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Element ζ clearly generates the multiplicative group of the corresponding ex-
tension field Fpm . Then we can choose T to be the set of representatives modulo
pGR(pe, m), and get for each element b ∈ GR(pe, m) unique representation

b = t0 + pt1 + p2t2 + . . . + pe−1te−1,

Where each ti ∈ T . Again, the least index where ti 6= 0 is the order of b with
respect to exponent valuation. We see now that the multiplicative stucture of the
residue class field F2m can be embedded in the Galois ring GR(pe, m) by 0 7→ 0,

ζ
i
7→ ζi.

As seen in former chapter, the automorphism group of GR(pe, m) is generated
by σ which is defined by

σ(ζ) = ζp,

and extending this in the only possible way:

σ(b) = tp0 + ptp1 + p2tp2 + . . . + pe−1tpe−1,

where b is as above.

The case p = 2, e = 2 is important in the applications. The bottom ring is
then Z/4Z := Z4. Extension of degree m is obtained as explained above: find a
primitive irreducible polynomial h over F2. This polynomial is a factor of X2m

−1−1
(in F2[X]), and it can be lifted to be a factor of X2m

−1 − 1 in Z4[X] by Hensel’s
lemma. A more useful algorithm for finding the lift over Z4[X] is given by Graeffe’s
method [Uspensky: Theory of equations]. The method is as follows:

Let h2(X) = e(X)−d(X), where e(X) contains only even powers and d(X) only
odd powers of X. The basic irreducible lift of h is then obtained by

h(X2) = ±(e2(X) − d2(X)).

The root of h is then adjoined to Z4 to obtain GR(4, m). This root, ζ, is a primitive
n:th root of unity over Z4, where n = 2m − 1. Each element in GR(4, m) can then
be represented in the form

b = b0 + b1ζ + b2ζ
2 + . . . + bm−1ζ

m−1,

or in the form
b = t0 + 2t1,

where t0, t1 ∈ T . The former representation corresponds to the additive represen-
tation in field extensions and the latter to the multiplicative representation. The
latter one is of special interest: the generator of the automorphism group is obtained
by

σ(t0 + 2t1) = t20 + 2t21,
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as shown in the lifting theorem (II.5.2). Furthermore, the natural projection is
given by

π(t0 + 2t1) = t0.

The multiplicative representation also reveals an interesting connection to a general
ring theoretic construction: Let mapping f : GR(4, m) → F2m ×F2m be defined by

f(t0 + 2t1) = (t0, (t1)
2)

It is clear that f is bijective mapping, since α 7→ α2 is a permutation of the field
F2m . We will now define a ring addition and multiplication on the set F2m × F2m

with help of f :

(α1, β1) + (α2, β2) = f(f−1(α1, β1) + f−1(α2, β2))

(α2, β1) · (α2, β2) = f(f−1(α1, β1) · (α2, β2)).

It is straightforward to verify that these operations become

(α1, β1) + (α2, β2) = (α1 + α2, β1 + β2 + α1α2)

(α1, β1) · (α2, β2) = (α1α2, α
2
1β2 + α2

2β1).

Ring F2m × F2m equipped with operations defined above is called the ring of Witt
vectors of length 2 over F2m . Witt vectors can be defined over arbitrary ring and of
arbitrary length [Nathan Jacobson: Basic Algebra II], but the arithmetics becomes
very complicated when the length or the characterisric increases. In short lengths
the approach by using Witt vectors is very useful.

Let us investigate a little bit how the general structure of local ring is reflected
to the multiplicative representation. It is clear that the elements of form 2t1 are
exactly all nilpotents. Moreover, all elemets ζ i are clearly units. Since a sum of a
unit and a nilpotent is a nilpotent, we see that all the elements of form ζ i + 2t1
are units. There are n · (n + 1) = (2m − 1) · 2m such elements, and because
|GR(4, m)∗| = |GR(4, m)| − |2GR(4, m)| = 4m − 2m = 2m(2m − 1), we see that
these elements are all units. We have obtained:

Theorem II.6.1. The unit group of GR(4, m) is of form E ×H, where E = T \ 0
and H = 1 + 2E.

