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I. Introduction to Code Division Multiple Access systems

I.1. The configuration.

Let us suppose that a physical channel is shared by several users. The realization
of sharing can be done in many ways, for example:

- Time division: Each user is given a certain period of time to use the channel and
the turn shifts to the next user.

- Frequence division: In the case of radio channel each user is given a frequence
level to use. This corresponds to the situation that each user has a channel of
his own.

- Code division (CDMA): The messages of the users are coded together to form a
single message which is sent to the channel.

Let us now concentrate to the last situation. One can easily invent trivial meth-
ods to encode messages together so that the receiver can effectively compute the
“partial message” of a single sender. For example, suppose that k users send a
message from binary alphabet {0, 1}. All these messages are composed together to
form a binary sequence a1a2 . . . ak of lenght k, whose i:th component is the message
of the i:th user, or a special empty symbol if the i:th user is not sending. Then this
sequence is sent to the channel. It is obvious that this naive method works, but
now rises the question whether there exist better methods.

We shall now introduce the basic ideas behind a CDMA system. Here we con-
sider only the case where the alphabet is {0, 1}, binary alphabet. The i:th user
is given a characteristic binary vector, say si = (si(0), si(1), . . . si(n − 1)) (These
are later referred as sequences). This corresponds to a unique complex vector
ci = (ci(0), ci(1), . . . , ci(n− 1)), where ci(t) = (−1)si(t) for all t ∈ {0, 1, . . . , n− 1}.
In other words, all zeros in the original vector are transformed to 1:s and 1:s are
transformed to −1:s. Then each user encodes his message into a complex vector of
length n as follows:











0 −→ +ci,

1 −→ −ci,

silence −→ 0,

where 0 = (0, 0, . . . , 0) denotes the origin. After this all the messages are added
together in Cn in the natural way, and the resulting vector, say r is sent to the
channel. We can immediately see that the absolute value of any component of r
can not be greater than the number of the users, say N .
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We shall now consider how the receiver acts. For simplicity, we suppose that
he recieves the vector r correctly. To find the message sent by the i:th user the
reciever computes the hermitian inner product in the space Cn:

ci · r = ci · (±c1 + ±c2 ± . . .± cN ) = ±n +
∑

j 6=i

ci · (±cj).

The receiver decides, that 0 was sent, if ci · r > 0 and 1 was sent if ci · r < 0. To
guarantee that this system really works, we must be sure that the absolute value
of the remainder

∑

j 6=i

ci · (±cj)

is always less than n, the length of the vectors. This means that we have to require
the vectors ck, k ∈ {1, 2, . . . , N} to be as orthogonal-like as possible. On the other
hand, it would be convinient to find very large sets of such vectors to offer an
opportunity to use the channel for a very large set of users. In practice, it can
be assumed that the number of active senders is small, but the system is built to
sustain a large number of potential users.

Let us now define the even crosscorrelation of vectors ci and cj.

Cij = ci · cj =

n−1
∑

k=0

ci(k)cj(k) =

n−1
∑

k=0

(−1)si(k) · (−1)sj(k) =

n−1
∑

k=0

(−1)si(k)−sj(k)

In general, the messages of different users need not to be in the same phase, but
there is some shift, so we define the shift map S to be

S(c0, c1, c2, . . . , cn−1) = (c1, c2, . . . , cn−1, c0),

and the even shifted crosscorrelation by

Cij(t) = Stci · cj =

n−1
∑

k=0

(−1)si(k+t)−sj(k),

where the sum k+t is counted modulo n. Even shifted crosscorrelations will also be
called even crosscorrelations. If i = j above, we talk about autocorrelation instead
of crosscorrelation. It may also happen that a negated vector −ci overlaps with
original one, so we define a negacyclic shift N by

N(c0, c1, c2, . . . , cn−1) = (c1, c2, . . . , cn−1,−c0),

and odd crosscorrelation by

Cij(t) = N tci · cj =
n−t−1
∑

k=0

(−1)si(k+t)−sj(k) −
n−1
∑

k=n−t

(−1)si(k+t)−sj(k).

We conclude that we should require to all even and odd crosscorrelations to be small
when compared to n. In practice, the sequences used are very long, and finding
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effectively large sets of sequences with good crosscorrelation properties turns out
to be very diffucult problem. Several problems arise:

- Find effective constructions for sets of sequences as large as possible and similary
having good correlation properties.

