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Corollary. For each s ∈ S there exists a representation

s =
n−1∑

i=0

riα
i,

where ri ∈ R and n is the degree of corresponding residue class field extension.

Proof. We can choose N = {
∑n−1

i=0 riα
i | ri ∈ R} in Nakayama’s lemma as well. �

In the continuation we suppose that the maximal ideal of R is a principal ideal
generated by element p. If there is another element q that generates the ideal pR,
then p can be written p = r1q and q = r2p, consequently p = r1r2p. If either
r1 or r2 were not a unit, then we would get a contradiction by multiplying by p
sufficiently many times. We can now assume that the generator of r is fixed. Let d
be the (uniqely determined) nilpotency degree of the generator p. First we see that
all nonzero elements of R have a representation r = upm, where u is a unit and
exponent m is uniquely determined. In fact, if r ∈ R∗, then the representation is
given by r = rp0, and the exponent of p cannot be anything else than 0. If r /∈ R∗,
then r is in maximal ideal and therefore of form r = r1p. If r1 is not a unit, we
can continue the procedure to finally obtain r = rkpk, where rk is a unit. The
procedure stops before k = d, since we assumed r to be nonzero. The uniqueness
of the exponent follows easily; if u1p

m = u2p
n, where m < n, multiplying by pd−n

we see that u1p
d−(n−m) = 0 which contradicts the definition of nilpotency degree.

Definition. The mapping R \ 0 → {0, 1, . . . , d − 1} r = upk → k is called
a (exponent) valuation of R, and the exponent in representation is said to be the
order of r with respect to p. Note that this definition must not make any sense
unless speaking about local ring with principal maximal ideal.

Lemma II.4.3. Let R be local ring whose maximal ideal r is principal, r = pR and
let d be the nilpotency degree of p. All the proper ideals of R are

0 = pdR ⊂ pd−1R ⊂ . . . ⊂ p2R ⊂ pR.

Further, the inclusions are proper.

Proof. Let J be any proper ideal, and m be the least value of any element in J .
Since J is proper, m ≥ 1. Choose an element such that j = upm ∈ J . It follows
that pm = u−1j ∈ J and therefore pmR ⊆ J . Pick then any element k in J . Then
k = u1p

n, where n ≥ m, so k = u1p
n−mpm ∈ pmR. Then J ⊆ pmR as well. The

fact that all inclusions above are strict follows from the fact that the nilpotency
degree of r = pR is also d, and d is the smallest integer such that pd−1R = pdR (see
corollary II.3). �
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Let R be as above, and S be an unramified extension of R. Then the maximal
ideal of S, s, is also generated by p, this follows from the facts that clearly pS ⊆ s,
but also

s = rS = {
∑

risi | ri ∈ r, si ∈ S} = {p
∑

r′isi | r′i ∈ R, si ∈ S} ⊆ pS.

Therefore, the nilpotency degree of s is also d, and the ideals of S are given in the
same fashion as the ideals of R. Furthermore, the valuation is extended to S the
range unchanged.

Let us now study the natural chain of projections:

S ∼= S/s
d −→ S/s

d−1 −→ . . . −→ S/s
2 −→ S/s = F,

each projection is defined by

πi : S/s
i → S/s

i−1 : πi(s + s
i) = s + s

i−1.

The kernel of πi consists clearly of those elements where s ∈ s
i−1. It is natural to

denote this set by s
i−1/s

i. We get an isomorphism

(S/s
i)/(si−1/s

i) ∼= S/s
i−1

and consequently
∣
∣S/s

i
∣
∣ =

∣
∣s

i−1/s
i
∣
∣ ·

∣
∣S/s

i−1
∣
∣. Now we can compute the cardinality

of S:
|S| =

∣
∣S/s

d
∣
∣ =

∣
∣s

d−1/s
d
∣
∣ ·

∣
∣S/s

d−1
∣
∣

=
∣
∣s

d−1/s
d
∣
∣
∣
∣s

d−2/s
d−1

∣
∣ · . . . ·

∣
∣s

1/s
2
∣
∣ |S/s| .

But this is not all we can say about the cardinality of S. We can see that each set
s
i−1/s

i becomes a vector space over the residue class field S/s, the scalar multipli-
cation defined by

(c + s)(v + s
i) = cv + s

i.

