Coding Theory Seminar, spring 1996

Element $\overline{\zeta}$ clearly generates the multiplicative group of the corresponding extension field \mathbb{F}_{p^m} . Then we can choose T to be the set of representatives modulo $pGR(p^e, m)$, and get for each element $b \in GR(p^e, m)$ unique representation

$$
b = t_0 + pt_1 + p^2t_2 + \ldots + p^{e-1}t_{e-1},
$$

Where each $t_i \in \mathcal{T}$. Again, the least index where $t_i \neq 0$ is the order of b with respect to exponent valuation. We see now that the multiplicative stucture of the residue class field \mathbb{F}_{2^m} can be embedded in the Galois ring $GR(p^e, m)$ by $0 \mapsto 0$, $\overline{\zeta}^i \mapsto \zeta^i.$

As seen in former chapter, the automorphism group of $GR(p^e, m)$ is generated by σ which is defined by

$$
\sigma(\zeta) = \zeta^p,
$$

and extending this in the only possible way:

$$
\sigma(b) = t_0^p + pt_1^p + p^2 t_2^p + \ldots + p^{e-1} t_{e-1}^p,
$$

where *b* is as above.

The case $p = 2$, $e = 2$ is important in the applications. The bottom ring is then $\mathbb{Z}/4\mathbb{Z} := \mathbb{Z}_4$. Extension of degree m is obtained as explained above: find a primitive irreducible polynomial \overline{h} over \mathbb{F}_2 . This polynomial is a factor of $X^{2^m-1}-1$ (in $\mathbb{F}_2[X]$), and it can be lifted to be a factor of $X^{2^m-1}-1$ in $\mathbb{Z}_4[X]$ by Hensel's lemma. A more useful algorithm for finding the lift over $\mathbb{Z}_4[X]$ is given by Graeffe's method [Uspensky: Theory of equations]. The method is as follows:

Let $h_2(X) = e(X) - d(X)$, where $e(X)$ contains only even powers and $d(X)$ only odd powers of X. The basic irreducible lift of \overline{h} is then obtained by

$$
h(X^2) = \pm (e^2(X) - d^2(X)).
$$

The root of h is then adjoined to \mathbb{Z}_4 to obtain $GR(4, m)$. This root, ζ , is a primitive *n*:th root of unity over \mathbb{Z}_4 , where $n = 2^m - 1$. Each element in $GR(4, m)$ can then be represented in the form

$$
b = b_0 + b_1 \zeta + b_2 \zeta^2 + \ldots + b_{m-1} \zeta^{m-1},
$$

or in the form

$$
b = t_0 + 2t_1,
$$

where $t_0, t_1 \in \mathcal{T}$. The former representation corresponds to the additive representation in field extensions and the latter to the multiplicative representation. The latter one is of special interest: the generator of the automorphism group is obtained by

$$
\sigma(t_0 + 2t_1) = t_0^2 + 2t_1^2,
$$

Typeset by $A_{\mathcal{M}}S$ -T_EX

as shown in the lifting theorem (II.5.2). Furthermore, the natural projection is given by

$$
\pi(t_0+2t_1)=\overline{t}_0.
$$

The multiplicative representation also reveals an interesting connection to a general ring theoretic construction: Let mapping $f:GR(4, m) \to \mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ be defined by

$$
f(t_0 + 2t_1) = (\overline{t}_0, (\overline{t}_1)^2)
$$

It is clear that f is bijective mapping, since $\alpha \mapsto \alpha^2$ is a permutation of the field \mathbb{F}_{2^m} . We will now define a ring addition and multiplication on the set $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ with help of f :

$$
(\alpha_1, \beta_1) + (\alpha_2, \beta_2) = f(f^{-1}(\alpha_1, \beta_1) + f^{-1}(\alpha_2, \beta_2))
$$

$$
(\alpha_2, \beta_1) \cdot (\alpha_2, \beta_2) = f(f^{-1}(\alpha_1, \beta_1) \cdot (\alpha_2, \beta_2)).
$$

It is straightforward to verify that these operations become

$$
(\alpha_1, \beta_1) + (\alpha_2, \beta_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2 + \alpha_1 \alpha_2)
$$

$$
(\alpha_1, \beta_1) \cdot (\alpha_2, \beta_2) = (\alpha_1 \alpha_2, \alpha_1^2 \beta_2 + \alpha_2^2 \beta_1).
$$

Ring $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ equipped with operations defined above is called the ring of Witt vectors of length 2 over \mathbb{F}_{2^m} . Witt vectors can be defined over arbitrary ring and of arbitrary length [Nathan Jacobson: Basic Algebra II], but the arithmetics becomes very complicated when the length or the characterisric increases. In short lengths the approach by using Witt vectors is very useful.