- Find theoretical upper bounds for the cardinality of sequence set having cross-
correlations at most a given value.

- Develop theoretical methods to estimate correlations without consuming too
much computation time.

It has turned out that one can find good methods for a construction of sequence
sets, and good theorethical tools to estimate the even crosscorrelations. Usually,
the odd crosscorrelations are much more difficult to estimate, and generally they
are simply calculated by computer. However, there is lot of space between known
sequence sets and known theoretical bounds.

I.2. Elementary tools.

In this text Fq always means a finite field with q elements. It is known that the
multiplicative group of a finite field is always cyclic. By a primitive element of Fq

we mean a generator of the multiplicative group F∗
q .

If not stated othewise, q = 2m for some m ≥ 1, so Fq = F2m is a finite extension
of degree m of prime field F2. The automorphism group Gal(F2m/F2) of field
extension F2m/F2 is known to be a cyclic group of order m, generated by Frobenius-

automorphism σ : F2m → F2m , σ(α) = α2. Therefore, the F2-conjugates of a given
element α ∈ F2m are

α, α2, α22

, . . . , α2m−1

.

Now we can define the trace of α to be the sum of its conjugates, namely,

T F2m

F2
(α) = α + α2 + α22

+ . . . + α2m−1

.

If there is no danger of confusion, we use a simple notation T (α). It not very difficult
to show that T is a F2-linear mapping from F2m onto F2. Therefore, excatly half
of elemets of F2m has trace 0 and half of them trace 1.

I.3. Connection to the character sums.

Let us now fix γ, a generator of F∗
2m . Suppose now that we have a set P of

polynomials in F2m [X]. Let us define for each f ∈ P a binary vector s(f) of length
2m − 1 by

s(f) = (T (f(γ0)), T (f(γ1)), T (f(γ2)), . . . , T (f(γ2m−2))).

Then the corresponding complex vector, discussed before, will be

c(f) = ((−1)T (f(1)), (−1)T (f(γ)), (−1)T (f(γ2)), . . . , (−1)T (f(γ2m−2))).

If we now denote e(α) = (−1)T (α), where (−1)T (α) is interpreted in an obvious
way, we find out that e is a character of the additive group of F2m , i.e. a mapping
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e : F2m → C∗ satisfying e(α + β) = e(α)e(β). Complex vector c(f) can now be
written as

c(f) = (e(f(1)), e(f(γ)), e(f(γ2)), . . . , e(f(γ2m−2)))

Suppose now that the set P of polynomials is an additive subgroup of F2m [X]. Let
us compute the correlation of c(f1) and c(f2), where f1 and f2 are in P . then
f = f1 + f2 ∈ P , too.

Cf1,f2
= c(f1) · c(f2) =

2m−2
∑

i=0

e(f1(γ
i))e(f2(γ

i)) =
2m−2
∑

i=0

e(f1(γ
i) + f2(γ

i))

=

2m−2
∑

i=0

e(f(γi)) =
∑

x∈F
∗
2m

e(f(x))

We say that the sequence set S(P ) = {s(f) | f ∈ P} is induced by P . As we
saw, the question of determinig the correlations of S(P ) turns into a question of
estimating the character sums. Well-known result of Weil, Carlitz and Uchiyama
states that if a non-constant polynomial f is not of form g2+g+b for all g ∈ F2m [X]
and b ∈ F2m (This can be guaranteed for example requiring that f is of odd degree),
then

∣

∣

∣

∣

∣

∣

∑

x∈F2m

e(f(x))

∣

∣

∣

∣

∣

∣

≤ (deg f − 1)
√

2m.

In general, this result can not be improved, but in some cases we may find a
polynomial group P of special type, and have a better upper bound for this special
group.

I.4. Generalisation into larger alphabets.

There is an evident way to generalize this setup into the situation where the
alphabet used is of prime number cardinality. Let us assume that the size of our
alphabet is the prime field Fp, and Fpm an extension of Fp. Similary, we can then
define the trace mapping T : Fpm → Fp to be

T (α) = α + αp + αp2

+ . . . + αpm−1

,

and the character of the additive group of Fpm by

e(α) = e
2πi
p

T (α).

Here e
2πi
p is a primitive p:th root of unity.

