣∣∣∣∣
∑

m∼M/d2

|μ(m)|=1

a(md2)

(
�(md2, n) − ĥ(0)

q

)∣∣∣∣∣∣∣∣

2

� N
∑

d�2M1/2

d1+η
∑

n (mod q)

∣∣∣∣∣∣∣∣
∑

m∼M/d2

|μ(m)|=1

a(md2)

(
�(md2, n) − ĥ(0)

q

)∣∣∣∣∣∣∣∣

2

= N
∑

d�2M1/2

d1+η
∑

mi ∼M/d2

|μ(mi )|=1

a(m1d2)a(m2d2)

(∑
n (q)

�(m1d2, n)�(m2d2, n)

−
∑
n (q)

�(m1d2, n)
ĥ(0)

q
−

∑
n (q)

�(m2d2, n)
ĥ(0)

q
+

∑
n (q)

ĥ(0)2

q2

)
.

Here ∑
n (mod q)

�(md2, n) =
∑

r

h(r) = ĥ(0) + O(1)

and ∑
n (mod q)

�(m1d2, n)�(m2d2, n) =
∑
r,s

am1d2r≡am2d2s (q)

h(r)h(s) =
∑
r,s

rm2≡sm1 (q)

h(r)h(s).

Thus

|�1|2 � N
∑

d�2M1/2

d1+η

∣∣∣∣∣∣∣∣
∑

mi ∼M/d2

|μ(mi )|=1

a(m1d2)a(m2d2)

(
�(m1, m2) − ĥ(0)2

q

)∣∣∣∣∣∣∣∣
+ M2 N R

q
,

where

�(m1, m2) =
∑
r,s

rm2≡sm1 (q)

h(r)h(s) =
∑
r,s

rm2=sm1+ql

h(r)h(s).

We write β = (m1, m2). Since (m1m2, q) = 1, we must have β | l. We write mi = βm ′
i and

l = βl ′. Then

�(m1, m2) =
∑
r,s,l ′

rm ′
2=sm ′

1+ql ′

h(r)h(s) =
∑

l ′

∑
r≡ql ′m ′

2 (m ′
1)

h(r)h

(
rm ′

2 − ql ′

m ′
1

)

=
∑

l ′

∑
r≡ql ′m ′

2 (m ′
1)

f (r, m ′
1, m ′

2, l ′),

say. Notice that the sum is non-zero only if |l ′| � L0 = 10RM/(βd2q) and further

∂ j1+ j2+ j3+ j4 f

∂r j1∂m ′ j2
1 ∂m ′ j3

2 ∂l ′ j4
� r− j1 m ′− j2

1 m ′− j3
2 l ′− j4 for ji � 0.
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By the Poisson summation formula

�(m1, m2) =
∑

0<|l ′|<L0

1

m ′
1

∑
k

f̂

(
k

m ′
1

, m ′
1, m ′

2, l ′
)

e

(
−ql ′m ′

2k

m ′
1

)
+ O

(
Rβd2

M

)
,

where

f̂

(
k

m ′
1

, m ′
1, m ′

2, l ′
)

=
∫ ∞

−∞
f (ξ, m ′

1, m ′
2, l ′)e

(
kξ

m ′
1

)
dξ

(2·3)
=

∫ 3R

R/2
f (ξ, m ′

1, m ′
2, l ′)e

(
kξ

m ′
1

)
dξ

is the Fourier transform.

Terms with k = 0 contribute to �(m1, m2) the amount

∑
0<|l ′|<L0

1

m ′
1

∫ ∞

−∞
h(x)h

(
xm ′

2 − ql ′

m ′
1

)
dx

= 1

m ′
1

∫ ∞

−∞

∫ ∞

−∞
h(x)h

(
xm ′

2 − ql ′

m ′
1

)
dxdl ′ + O

(
Rβd2

M

)

= ĥ(0)2

q
+ O

(
Rβd2

M

)

and the contribution from terms with |k| � K0 =
(

M
d2β

)1+η

/R is O(Rβd2/M).

Hence we see that

|�1|2 � N
∑

d�2M1/2

d1+η
∑

β�2M

∣∣∣∣ ∑
m ′

i ∼M/(d2β)

|μ(βm ′
1m ′

2)|=1

a(m ′
1βd2)a(m ′

2βd2)

m ′
1

·
∑

0<|k|<K0
0<|l ′|<L0

f̂

(
k

m ′
1

, m ′
1, m ′

2, l ′
)

e

(−ql ′m ′
2k

m ′
1

)∣∣∣∣ + xη M N R.