Let us investigate a little bit how the general structure of local ring is reflected to the multiplicative representation. It is clear that the elements of form $2t_1$ are exactly all nilpotents. Moreover, all elemets ζ^i are clearly units. Since a sum of a unit and a nilpotent is a nilpotent, we see that all the elements of form $\zeta^i + 2t_1$ are units. There are $n \cdot (n + 1) = (2^m - 1) \cdot 2^m$ such elements, and because $|GR(4, m)^*| = |GR(4, m)| - |2GR(4, m)| = 4^m - 2^m = 2^m(2^m - 1)$, we see that these elements are all units. We have obtained:

Theorem II.6.1. The unit group of $GR(4, m)$ is of form $\mathcal{E} \times \mathcal{H}$, where $\mathcal{E} = \mathcal{T} \setminus 0$ and $\mathcal{H} = 1 + 2\mathcal{E}$.

Proof. The existence and the uniqueness of the representation of a unit in form $u = \zeta^{i}(1+2t)$ follows directly from the multiplicative representation. \square

Note that (\mathcal{H}, \cdot) is isomorphic to $(\mathbb{F}_{2^m}, +)$, isomorphism $\mathbb{F}_{2^m} \to \mathcal{H}$ given by $0 \mapsto 1$ and $\overline{\zeta}^i \mapsto 1 + 2\zeta^i$.

Next we will study a closely related topic, namely the rings of p -adic integers.

III. p-adic theory briefly

III.1. On the foundations.

The multiplicative group of rational numbers \mathbb{Q} is known to be direct product of group $\{-1, 1\}$ and of a free abelian group generated by prime numbers \mathbb{P} . That is, each $r \in \mathbb{Q}$ has unique representation of form

$$
r=\pm \prod_{p_i\in \mathbb{P}} p_i^{a_i},
$$

Where $a_i \in \mathbb{Z}$, p_i runs over all primes and only a finite number of exponents a_i are nonzero.

Now we fix a prime number p. If r is any rational number, the exponent a_i of p in the representation above is said to be the p-order of r, let us denote this exponent ord_p (r) . Mapping $\mathbb{Q} \to \mathbb{Z} : r \to \text{ord}_p(r)$ is called *(exponent) valuation* of Q. We shall also pick a symbol ∞ that is not in Z and agree that $a < \infty$ for all $a \in \mathbb{Z}$ and that $\text{ord}_p(0) = \infty$.

DEFINITION. If $\text{ord}_p(r) \geq 0$, then r is said to be rational p-adic integer.

EXAMPLE. Let $r = \frac{50}{7} = 2^1 \cdot 3^0 \cdot 5^2 \cdot 7^{-1} \cdot 11^0 \cdot 13^0 \cdot \ldots$ ord $_2(r) = 1$, ord $_3(r) = 0$, $\text{ord}_5(r) = 2$, $\text{ord}_7(r) = -1$, and $\text{ord}_p(r) = 0$ for $p > 7$. r is not a 7-adic integer, but is a *p*-adic integer for all $p \neq 7$.