The Carlitz-Uchiyama -bound takes now form:
∣

∣

∣

∣

∣

∣

∑

x∈Fpm

e(f(x))

∣

∣

∣

∣

∣

∣

≤ (deg f − 1)
√

pm,

if f is non-constant polynomial and f 6= gp + g + b for all g ∈ Fpm [X] and b ∈ Fpm .
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I.5 Theoretical bounds for correlations.

The aim is to introduce some bounds for a parameter while the other parameters
remain fixed. Assume that S if a set of sequences of length n. We define the
maximum correlation of S to be

Cmax(S) = max{|Cij(t)| | 1 ≤ i, j ≤ m, 0 ≤ t ≤ n − 1, i 6= j if t = 0}.

It is now however natural to require that all the sequences in S cyclically distinct,
i.e. one cannot transform any sequence in S into an other by cyclic shifts. Then we
define S′ to be the set of the elements of S and their cyclic shifts. Let us now agree
on further terminology. We say that a set of sequences, S ′, is an (n, M, θ)-code, if its
length is n, the size of S′ is M and Cmax(S) ≤ θ. This means that the cardinality of
the set is counted assuming that all the cyclic shifts of sequences are included, but
the maximum correlation is counted with only one representative from each class
of cyclic shifts. The maximal number of cyclically distinct sequences is denoted by
m(n, θ). The number m(n, θ) can be trivially estimated by inequality

m(n, θ) ≤ M(n, θ)

n
.

Furthermore, we define

M(n, θ) = max{M | an (n, M, θ)-code exists}

and
θ(n, M) = min{θ | an (n, M, θ)-code exists}.

The purpose is now to find good upper bounds for M(n, θ) and good lower bounds
for θ(n, M). An interesting parameter will also be the mean-square correlation of
a (n, M, θ)-code S defined to be

µms =
1

M(M − 1)

∑

ci∈S′

∑

cj∈S′

ci 6=cj

|Cij |2 .

We have now the terminology needed to state a classical result:

Proposition I.5.1 (Welch). Let k be a nonnegative integer. The maximum cor-

relation of an (n, M, θ)-code S ′ is bounded by

Cmax(S
′)2k ≥ 1

M(M − 1)

(

n2kM2

(

k+n−1
k

) − Mn2k

)

.

Solving M from the Welch bound we obtain

M(n, θ) ≤ n2k − θ2k

n2k

(k+n−1

k )
− θ2k

,
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if the denominator is positive.

For the proof, and the proofs missing after this, see: Sami Koponen: On the
Correlation of Sequences.

Also a famous result, usually better than Welch bound, was obtained by Sidel-
nikov. This bound will not however be introduced here.

Better bounds than these two classical ones are obtained by the means of linear

programming. To mention one, let us first define Krawtchouk polynomials Kk(x) =
Kk(n, x) (n is usually thought to be fixed) by the equation

∞
∑

k=0

Kk(n, x)zk = (1 + z)n−x(1 − z)x.

The very first ones are K0(x) = 1, K1(x) = n − 2x and K2(x) = 1
2(K1(x)2 − n).

Krawtchouk polynomials are one single case of orthogonal polynomials, and many
nice properties of Krawtchouk polynomials can be proven under general theory.
One of them is

Proposition I.5.2. Krawtchouk polynomial Kk(x) has k distinct zeros in the in-

terval (0, n). If ξi and ξi+1 are two consequtive ones, then Kk−1 has exactly one

zero in (ξ1, ξi+1).

We will denote the smallest zero of Kk(x) by ξk.

The following theorem is due to Levenshtein and independently to Tarnanen and
Lahtonen.

Proposition I.5.3 (LP-bound). Assume that r ≤ n−2
2 is a positive integer,

θ = n − 2a and ξr+2 < a < ξr. Then

M(n, θ) ≤
(

n

r

)

((n − r)(n − r − 1) + ρ)2

(n2 − θ2)ρ
,

Where ρ = − (r+1)(r+2)Kr+2(a)
Kr(a) .

It is often convinient to investigate the ultimate behaviour of known bounds
when n tends to infinity. Then we speak about Asymptotic bounds. One of the
reasons to this is the simplier form of bounds and another is that long sequences
will permit a CDMA system to have many potential users.