Substituting the Fourier transform (2·3) we see that

|�1|2 � max
d�2M1/2

β�2M

RNd4+ηβ2

M
max

ξ∈[R/2,3R]

∣∣∣∣ ∑
m ′

i ∼M/(d2β)

|μ(βm ′
1m ′

2)|=1

a(m ′
1βd2)a(m ′

2βd2)

·
∑

0<|k|<K0
0<|l ′ |<L0

gξ (k, m ′
1, m ′

2, l ′)e

(
−ql ′m ′

2k

m ′
1

)∣∣∣∣ + M N R,

where gξ (k, m ′
1, m ′

2, l ′) = (M ′/d2βm ′
1) f (ξ, m ′

1, m ′
2, l ′)e(kξ/m ′

1) satisfies

∂ j1+ j2+ j3+ j4 g

∂k j1∂m ′ j2
1 ∂m ′ j3

2 ∂l ′ j4
� x j1η+ j2η|k|− j1 m ′− j2

1 m ′− j3
2 |l ′|− j4 .



The distribution of αp modulo one 273

Writing ρ = d2β and M ′ = M/ρ, we see that

|�1|2 � xη max
βd2�2M

RNρ

M ′ max
ξ∈[R/2,3R]

∣∣∣∣ ∑
m ′

i ∼M ′
|μ(βm ′

1m ′
2)|=1

a(ρm ′
1)a(ρm ′

2)

×
∑

0<|k|<K0
0<|l ′ |<L0

gξ (k, m ′
1, m ′

2, l ′)e

(
−ql ′m ′

2k

m ′
1

)∣∣∣∣ + M N R.

We can split the summations over k and l to dyadic segments k ∼ K and l ∼ L keeping
a smooth weight function. This can be done by writing the function g as a sum of its differ-
ences (see for instance [13, page 208] for this kind of argument). Hence by the assumption
(2·1) we have

|�1| �
(
RNρM ′x (1−3τ)/2−5δ+η + M N R

)1/2

� x (2−2τ−5δ+η)/2 + x (3−τ)/4 � x1−τ−2δ.

Remark 8. It is clear from the end of the previous proof why we cannot do better than
τ = 1/3 − ε.

3. Averages of Kloosterman sums

We will need to do some modifications to known results on averages of Kloosterman
sums. First we mention that any result for Kloosterman sums leads to a result for incomplete
Kloosterman sums. This follows from the fact that, for a smooth function f supported on
[M, 2M] with derivatives satisfying f ( j)(m) � M− j , we have

∑
m

f (m)e

(
am

q

)
= 1

|q|
∑

n

f̂

(
n

q

)
S(−a, n; q), (3·1)

which is a straight-forward consequence of the Poisson summation formula. Here restricting
the summation to |n| � q1+η/M leads to a negligible error term by partial integration.

We have the following result for complete Kloosterman sums.

LEMMA 9. Let r , s and d be positive pairwise coprime integers with r and s square-free.
Let M, N and C be positive numbers and g a real-valued infinitely differentiable function
supported on [M, 2M] × [N , 2N ] × [C, 2C] such that∣∣∣∣ ∂ j+k+l g

∂m j∂nk∂cl

∣∣∣∣ � M− j N−kC−l for 0 � j, k, l � 2.

Let Xd = √
d M N/(sC

√
r). Then for any η > 0 and any complex sequences am and bn one

has ∑
m

am

∑
n

bn

∑
c

(c,r)=1

g(m, n, c)S(dmr, ±n, sc)

� Cηd
7
64 sC

√
r
(1 + X−1

d )
7
32

1 + Xd

(
1 + Xd +

√
M

rs

) (
1 + Xd +

√
N

rs

)
‖am‖2‖bn‖2,
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where

‖am‖2 =
(∑

m

|am |2
)1/2

.

Proof. The case d = 1 is proved by Deshouillers and Iwaniec [1, theorem 9]. We can take
θrs = 7/32 there by the work of Kim and Sarnak [10]. For d > 1 the result can be proved by
incorporating to the proof arguments from the beginning of the proof of [5, proposition 1],
which generalises a result by Watt [13, proposition 4·1] from the case d = 1 to the case
d � 1. We sketch the required modifications that are required to the proof of [1, theorem 9].

