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Element ¢ clearly generates the multiplicative group of the corresponding ex-
tension field F,». Then we can choose 7 to be the set of representatives modulo
pGR(p®,m), and get for each element b € GR(p®, m) unique representation

b= to +pt1 +p2t2 + ... +p6_1t6—17

Where each t; € 7. Again, the least index where ¢; # 0 is the order of b with
respect to exponent valuation. We see now that the multiplicative stucture of the
residue class field Fom can be embedded in the Galois ring GR(p®, m) by 0 — 0,

=
As seen in former chapter, the automorphism group of GR(p®, m) is generated
by o which is defined by
o(¢) = ¢,

and extending this in the only possible way:
o(b) =th +pt] + p*th + ...+ p 10,

where b is as above.

The case p = 2, e = 2 is important in the applications. The bottom ring is
then Z/4AZ := Z4. Extension of degree m is obtained as explained above: find a
primitive irreducible polynomial i over Fy. This polynomial is a factor of X2 ~*—1
(in Fo[X]), and it can be lifted to be a factor of X2 ~! — 1 in Z4[X] by Hensel’s
lemma. A more useful algorithm for finding the lift over Z4[X] is given by Graeffe’s
method [Uspensky: Theory of equations]. The method is as follows:

Let ha(X) = e(X) —d(X), where e(X) contains only even powers and d(X) only
odd powers of X. The basic irreducible lift of A is then obtained by

h(X?) = £((X) — d*(X)).

The root of h is then adjoined to Z4 to obtain GR(4,m). This root, (, is a primitive
n:th root of unity over Z4, where n = 2™ — 1. Each element in GR(4, m) can then
be represented in the form

b=0bo+ b1 +b*+ ...+ b1 (™

or in the form
b= tO + 2t17

where tg,t; € 7. The former representation corresponds to the additive represen-
tation in field extensions and the latter to the multiplicative representation. The
latter one is of special interest: the generator of the automorphism group is obtained
by

o(to 4 2ty) = t2 + 2t2,
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as shown in the lifting theorem (I1.5.2). Furthermore, the natural projection is
given by
7T<t0 -+ 2t1) = %O.

The multiplicative representation also reveals an interesting connection to a general
ring theoretic construction: Let mapping f : GR(4,m) — Fam X Fom be defined by

fto+2t1) = (o, (11)*)
It is clear that f is bijective mapping, since a — a? is a permutation of the field
Fom. We will now define a ring addition and multiplication on the set Fom X Fom
with help of f:

(a1, B1) + (a2, B2) = f(f (a1, B1) + [ (a2, B2))
(az, B1) - (az, B2) = f(fH(ea, B1) - (o2, B2)).

It is straightforward to verify that these operations become

(a1, B1) + (a2, B2) = (a1 + ag, B1 + B2 + 1)
(a1, B1) - (a2, B2) = (102, 03 B2 + 03 61).

Ring Fom x Fom equipped with operations defined above is called the ring of Witt
vectors of length 2 over Fom. Witt vectors can be defined over arbitrary ring and of
arbitrary length [Nathan Jacobson: Basic Algebra II], but the arithmetics becomes
very complicated when the length or the characterisric increases. In short lengths
the approach by using Witt vectors is very useful.

Let us investigate a little bit how the general structure of local ring is reflected
to the multiplicative representation. It is clear that the elements of form 2t; are
exactly all nilpotents. Moreover, all elemets (¢ are clearly units. Since a sum of a
unit and a nilpotent is a nilpotent, we see that all the elements of form (¢ + 2t;
are units. There are n - (n + 1) = (2™ — 1) - 2™ such elements, and because
|GR(4,m)*| = |GR(4,m)| — [2GR(4,m)| = 4™ — 2™ = 2™(2™ — 1), we see that
these elements are all units. We have obtained:

Theorem I1.6.1. The unit group of GR(4,m) is of form & x H, where € =T \ 0
and H =1+ 2€&.

Proof. The existence and the uniqueness of the representation of a unit in form
u = C*(1 + 2t) follows directly from the multiplicative representation. [

Note that (7, -) is isomorphic to (Fgm, +), isomorphism Fam — H given by 0 — 1
and ¢ — 1+ 2¢%

Next we will study a closely related topic, namely the rings of p-adic integers.
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III. p-adic theory briefly

ITI1.1. On the foundations.

The multiplicative group of rational numbers Q is known to be direct product
of group {—1,1} and of a free abelian group generated by prime numbers P. That
is, each r € Q has unique representation of form

r::i:Hp;“,

p;, EP

Where a; € Z, p; runs over all primes and only a finite number of exponents a; are
nonzero.

Now we fix a prime number p. If r is any rational number, the exponent a;
of p in the representation above is said to be the p-order of r, let us denote this
exponent ord,(r). Mapping Q — Z : r — ord,(r) is called (exponent) valuation of
Q. We shall also pick a symbol oco that is not in Z and agree that a < oo for all
a € Z and that ord,(0) = cc.

DEFINITION. If ord,(r) > 0, then r is said to be rational p-adic integer.

EXAMPLE. Let r =32 =21.30.52.771.110.13%. .. ordy(r) = 1, ords(r) = 0,
ords(r) = 2, ord7(r) = —1, and ord,(r) = 0 for p > 7. r is not a 7-adic integer, but
is a p-adic integer for all p # 7.