To obtain some terminology, we introcude a notion: Assume that at least g(n)
is positive. Then f(n) . g(n) means that f(n) ≤ g(n)(1 + an), where an is a
sequence that tends to 0 as n tends to infinity. It also turns out to be convinient
first to investigate M(n, a

√
n) as a function of a and then let n tend to infinity. For

example, the asymptotical behaviour of LP-bound is given by

Proposition I.5.4. Let r be a positive integer and ζr < b < ζr+2. then

M(n, b
√

n) . − Hr(b)

r!Hr+2(b)
nr+1,

where Hr(x) is r:th Hermite polynomial and ζr the largest zero of Hr(x)

Hermite polynomials can be defined by recurrence formula

Hk+1(x) = xHk(x) − kHk−1(x)

with H0(x) = 1 and H1(x) = x.
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I.6 Examples of constructions.

Consider field F2m , choose n = 2m − 1, and 1 ≤ t ≤ 2
m
2
−1. Set

P = {
t
∑

j=1

ajx
2j−1 | aj ∈ F2m}.

Set P is straightforwardly seen to be an additive subgroup of F2m [X]. Then define
the code S to be

S(P ) = {s(f) | f ∈ P}

with notations as in I.3. Now we can estimate the maximum correlation of S to
obtain

∣

∣

∣

∣

∣

n−1
∑

k=0

e(f(γk)) + 1

∣

∣

∣

∣

∣

≤ (deg f − 1)2
m
2 ≤ (t − 1)2

m
2

+1

by the Carlitz-Uchiyama bound. It can be observed that the sequence set obtained
is the dual code of a t-error correcting binary BCH code. Furthermore, this con-
struction yields (2m)t sequences of length n = 2m − 1, but they are not cyclically
distinct. The number of cyclically distinct codewords is given by (2m)t−1, and the
maximum correlation is bounded above by 2(t − 1)2

m
2 + 1.

Assume that we have constructed such a set of sequnces of length 2m − 1. If
we, for example can put t = 3, we have (2m)2 potential users, and the maximum
correlation is then given by 4 · 2 m

2 + 1. So in theory, there could be approximately
2

m
2 active users simultaneously, but in practice, the correlations cancel each other,

and the number of active users can be larger.

Let now m = 2k be even. Then there lies an intermediate field F2k in between
F2m and F2, and we can choose an element ε ∈ F2m \ F2k . Choose now a set of
polynomials

P = {x +

t
∑

j=0

βjx
2k−j+1},

where β0 ∈ εF2k , βi ∈ F2m when i > 1. Then form S(P ) as before and choose
representatives which are cyclically disjoint. It can be shown that this construction

yields a set of sequencies with cardinality qt+ 1
2 and maximum correlation at most

2t · 2m
2 + 1. These sets are called Kasami sets. When t = 0, the set is called small

or ordinary Kasami set, with t = 1 we speak about large Kasami set, and for t ≥ 2
the set is said to be very large Kasami set.

It should be emphasized, that the method described here is not the original
method how ordinary Kasami set was invented. Some of the classical methods for
finding good sets of sequencies are linear recurrence and combinig known sequences.

I.7 Constructions using ring arithmetics.

Here we speak only about commutative rings. Furthermore, it is assumed that
any ring is equipped with the unit element. An ideal I of ring R is said to be
maximal, if it is not contained in any other proper ideal.
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By a local ring we understand a ring with unique maximal ideal. It can be shown
that the residue class ring Zn = Z/nZ is local if and only if n = pm is a prime
power. Rings Zpm are called prime rings. Let us then investigate the extensions of
prime rings.

Suppose that the prime ring Zpm is a subring of ring S. Then we say that S/Zpm

is a ring extension and that S is an extension ring of Zpm .

If the ring extension is regular enough, we can observe that S is a local ring
too. Even more, we have automorphims group of extension S/Zpm cyclic as in the
case of field extensions. Such regular extensions of prime rings are called Galois

rings. In a Galois ring S we can define trace mapping from S to Zpm and using
constructions similar as before, we can form sequences with entries in Zpm .

Assume now that p = m = 2. Our prime ring is then Z4. Suppose that we
have, using an extension of Z4, constructed sequences whose componentes are in
Z4, but our intrest is in binary sequences. We can then convert sequences in Zn

4

into complex vectors as mentioned in I.4, and estimate their correlations. If we
have a sequence set with good correlation properties, it would be convinient to
covert it into binary set preserving correlation properties. This can be done by
Gray encoding, mapping a Z4-sequence of length n into a binary sequence of length
2n by mapping 0 7→ 00, 1 7→ 01, 2 7→ 11 and 3 7→ 10.