Theorem 9 of [1] is proved by applying [1, theorem 8] (or more precicely its corrollary, [1,
theorem 13]) for the Hecke congruence group �0(q) with q = rs and the cusps a = ∞ and
b = 1/s. Further, [1, theorem 8] is based on the Kuznietsov formula (see [1, theorem 1]).
The bases for the spaces of holomorphic and non-holomorphic cusp forms can be chosen to
consist of eigenvectors of all Hecke operators T (n) with (n, rs) = 1 (for definitions see [8,
pages 370–371] for the holomorphic case and [1, pages 230–231] for the non-holomorphic
case).

When applying the Kuznietsov formula, we will have the mth Fourier coefficient replaced
by the mdth coefficient on [1, page 267]. However, since the involved cusp forms are eigen-
vectors of Hecke operators (with eigenvalues λ jk(n), say) we have, for (d, rs) = 1,

λ jk(d)ψ jk(∞, m) =
∑

l|(m,d)

lk−1ψ jk

(
∞,

dm

l2

)

in the holomorphic case (see [8, (14·47)]). By Möbius inversion this gives

ψ jk(∞, dm) =
∑

l|(m,d)

μ(l)lk−1λ

(
d

l

)
ψ jk

(
∞,

m

l

)
.

Similarly in the non-holomorphic case

ρ j∞(md) =
∑

l|(m,d)

μ(l)τ j

(
d

l

)
ρ j∞

(
m

l

)
,

where τ j (n) are the corresponding eigenvalues.
Using these and the bounds τ j (n) � n7/64 and λ(n) � n(k−1)/2+η (see [8, section 5·11]),

we see that the terms coming from non-exceptional cusp forms contribute d7/64+η times the
contribution in the case d = 1. We also replace X in [1] by Xd .

The Fourier coefficients of Eisenstein series can be handled easily since for square-free q
the only cusps of �0(q) are of the form 1/w, where w | q (see [1, lemma 2·3]). Using the
defintion of ϕ 1

w
∞md(z) on [1, page 227] and the structure of σ−1

1
w

�0(q)σ∞ (see [1, pages 240–

241]) we see that this can be expressed as a linear combination of � dη Fourier coefficients
ϕ 1

wg ∞m(z) of Eisenstein series in �0(qg) with g | d. Thus the large sieve inequality [1,
theorem 2] is still applicable.

Lemma 9 and (3·1) imply the following result for incomplete Kloosterman sums.

LEMMA 10. Let r , s and d be positive pairwise coprime integers with r and s square-free.
Let C, M and N be positive numbers and g a real-valued infinitely differentiable function
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supported in [M, 2M] × [N , 2N ] × [C, 2C] such that∣∣∣∣ ∂ j+k+l g

∂m j∂nk∂cl

∣∣∣∣ � M− j N−kC−l for 0 � k, l � 2 and j � 0.

Let Xd =
√

d N
MCsr . Then for any η > 0 and any complex sequences am and bn one has

∑
n

bn

∑
c

∑
m

(mr,sc)=1

g(m, n, c)e

(
±dnmr

sc

)

� (Cs)ηd
7
64

√
MsrC

(1 + X−1
d )

7
32

1 + Xd

(
1 + Xd +

√
C

r M

)(
1 + Xd +

√
N

rs

)
‖bn‖2

+ M N 1/2

s
‖bn‖2.

The previous lemma already furnishes us with some type I information, that is a result
when c(y) in (1·7) is the characteristic function of an interval. Next we derive a result for
bilinear forms that will provide us type II information.

LEMMA 11. Let Xd =
√

d K
MC R and suppose that a bounded sequence a(k, r) is supported

on square-free r with (r, d) = 1. Then

U =
∑
c∼C

∑
m∼M

(c,m)=1

∣∣∣∣∣∣∣
∑
k∼K

∑
r∼R

(r,c)=1

a(k, r)e

(±dkmr

c

)∣∣∣∣∣∣∣
� (C M K R)1/2+η

[
C M + M RK 1/2(K + R)1/2

+ d7/64(MC)1/2 R3/2(K + R)1/2 (1 + X−1
d )7/32

1 + Xd

×
(

1 + Xd +
√

C

R2 M

) (
1 + Xd +

√
K

R

)]1/2

.