By using p-order we can define a *p-adic valuation* of \mathbb{Q} : Choose a fixed real number $0 < \rho < 1$ and define $|r|_p = \rho^{\text{ord}_p(r)}$. We agree on that $\rho^{\infty} = 0$. It is easily verified that this is really a valuation, i.e. $|\cdot|_p$ satisfies the following conditions:

(V1) $|r|_p \geq 0$ and $|r| = 0$ if and only of $r = 0$.

$$
(V2) |r_1r_2|_p = |r_1|_p |r_2|_p.
$$

(V3) $|r_1 + r_2|_p \leq |r_1|_p + |r_2|_p.$

The absolute value defines also a valuation, and in the thery of p-adic numbers the absolute value of a rational number r is often denoted by $|r|_{\infty}$. The p-adic valuation satisfies a condition even stronger than (V3), namely

 $(V3') |r_1 + r_2| \leq \max\{|r_1|_p, |r_2|_p\}.$

A valuation satifying (V3') is called non-Archimedian valuation. The field Q becomes a metric space, when we define $d_p(x, y) = |x - y|_p$. This p-adic metric is even an *ultrametric*, that is, $d_p(x, z) \leq \max\{d_p(x, y), d_p(y, z)\}\$ for all x, y and z. From the theory of metric spaces we know that for each metric space V there is a *completion* of V , i.e. a metric space where V can isometrically embedded and which is complete in the sense that each Cauchy-sequence converges in that space. Furthermore, V is dense in then completion. In the case of $\mathbb Q$ equipped with p-adic metric the completion is called the *field of p-adic numbers* and denoted by \mathbb{Q}_p . The valuation can also be extended to the completion with range unchanged, in fact, for a chosen $\alpha \in \mathbb{Q}$ there exists a sequence a_1, a_2, \ldots in \mathbb{Q} converging to α , and we can define

$$
|\alpha|_p = \lim_{i \to \infty} |a_i|_p
$$

It can easily be shown that there exists an index N such that $|a_i|_p = |\alpha|_p$ for $i \ge N$. It is an easy exercise to show by using the properties of ultrametric that a sequence

$$
S_n = \sum_{i=0}^n c_i
$$

converges if and only if $|c_i|_p$ tends to zero as i tends to infinity. In the sequence

$$
S_n = \sum_{i=0}^n a_i p^i
$$

where $0 \le a_i \le p-1$ the value of a general term is $|a_i p^i|_p$ is either 0 or $\rho^i \xrightarrow{i \to \infty} 0$, and therefore the sequence converges. Next we classify the p-adic numbers with respect to the value.

DEFINITION. A *p*-adic number a is said to be

- 1) a *p*-*adic integer*, if $\text{ord}_p(a) \geq 0$, and
- 2) a *p*-*adic unit*, if $\text{ord}_p(a) = 0$.

The set of p-adic integers will unconventionally be denoted by $\mathbb{Z}_{p^{\infty}}$, and the set of p-adic units by $\mathbb{U}_{p^{\infty}}$. Furthermore, we will denote

$$
\mathbb{M}_{p^{\infty}} = \{ a \in \mathbb{Q}_p \mid \text{ord}_p(a) > 0 \}.
$$

It is easy to see that $\mathbb{Z}_{p^{\infty}}$ forms a subring of Q, and that Q is the field of fractions of $\mathbb{Z}_{p^{\infty}}$. Moreover, $\mathbb{U}_{p^{\infty}}$ is the unit group of $\mathbb{Z}_{p^{\infty}}$. It is also easy to see that $\mathbb{Z}_{p^{\infty}}$ is a local ring with maximal ideal $\mathbb{M}_{p^{\infty}}$. A similar argumentation as in lemma II.4.3 gives us the structure of the ideals of $\mathbb{Z}_{p^{\infty}}$; all of them are given by

$$
0\subset\ldots\subset p^3\mathbb{Z}_{p^{\infty}}\subset p^2\mathbb{Z}_{p^{\infty}}\subset p\mathbb{Z}_{p^{\infty}}=\mathbb{M}_{p^{\infty}}\subset \mathbb{Z}_{p^{\infty}}.
$$

III.2. Representing the p-adic numbers.

Let $\text{ord}_p(a) = n$. Then $\text{ord}_p(\frac{a}{p^n}) = n - n = 0$, so $\frac{a}{p^n}$ is a p-adic unit, let us denoite $u = \frac{a}{p^n}$. Therefore each nonzero *p*-adic number can be written as $a = up^n$, where u is a unit and $n = \text{ord}_p(a)$. Furthermore, the exponent of p is unique; this can be verified by counting orders in both sides of $up^n = vp^m$, and since all elements here are in field, we can cancel p^n in $up^n = vp^n$ to obtain

Proposition III.1.1. Each nonzero p-adic number α can be represented uniquely in the form $\alpha = up^n$, where u is a unit and $n = \text{ord}_p(\alpha)$.