The definition is independent from the choise of representative, since if c1 = c2 + s,
where s ∈ s, we have

(c1 + s)(v + s
i) = c1v + s

i = c2v + sv + s
i = c2v + s

i = (c2 + s)(v + s
i),

because s ∈ s and v ∈ s
i−1. Therefore, the cardinality of s

i−1/s
i is a power of |F|.

Here we needed not the fact that S is a principal ideal ring, and as a by-product
we get

Corollary. The cardinality of a finite local ring is a prime power.

When S is a principal ideal ring each vector space s
i−1/s

i = pi−1S/piS is of
dimension one; the dimension is at most one, since each element in pi−1S is of form
spi−1. The dimension is at least one, since the inclusion piS ⊂ pi−1S is strict.

Consequently
∣
∣pi−1S/piS

∣
∣ = |F| and |S| = |F|

d
.
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Theorem II.4.4. Assume that S/R is an unramified extension and that R is
a principal ideal ring. Then S = R[α] consists precicely of elements of form
∑n−1

i=0 riα
i, where ri is in R. The representation is unique. The cardinality of

S is |S| = |R|
n
, where n is the degree of the correspondening residue class field

extension.

Proof. It has been observed that |S| = |F|
d
. Similary |R| = |K|

d
. The claims follow

from the fact |F| = |K|
n
. �

Theorem II.4.5 (Unramified extensions of principal ideal rings). Let R be
a local principal ideal ring. The ring extension S/R is unramified if and only if there
exists a basic irreducible monic polynomial f ∈ R[X] such that S ' R[X]/〈f(X)〉.

Proof. Assume first that f is monic basic irreducible. We will show that R[X]/〈f〉
is a local unramified extension of R (here R is assumed to be embedded in the
quotient ring). Let n = deg f . First we fix the set of representatives to be all
polynomials in R[X] of degree at most n − 1. This set we can always obtain, since
f is monic and the division algorthim can be used. We claim that the maximal
ideal of R[X]/〈f〉 consists precisely of those elements, whose representative has
coefficients in r. Note that by lemma II.3.6 this property will be preserved even if
we had begun with another set of representatives. It is obvious that the set descibed
is a proper ideal. Suppose now that it is properly contained in an ideal J . Choose
an element g + 〈f〉 ∈ J \ r[X] + 〈f〉, and denote g = a0 + a1X + . . . + an−1X

n−1.
By the choise of g at least one of the coefficients is not in r and consequently
πg 6= 0. Because πf were assumed to be irreducible, and deg πg < deg πf (f is
monic polynomial of degree n), we have g.c.d(πf, πg) = 1 and also g.c.d(f, g) = 1.
Then there are polynomials λ1 and λ2 in R[X] such that λ1g + λ2f = 1. Therefore

1 + 〈f〉 = λ1g + 〈f〉

is in J , consequently J = R[X]/〈f〉.

Assume now that S is an unramified extension of R. Let α and n be as in
theorem II.4.2, and f be the minimal polynomial of α. Mapping π : R[X] → K[X]
is surjective, so we take a lift of f , say h ∈ R[X]. We can also assume that h is
chosen to be monic polynomial of degree n = deg f . By corollary of lemma II.4.2
we have a representation

h(α) =

n−1∑

i=0

hiα
i,

where hi ∈ R. Projecting modulo s we obtain

0 = f(α) = πh0 + πh1α + . . . + πhn−1α
n−1,

so all coeffifients πhi are zero, since f was the minimal polynomial of α. Further,
the coefficients hi are in s ∩ R = r. Let

g(X) = h0 + h1X + . . . + hn−1X
n−1
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and f(X) = h(X) − g(X). We see that f(α) = h(α) − h(α) = 0 and πf =
πh − πg = f is irreducible as a minimal polynomial, so f is basic irreducible.
Finally we introduce a substitution morphism

F : R[X]/〈f(X)〉 → S, F (p(X) + 〈f(X)〉) = p(α).

It is clear that F is a morphism. Since f(α) = 0, the value of F is independent of
the choise of the representative. Furthermore, it was shown in corollary of II.4.2
that F is surjective. It is obvious that |R[X]/〈f(X)〉| = |R|

n
. Then F is injective

by theorem II.4.4 �

Example. Let R = Z4 and f(X) = X2 +2. Then f has no zeros in Z4, and the
quotient ring

S = Z4[X]/〈X2 + 2〉 ∼= {a + bα | a, b ∈ Z4, α
2 = 2}

is easily verified that S/αS ∼= F2. However, S is not unramified, the phenomenon
that 2 divides into proper factors in S, 2 = α2 is called ramification of 2. Note also
that π(X2 + 2) = X2, so X2 + 2 is not basic irreducible.