Proof. By the Cauchy–Schwarz inequality, introducing a test function g(c, m) on
[C, 2C] × [M, 2M] and squaring out, we have

U � (C M)1/2

[∑
r1,r2

∑
k1,k2

a(k1, r1)a(k2, r2)

×
∑

c

∑
m

(mr1r2,c)=1

g(c, m)e

(
±

(
dk1mr1 − dk2mr2

c

))]1/2

.

Here

e

(
±

(
dk1mr1 − dk2mr2

c

))
= e

(
±

(
dmr1r2

c
(k1r2 − k2r1)

))
.

Diagonal terms (terms with k1r2 = k2r1) contribute to U the amount

� C M(K R)1/2+η. (3·2)
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For non-diagonal terms we can use Lemma 10 with

m = m, c = c, r = r1r2, s = 1, N ∼ N � RK , Xd = X ′
d =

√
d N

MCr1r2

and

bn =
∑
k1,k2

r2k1−r1k2=n

a(k1, r1)a(k2, r2).

Hence the total contribution from these is

(C M)1/2+η

[∑
r1,r2

d7/64
√

MC R
(1 + X ′−1

d )7/32

1 + X ′
d

(
1 + X ′

d +
√

C

R2 M

)

×
(

1 + X ′
d +

√
N

R2

)
‖bn‖2 + M N 1/2‖bn‖2

]1/2

.

We have

(∑
r1,r2

‖bn‖2

)2

� R2
∑
r1,r2

‖bn‖2
2 � R2

∑
ri ∼R

∑
n∼N

⎛
⎜⎝ ∑

k1,k2
r2k1−r1k2=n

1

⎞
⎟⎠

2

= R2
∑
ri ∼R

∑
k1,k2,k3,k4

r2k1−r1k2=r2k3−r1k4∼N

1

= R2
∑
ri ∼R

∑
k1,k2,k3,k4

r2(k1−k3)=r1(k2−k4)
r2k1−r1k2∼N

1

� R3+η K 2+η

(
1 + N

K
+ N

R

)
.

Hence the non-diagonal terms contribute to U the amount

(C M)1/2+η

[
d7/64

√
MC K 1+η R5/2+η (1 + X ′−1

d )7/32

1 + X ′
d

(
1 + X ′

d +
√

C

R2 M

)

×
(

1 + X ′
d +

√
N

R2

) (
1 + N

K
+ N

R

)1/2

+M N 1/2 R3/2+η K 1+η

(
1 + N

K
+ N

R

)1/2]1/2

. (3·3)

We see that the maximal contribution comes from maximal N = RK . This leads to the
claim.

In our applications we will have Xd � 1. When Xd = o(1) the result of Lemma 9 and
therefore of Lemmas 10 and 11 could be improved by taking advantage of averaging over
r and s. Results to that end with d = 1 can be found in [1, theorems 10-12] and [13,
proposition 4·1], and a technique to generalize the results for d � 1 from [5, section 3].
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4. Arithmetical information

In this section we apply results from the previous section to obtain new type I and type II
information. We consider the tri-linear sum

� =
∑

yzn∈A
y∼Y,z∼Z ,n∼N

c(y)d(z)b(n).

By Proposition 6, we need to consider �2 with coefficients (1·7), so we face � xη sums of
the form∑

z1∼Z1
z2∼Z2

∑
y1∼Y1
y2∼Y2

|μ(βy1z1 y2z2)|=1

c(ρY1 y1)c(ρY2 y2)d(ρZ1 z1)d(ρZ2 z2)
∑
|k|∼K
|l|∼L

g(|k|, |l|, y1z1, y2z2)e

(−qkl y2z2

y1z1

)
,

(4·1)
where Yi � Y, Zi � Z , ρYi ρZi = ρ and Y1 Z1 = Y2 Z2 = M ′.

We will apply Lemmas 10 and 11. The sum (4·1) has some co-primality restrictions that
do not appear in those lemmas. However, they can be handled using Möbius inversion and
refining the support of coefficients c(y) and d(z).

In the case of type I sums c(y) is the characteristic function of an interval. Recalling
Remark 7 we can use Lemma 10 with

d = q, N = K L , C = Y1, M = Y2, r = z2 and s = z1.

Then Xq = √
q K L/M ′2 � 1. We see immediately that the maximal bound will be obtained

for maximal K L = 10M ′2/q, whence Xq � 1. We obtain

�2 � K 2η Z1 Z2

(
Mηq7/64 M ′

(
1 +

√
1

Z1

) (
1 +

√
M ′2

q Z1 Z2

)
M ′

q1/2
+ Y2 M ′2

q Z1

)
.