By using p-order we can define a p-adic valuation of Q: Choose a fixed real
number 0 < p < 1 and define |r|, = p°rde(")  We agree on that p> = 0. It is easily
verified that this is really a valuation, i.e. ||, satisfies the following conditions:

(V1) [|r], > 0 and |r| = 0 if and only of r = 0.
(V2) [riral, = [r1l, |r2],-
(Vg) ’7”1 + T2|p < ‘T1|p + |T2‘p.

The absolute value defines also a valuation, and in the thery of p-adic numbers
the absolute value of a rational number r is often denoted by |r|_. The p-adic
valuation satisfies a condition even stronger than (V3), namely

(V3) |r1 4+ ra| <max{[ri],,[r2|,}-

A valuation satifying (V3’) is called non-Archimedian valuation. The field Q
becomes a metric space, when we define dp(z,y) = |z —y|,. This p-adic metric is
even an ultrametric, that is, d,(z,2) < max{d,(z,y),d,(y, z)} for all z, y and z.
From the theory of metric spaces we know that for each metric space V' there is
a completion of V| i.e. a metric space where V' can isometrically embedded and
which is complete in the sense that each Cauchy-sequence converges in that space.
Furthermore, V' is dense in then completion. In the case of Q equipped with p-adic
metric the completion is called the field of p-adic numbers and denoted by Q,. The
valuation can also be extended to the completion with range unchanged, in fact,
for a chosen a € QQ there exists a sequence aq, as, ... in Q converging to «, and we
can define

|
11— 00

p p



26

It can easily be shown that there exists an index N such that |a;|, = ||, fori > N.
It is an easy exercise to show by using the properties of ultrametric that a sequence

n
Sn: E C;
1=0

converges if and only if [¢;|, tends to zero as i tends to infinity. In the sequence

n
Sn = Z aipi
=0

where 0 < a; < p—1 the value of a general term is ’aipi ’p is either 0 or p° oo, 0,
and therefore the sequence converges. Next we classify the p-adic numbers with
respect to the value.

DEFINITION. A p-adic number a is said to be
1) a p-adic integer, if ord,(a) > 0, and
2) a p-adic unit, if ord,(a) = 0.

The set of p-adic integers will unconventionally be denoted by Z,~, and the set
of p-adic units by Upe. Furthermore, we will denote

My = {a € Q, | ord,(a) > 0}.

It is easy to see that Z,~ forms a subring of @, and that Q is the field of fractions
of Zype. Moreover, Uy is the unit group of Z,~. It is also easy to see that Z,~ is
a local ring with maximal ideal M. A similar argumentation as in lemma II.4.3
gives us the structure of the ideals of Zp; all of them are given by

0cC...C pBZpoo CpQZpoo C proo = Mpoo C Zpoo.

II1.2. Representing the p-adic numbers.

Let ordy(a) = n. Then ordp(;%) = n—n = 0, so & is a p-adic unit, let us
denoite u = ]%. Therefore each nonzero p-adic number can be written as a = up™,
where u is a unit and n = ord,(a). Furthermore, the exponent of p is unique;
this can be verified by counting orders in both sides of up™ = vp™, and since all

elements here are in field, we can cancel p™ in up™ = vp™ to obtain

Proposition II1.1.1. Fach nonzero p-adic number o can be represented uniquely
in the form o = up™, where u is a unit and n = ord,(«).

The quotient field Z/pZ = F,,, and the set of representatives modulo p can be
chosen to be
T={0,1,2,...,p—1}.

It can (easily) be shown, that also Zye /pZ,~ = F,, and the set above is suitable
to represent the cosets modulo pZ,~. So for each p-adic integer o there exists a
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representation a = ug + pay, where ug € T. Applying the same procedure to «a;
and so on we obtain a representation for a p-adic number by a convergent series

a = ug 4+ urp + ugp® + uzp® . ..

u; € T. In general, any p-adic number can be represented as a convergent series
like above, but also negative powers of p can be included;

—n+1
n—|—+

O=U_pp "+ U_pi1D coup tHag+ap+apt+.. .,

u; € T, u_p, # 0. It is also obvious that ord,(«) = —n above.
II1.3. Some further connections.

The value group of a p-adic number field Q,, is the additive group of all possible
orders of nonzero elements in Q, and (exponent) valuation is a group morphism
from @y, onto the value group. We have seen that in ord,(p") = n, so we see that
the value group of Q, is Z. The additive group of integers is always a subgroup of
the value group of any extension of Q,. Let us suppose that F/Q, is a finite field
extension. It can be shown that the p-adic valuation can be uniquely extended to
F. Suppose that the value groups of F and Q, are G and Z respectively. In the
extension field F the consepts of integer ring and the unit group of the integer ring
can be defined exactly in the same fashion as in Q,:

Zy = {a € F | ord,(a) > 0}
Up = {a € F|ord,(a) =0}

The index e = [G : Z] is said to be the ramification index of the extension. The
extension F/Q, is ramified, if e > 1 and unramified, if e = 1. As in the theory of
Galois rings, the maximal ideal of the integer ring of I is generated by p. Moreover,
when the extension is unramified, the residue class field exntension is of the same
degree than the extension of Q,: Let n = [F : Q). Then Zy~ /pZy~ = F,, and
Zy/pZyp = Fpn. In general case the connection is given by n = ef, where e is the
ramification index and f is degree of the residue class field extension.

It can be shown that each p-adic number field has an unramified extension of
arbitrary degree m, and that this extension is unique up to isomorphism. Fur-
thermore, this extension is obtained by adjoining the n:th root of unity, where
n=p"—1.

Another formulation of Hensel’s lemma holds in p-adic number fields. Here we
denote the projection Zyeo — Zpoo /pZyp= =), by m as usual.