II.5 Galois theory briefly.

In this chapter we assume that S and R are finite local commutative rings and
that R is a principal ideal ring and a subring of S. Let H be the group of auto-
morphisms of S. For any subgroup of H, say G we let

Inv(G) = {s ∈ S | σ(s) = s for all σ ∈ H}.

It is obvious that Inv(G) is a subring of S.

Definition. Inv(G) is called the invariant ring of group G.

Definition. Ring S is called a Galois extension of R if S is an unramified
extension of R and the Galois group G of extension S/R is the subgroup of H
satisfying Inv(G) = R. Then we write G = Gal(S/R). The automorphisms fixing
all elements in R are also called R-automorphisms

Assume now that S is a Galois extension of R. Let the maximal ideals of S and
R be s and r respectively. We also denote F = S/s and K = R/r. The projection
π : S → F can be restricted to R, so we use the same notation for projection
π : R → K.

Lemma II.5.1. Let f be a polynomial in ring R[X] Assume that πf 6= 0 and that
πf has a simple zero α in K. Then polynomial f has exactly one zero α ∈ R such
that πα = α.

Proof. By assumption πf has a linear factor X − α, denote πf = (X − α)h. Then
g.c.d(X −α, h) = 1, since α is a simple zero. By Hensel’s lemma f can be factored
in ring R[X] to get f = h1h2, where πh1 = X − α and πh2 = h. Let h be any lift
of h and α′ any lift of α. Then

f = (X − α′ + g1)(h + g2),
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where g1 and g2 are in r[X]. We see directly that deg(π(X − α′ + g1)) = 1. By
lemma II.3.7 there is a monic polynomial of degree one, say p = X − α and a unit
such that

X − α′ + g1 = up = u(X − α).

Now π(X − α′ + g1) = X − πα′ = X − α and πu(X − α) = c(X − πα). Therefore
c = 1 and πα = α. Now we see that

f = u(X − α)(h + g2) = (X − α) u(h + g2)
︸ ︷︷ ︸

g

has α as a zero.

Assume that there is an other zero of f , say β, which satisfies πβ = α. Then
0 = f(β) = (β − α)g(β), and πg(β) = h(α) 6= 0, since α was supposed to be a
simple zero. It follows that g(β) is a unit, and consequently β = α. �

definition. Let S and R be as before. If σ : S → S is an R-morphism, we say
that σ : S/s → S/s given by

σ(s + s) = σ(s) + s

is induced by sigma. Now σ is well-defined, since σ fixes all elements of R, espcesially
the generator of the maximal ideal, so if s1 − s2 = ps, where s is any element of S
and p generates the maximal ideal, we also see that

σ(s1) − σ(s2) = σ(s1 − s2) = σ(ps) = σ(p)σ(s) = pσ(s) ∈ s.

It is clear that σ is also a morphism.

Let the residue class fields be K = R/r and F = S/s. If σ1 and σ2 are R-
automorphisms of S, then σ2σ1 = σ1σ2 and σ1 and σ2 are K-automorphisms of F.
This is easy to verify, for example

σ1σ2(s + s) = σ1σ2(s) + s = σ1(σ2(s) + s) = σ1(σ2(s + s))

and

σ((r + s)(s + s)) = σ(rs + s) = σ(rs) + s = rσ(s) + s = (r + s)(σ(s + s).

Briefly, the mapping AutR(S) → AutK(F) : σ 7→ σ is a morphism.

Theorem II.5.2 (Lifting theorem). Let S be an unramified extension of R with
maximal ideal s and residue class field F = S/s. For each K-automorphism σ̃ there
exists unique R-automorphism of S that induces σ̃.

Proof. Let F = K[α] and f be the minimal polynomial of α over K. By theorem
II.4.5 there exists a basic irreducible polynomial f ∈ R[X] ⊆ S[X] such that πf = f
S ∼= R[X]/〈f〉, and by lemma II.5.1 there is unique α in S such that f(α) = 0 and
πα = α. Indeed, S becomes a free R-module generated by {1, α, α2, . . . , αn−1}.
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Let σ̃ : F → F be any K-automorphism. Denote σ̃(α) = α0. Then also f(α0) = 0,
and by lemma II.5.1 there exists unique α0 in S such that f(α0) = 0 and πα0 = α0.
Define now σ(α) = α0 and extend this by

σ(r0 + r1α + . . . + rn−1α
n−1) = r0 + r1α0 + . . . + rn−1α

n−1
0 .