We can assume that M ′2/(q Z1 Z2) = Y1Y2/q � Y 2/q � 1 since otherwise we have type
I information by Lemma 3. Hence

�2 �
Z 2 M ′2+η

q25/64
+ M ′3+η

q
,

so in order to establish (2·1), we need M � q and

Z 2 � x
1−3τ

2 + 25(1+τ)

128 −5δ−η,

which holds for Z � x25/192. Now M � q follows from Y � q1/2. Recalling the assumption
N � q, we have by Proposition 6 and Lemma 2 (used when q � N � x2/3) the following
result.

LEMMA 12. Let

N � x2/3 and Z � x25/192.

Assume that the coefficients a(m) are defined by (1·7) with c(y) the characteristic function
of an interval. Then (2·2) holds.

Next we turn our attention to type II information for tri-linear sums, that is we consider
� with arbitrary bounded coefficients c(y) and d(z). This time we apply Lemma 11 to (4·1)
with

d = q, C = Y1 Z1 = M ′, M = Y2, R = Z2, K = K L .
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Fig. 1. Type I and type II areas with Y � Z demonstrated.

Then Xq =
√

q K L
M ′2 � 1. Again we notice that the maximal contribution comes from maximal

K L = 10M ′2/q in which case Xq � 1. Hence we obtain

�2 �
M ′2

q1/2

(
M ′Y2 + M ′2

q1/2

(
M ′2

q
+ Z2

)1/2

+ q7/64 M ′ Z2

(
M ′2

q
+ Z2

)1/2
(

1 +
√

M ′2

q Z2

))1/2

.

Assuming M ′Y2 � x2/3 = qx ε/2, as we essentially have to in order to get a satisfactory
bound (2·1) for the first term, we get

�2 �
M ′2

q1/2

(
M ′Y2 + M ′2x ε/4

(
Z2

q

)1/2

+ x ε/2q7/64 M ′ Z 3/2
2

)1/2

.

It is easy to see that the third term dominates the second term for M ′Y2 � x2/3. Thus we
have (2·1) for ⎧⎨

⎩
MY2 � x2/3,

M2 Z 3
2 � x19/16.

Hence Proposition 6 and Lemma 2 imply the following result.

LEMMA 13. Assume that the coefficients a(m) are defined by (1·7) and⎧⎪⎨
⎪⎩

N � x2/3,

Y 2 Z � x2/3,

Y 2 Z 5 � x19/16.

Then (2·2) holds.

Type I and type II information that we have obtained so far is demonstrated in Figure 1.
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We can derive the following type II result for bilinear sums that arise from the sieve
method.

LEMMA 14. Assume that M ∈ [x1/3, x23/64] and that

a(m) =
∑

m1···mk=m

a1(m1) · · · ak(mk),

where each a j (m) is either the characteristic function of primes or integers co-prime to q in
some interval ⊂ [I j , 2I j ] for j = 1, . . . , k. Then (2·2) holds.

Proof. Using Heath–Brown’s generalized Vaughan’s identity [6] to each a j (m) with I j >

x1/8 we can write a(m) as a sum of � (log x)C sums∑
n1···nl=m

ni ∼Ni

b1(n1) · · · bl(nl),

where N1 < N2 < · · · < Nl , N1 · · · Nl ∼ M and b j is the characteristic function of
some interval whenever Ni > x1/8. Now either there is some product of Ni in the interval
[x5/96, x23/128] or N1 · · · Nl−1 < x5/96 and bl is the characteristic fuction of an interval. In the
first case the sum is a type II sum and either Lemma 4 or Lemma 13 gives an asymptotic
formula as can also be seen from Figure 1 (notice that 23/64 = 13/64 + 5/32 = 59/192 +
5/96). In the second case the sum is a type I sum and Lemma 12 gives the result.

5. Sieve asymptotic formulae

First we introduce some standard notation. Let F be a finite subset of N. Then we write
|F | for the cardinality of F ,

Fd = {m | dm ∈ F}
and

S(F, z) = |{m ∈ F | (m, P(z)) = 1}|,
where

P(z) =
∏
p<z

p.