The quotient field $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{F}_p$, and the set of representatives modulo p can be chosen to be

$$
T = \{0, 1, 2, \ldots, p - 1\}.
$$

It can (easily) be shown, that also $\mathbb{Z}_{p^{\infty}}/p\mathbb{Z}_{p^{\infty}} \cong \mathbb{F}_{p}$, and the set above is suitable to represent the cosets modulo $p\mathbb{Z}_{p^{\infty}}$. So for each p-adic integer α there exists a representation $\alpha = u_0 + p\alpha_1$, where $u_0 \in T$. Applying the same procedure to α_1 and so on we obtain a representation for a p -adic number by a convergent series

$$
\alpha = u_0 + u_1 p + u_2 p^2 + u_3 p^3 \dots,
$$

 $u_i \in T$. In general, any p-adic number can be represented as a convergent series like above, but also negative powers of p can be included;

$$
\alpha = u_{-n}p^{-n} + u_{-n+1}p^{-n+1} + \ldots + u_{-1}p^{-1} + a_0 + a_1p + a_2p^2 + \ldots,
$$

 $u_i \in T$, $u_{-n} \neq 0$. It is also obvious that $\text{ord}_p(\alpha) = -n$ above.

III.3. Some further connections.

The value group of a p-adic number field \mathbb{Q}_p is the additive group of all possible orders of nonzero elements in \mathbb{Q}_p and (exponent) valuation is a group morphism from \mathbb{Q}_p^* onto the value group. We have seen that in $\text{ord}_p(p^n) = n$, so we see that the value group of \mathbb{Q}_p is \mathbb{Z} . The additive group of integers is always a subgroup of the value group of any extension of \mathbb{Q}_p . Let us suppose that \mathbb{F}/\mathbb{Q}_p is a finite field extension. It can be shown that the p-adic valuation can be uniquely extended to **F.** Suppose that the value groups of **F** and \mathbb{Q}_p are G and Z respectively. In the extension field F the consepts of integer ring and the unit group of the integer ring can be defined exactly in the same fashion as in \mathbb{Q}_p :

$$
\mathbb{Z}_{\mathbb{F}} = \{ \alpha \in \mathbb{F} \mid \text{ord}_p(\alpha) \ge 0 \}
$$

$$
\mathbb{U}_{\mathbb{F}} = \{ \alpha \in \mathbb{F} \mid \text{ord}_p(\alpha) = 0 \}
$$

The index $e = [G : \mathbb{Z}]$ is said to be the *ramification index* of the extension. The extension \mathbb{F}/\mathbb{Q}_p is *ramified*, if $e > 1$ and *unramified*, if $e = 1$. As in the theory of Galois rings, the maximal ideal of the integer ring of $\mathbb F$ is generated by p. Moreover, when the extension is unramified, the residue class field exntension is of the same degree than the extension of \mathbb{Q}_p : Let $n = [\mathbb{F} : \mathbb{Q}_p]$. Then $\mathbb{Z}_{p^{\infty}}/p\mathbb{Z}_{p^{\infty}} \cong \mathbb{F}_p$, and $\mathbb{Z}_{\mathbb{F}}/p\mathbb{Z}_{\mathbb{F}} \cong \mathbb{F}_{p^n}$. In general case the connection is given by $n = ef$, where e is the ramification index and f is degree of the residue class field extension.

It can be shown that each p-adic number field has an unramified extension of arbitrary degree m , and that this extension is unique up to isomorphism. Furthermore, this extension is obtained by adjoining the *n*:th root of unity, where $n = p^m - 1.$

Another formulation of Hensel's lemma holds in p -adic number fields. Here we denote the projection $\mathbb{Z}_{p^{\infty}} \to \mathbb{Z}_{p^{\infty}}/p\mathbb{Z}_{p^{\infty}} \cong \mathbb{F}_p$ by π as usual.