It is obvious that σ becomes a morphism, and even an automorphism. The latter
is verified by the fact that R[α0] becames also a free R-module generated by the
set {1, α0, α

2
0, . . . , αn−1

0 }. Further,

σ(α) = σ(α + s) = σ(α) + s = α0 + s = α0 = σ̃(α),

so σ induces the original σ.

Assume on contrary, that there is an other R-morphism σ1 that induces σ̃. Then

0 = σ1(f(α)) = f(σ1(α)),

so β = σ1(α) is a zero of f . By assumption

πα0 = α0 = σ̃(α) = σ̃(α + s) = σ1(α + s) = β + s = πβ.

By lemma II.5.1 α0 = β and consequently σ1 = σ. �

Theorem II.5.3. Let S be an unramified extension of R. Then S is a Galois
extension of R with Galois group isomorphic to the Galois group of corresponding
residue class field extension.

Proof. The mapping AutR(S) → AutK(F) : σ 7→ σ is a morphism, and it is surjec-
tive and injective by theorem II.5.2. �

Definition Galois ring GR(pe, m) is a Galois extension extension of prime ring
Zpe of degree m.

A slight modification in lifting theorem shows that Galois extension of of a prime
ring of degree m is uniquely determined up to isomorphism.

If GR(pm, d) is a Galois extension of degree m of Zpe with Galois group generated
by automorphism σ (σ is also called Frobenius-automorphism), we can define the
trace of an element by

T (s) = s + σ(s) + σ2(s) + . . . + σm−1(s).

It is clear that σ(T (s)) = T (s), so T (s) always belongs to the bottom ring. The
characters of the additive group of S are obtained by choosing a primitive pe:th
root of unity, say ω and defining

e(s) = ωT (s).

Above the power is understood in a natural way.
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II.6 More about Galois rings.

Now we fix a prime number p and a prime ring Zpe . As we saw before, Zpe

is local ring with principal maximal ideal pZpe . Recall that any element can be
written as a = upi with unique exponent of p, and so p determines an (exponent)
valuation on Zpe . Obviously unit u must not be unique. It also is obvious that the
quotient field is Fp

∼= Zpe/pZpe . We will fix the set of representatives modulo pZpe

to be
T = {0, 1, 2, . . . , p − 1}

Such a set is called transversal. Then Zpe is disjoint union of cosets pZpe , 1+ pZpe ,
2+pZpe , . . . , p−1+pZpe , so each element has a representation of form a = u0+a1p,
with unique u0 ∈ T . Furthermore, a1 has a representation u′ = u1+a2p with unique
u1 ∈ T . Substituting this we get a = u0 + u1p + a2p

2. Continuing this procedure
we obtain a representation

a = u0 + u1p + u2p
2 + . . . + ue−1p

e−1,

where ui ∈ T . This representation is unique by construction, when T remains fixed.
It is obvious that the least index i where ui 6= 0 is the order of a with respect to
exponent valuation.

The Galois extension of Zpe of degree m is equipped with a generating element
α. It is clear that alpha is a root of unity over Zpe . The construction of extesion
of degree m can be done as follows:

Let n = pm − 1. Then the polynomial Xn − 1 decomposes into pairwise coprime
factors in Fp, in fact, these factors are all monic irreducible polynomials 6= X over

Fp whose degree divides m. Furthermore, there is a factor of degree m, say h that

has got a primitive n:th root as a zero. Let us denote this root by ζ. We can lift the
decomposition of Xn − 1 in Fp into Zpe by Hensel’s lemma and choose the factor h

that corresponds h. Then we can form the Galois ring GR(pe, m):

GR(pe, m) = Zpe [X]/〈h〉.

There exists unique ζ ∈ GR(pe, m) that satisties both f(ζ) = 0 and πζ = ζ. The
element ζ is also a primitive n:th root of unity over Zpe ; since clearly ζn = 1, and

if ζk = 1 with k < m, we would have ζ
k

= 1 also. Each element in GR(pe, m) has
unique representation

a = a0 + a1ζ + a2ζ
2 + . . . + am−1ζ

m−1.

So GR(pe, m) = Zpe [ζ], and we can also say that Galois rings are obtained by
adoining a root of unity to the prime ring.

Definition. The set T = {0, 1, ζ, ζ2, . . . , ζn−1} is called the set of Teichmüller
representatives or briefly Teichmüller set.