The elementary Buchstab’s identity states that

S(F, z) = S(F, w) −
∑

w�p<z

S(Fp, p),

where z > w � 2.
We are interested in the number of primes in A, that is S(A, 2x1/2). We use Buchstab’s

identity to decompose this into sums that are easier to handle and decompose S(B, 2x1/2) in
similar manner. We end up with decompositions

S(A, 2x1/2) =
k∑

j=1

Sj −
l∑

j=k+1

Sj (5·1)

and

S(B, 2x1/2) =
k∑

j=1

S�
j −

l∑
j=k+1

S�
j ,
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where Sj , S�
j � 0 and, for j � t � k or j > k, we can find an asymptotic formula of the

form

Sj = ĥ(0)

q
S�

j (1 + o(x−δ/2)).

This implies that

S(A, 2x1/2) � ĥ(0)

q

⎛
⎝S(B, 2x1/2) −

k∑
j=t+1

S�
j

⎞
⎠ (1 + o(1)).

Here the sums S�
j are of the form

∑�

xν<pn<···<p1<xλ

S(Bp1···pn , pn)

with some additional summation conditions. Here we mark the summation condition
p1 · · · pi−1 p2

i < x , i = 1, . . . , n by �. These conditions can be easily included during the
decomposition phase adding an error term of a smaller order. They will be assumed when
we do the decomposition and we will not write the error term to decompositions.

By changing summations to integrals using the prime number theorem and substituting
p j = xα j , we have for example∑�

xν<pn<···<p1<xλ

S(Bp1···pn , pn)

= x(1 + o(1))

log x

∫ λ

α1=ν

∫ α
�

1

α2=ν

· · ·
∫ α

�

n−1

αn=ν

ω

(
1 − α1 − · · · − αn

αn

)
dαn · · · dα1

α1 · · · αn−1α2
n

,

where we have written α
�

i = min{αi , (1−α1−· · ·−αi )/2}. Here ω(u) is Buchstab’s function
(see [4, sections 1·4 and A·2] or [3, page 244]).

Since S(B, 2x1/2) = (x/log x)(1 + o(1)), we get the desired result if the sum of integrals
corresponding to S�

j with t < j � k is strictly less than one.
Next we describe the decomposition (5·1). We start by decomposing S(A, 2x1/2) twice

with Buchstab’s identity getting the decomposition

S(A, 2x1/2) = S(A, z) −
∑

z�p<2x1/2

S(Ap, z) +
∑

z�p2<p1<2x1/2

S(Ap1 p2, p2)

= S1 − S2 + S3,

where z = x25/528. We will be able to give asymptotic formulae for S1 and S2 and parts of
S3. We can also decompose some parts of S3 further.

The following lemma gives asymptotic formulae for instance for S1 and S2.

LEMMA 15. Assume that M � x2/3 and N � x25/192. Let a(m) and b(n) be divisor-
bounded complex coefficients. Then

∑
m∼M

∑
n∼N

a(m)b(n)S(Amn, z) = ĥ(0)

q

∑
m∼M

∑
n∼N

a(m)b(n)S(Bmn, z)(1 + o(1))

for z = x25/528.
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Proof. This is a fundamental sort of result in Harman’s sieve method. The basic idea is
to use Buchstab’s identity with w = 2 repeatedly to split the left-hand side into sums of the
type ∑

m∼M

∑
n∼N

∑
mnp1···p j k∈A

p j <p j−1<···<p1<z

a(m)b(n).

When p1, . . . , p j can be divided into subsets P1 and P2 such that

M ′ = M
∏

p∈P1

p � x2/3 and N ′ = N
∏

p∈P2

p � x25/192

we have a type I sum and an asymptotic formula holds by Lemma 12.
Otherwise there is l � j such that p1, . . . , pl−1 can be split into sets P1 and P2 such that

M ′ � x2/3 and N ′ � x25/192 but M ′ pl > x2/3 and N ′ pl > x25/192.

Let
M ′ = xα, N ′ = xβ, pl = xγ and K = x/(M ′N ′) = x θ .

Then 1 − (θ + β) = α � 2/3. Since 4β � 100/192 = 19/16 − 2/3, we have type II
information by Lemma 13 with Y = K and Z = N ′ if 2θ + β � 2/3. Otherwise

β < 2(θ + β) − 2/3 = 2(1 − α) − 2/3 < 2(1 − (2/3 − γ )) − 2/3 = 2γ.

Thus

2(θ − γ ) + (β + γ ) = 2θ + β − γ = 2 − 2α − β − γ � 2 − 2(2/3 − γ ) − 25/192 < 2/3

and

2(θ − γ ) + 5(β + γ ) = 2(1 − α − β) + 5β + 3γ � 2(1/3 + γ ) + 3β + 3γ

< 2/3 + 11γ � 19/16.

Hence we have type II information by Lemma 13 with Y = K/pl and Z = N ′ pl . Cross-
conditions can be handled using Perron’s formula. For a more detailed account of this kind
of argument, see for instance [4].

Now we turn our attention to S3. We write p j = xα j and consider the summation over H2,
where

Hk = {(α1, α2, . . . , αk) | α1 > α2 > · · · > αk � 25/528,

α1 + · · · + α j−1 + 2α j < 1 for j = 1, . . . , k}.
Lemma 14 gives an asymptotic formula for sums in which some combination of α1, α2

and 1 − α1 − α2 is in the interval [1/3, 23/64]. We also have an asymptotic formula when
p1 = Y and p2 = Z satisfy conditions of one of Lemmas 4 and 13.

We write Gk for the subset of Hk on which we can immediately give an asymptotic for-
mula using one of Lemmas 4, 13 and 14. We split the rest of H2 into three regions

A = {(α1, α2 ∈ H2) | α1 + 2α2 � 2/3 or α2 � 25/192

or (α1 � 1/3 and α2 � 2/11)} \ G2,

B = (H2 \ (A � G2)) � {(α1, α2 ∈ H2) | α1 � 1/3 and α1 + α2 � 2/3},
C = H2 \ (A � B � G2)

(see Figure 2).
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Fig. 2. Regions A, B, C and G2 demonstrated.

In C we cannot decompose further but have to discard the whole region giving the loss

∫∫
(α1,α2)∈C

ω

(
1 − α1 − α2

α2

)
dα2dα1

α1α
2
2

< 0.53

by numerical integration.
In A we can use Buchstab’s identity twice more giving

∑
(α1,α2)∈A

S(Ap1 p2, p2) =
∑

(α1,α2)∈A

S(Ap1 p2, z) −
∑

(α1,α2,α3)∈H3
(α1,α2)∈A

S(Ap1 p2 p3, z)

+
∑

(α1,α2,α3,α4)∈H4
(α1,α2)∈A

S(Ap1 p2 p3 p4, p4).

We can give asymptotic formulae for the first and second sums using Lemma 15 or Lemma 4.
Then we can use our type II information to give asymptotic formulae for parts of the third
sum and decompose in some parts further.

In B we cannot immediately decompose twice more, but we can use a role-reversals tool
that was introduced in [3]. First we apply Buchstab’s identity once to get

∑
(α1,α2)∈B

S(Ap1 p2, p2) =
∑

(α1,α2)∈B

S(Ap1 p2, z) −
∑

(α1,α2,α3)∈H3
(α1,α2)∈B

S(Ap1 p2 p3, p3).

Here we have an asymptotic formula for the first term and parts of the second term. In the
rest of the second term we decompose p1 instead of s ∼ x/(p1 p2 p3). We write s = xβ and
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tp4 = xα1 and get the decomposition∑
(α1,α2,α3)∈H3\G3

(α1,α2)∈B

S(Ap1 p2 p3, p3)

=
∑

(1−β−α2−α3,α2,α3)∈H3\G3
(1−β−α2−α3,α2)∈B

(s,P(p3))=1

S(Ap2 p3s, z) −
∑

(α1,α2,α3)∈H3\G3
(α1,α2)∈B

(t,P(p4))=1
25/528<α4<α1/2

S(Atp4 p2 p3, p3).

We can give an asymptotic formula for the first sum by Lemma 12 and some parts of the
second sum are type II sums.

When we discard terms with two almost-prime variables, the resulting integral is of the
form ∫

ω

(
α1 − α4

α4

)
ω

(
1 − α1 − α2 − α3

α3

)
dα4dα3dα2dα1

α2α
2
3α

2
4

(see [4, page 90] or [3, pages 250–251]).
The role reversals device can also be used in some parts of A to make more decomposi-

tions. However, it is not always benefitical to decompose more, and we have calculated the
integrals numerically with a computer program which checks when it is best to decompose
and when not.

The loss from A is < 0.11 and the loss from B is < 0.28. Hence the total loss is <

0, 11 + 0, 28 + 0, 53 = 0.92, and so

|A � P| = S(A, 2x1/2) �
R

q

x

log x
,

which completes the proof of Theorem 1.
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