Proof. The existence and the uniqueness of the representation of a unit in form
u = ζi(1 + 2t) follows directly from the multiplicative representation. �

Note that (H, ·) is isomorphic to (F2m , +), isomorphism F2m → H given by 0 7→ 1

and ζ
i
7→ 1 + 2ζi.

Next we will study a closely related topic, namely the rings of p-adic integers.
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III. p-adic theory briefly

III.1. On the foundations.

The multiplicative group of rational numbers Q is known to be direct product
of group {−1, 1} and of a free abelian group generated by prime numbers P. That
is, each r ∈ Q has unique representation of form

r = ±
∏

pi∈P

pai

i ,

Where ai ∈ Z, pi runs over all primes and only a finite number of exponents ai are
nonzero.

Now we fix a prime number p. If r is any rational number, the exponent ai

of p in the representation above is said to be the p-order of r, let us denote this
exponent ordp(r). Mapping Q → Z : r → ordp(r) is called (exponent) valuation of
Q. We shall also pick a symbol ∞ that is not in Z and agree that a < ∞ for all
a ∈ Z and that ordp(0) = ∞.

Definition. If ordp(r) ≥ 0, then r is said to be rational p-adic integer.

Example. Let r = 50
7

= 21 · 30 · 52 · 7−1 · 110 · 130 · . . . . ord2(r) = 1, ord3(r) = 0,
ord5(r) = 2, ord7(r) = −1, and ordp(r) = 0 for p > 7. r is not a 7-adic integer, but
is a p-adic integer for all p 6= 7.

By using p-order we can define a p-adic valuation of Q: Choose a fixed real
number 0 < ρ < 1 and define |r|

p
= ρordp(r). We agree on that ρ∞ = 0. It is easily

verified that this is really a valuation, i.e. | · |
p

satisfies the following conditions:

(V1) |r|
p
≥ 0 and |r| = 0 if and only of r = 0.

(V2) |r1r2|p = |r1|p |r2|p.

(V3) |r1 + r2|p ≤ |r1|p + |r2|p.

The absolute value defines also a valuation, and in the thery of p-adic numbers
the absolute value of a rational number r is often denoted by |r|

∞
. The p-adic

valuation satisfies a condition even stronger than (V3), namely

(V3’) |r1 + r2| ≤ max{|r1|p , |r2|p}.

A valuation satifying (V3’) is called non-Archimedian valuation. The field Q

becomes a metric space, when we define dp(x, y) = |x − y|
p
. This p-adic metric is

even an ultrametric, that is, dp(x, z) ≤ max{dp(x, y), dp(y, z)} for all x, y and z.
From the theory of metric spaces we know that for each metric space V there is
a completion of V , i.e. a metric space where V can isometrically embedded and
which is complete in the sense that each Cauchy-sequence converges in that space.
Furthermore, V is dense in then completion. In the case of Q equipped with p-adic
metric the completion is called the field of p-adic numbers and denoted by Qp. The
valuation can also be extended to the completion with range unchanged, in fact,
for a chosen α ∈ Q there exists a sequence a1, a2, . . . in Q converging to α, and we
can define

|α|
p

= lim
i→∞

|ai|p
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It can easily be shown that there exists an index N such that |ai|p = |α|
p

for i ≥ N .
It is an easy exercise to show by using the properties of ultrametric that a sequence

Sn =

n
∑

i=0

ci

converges if and only if |ci|p tends to zero as i tends to infinity. In the sequence

Sn =
n

∑

i=0

aip
i

where 0 ≤ ai ≤ p− 1 the value of a general term is
∣

∣aip
i
∣

∣

p
is either 0 or ρi i→∞

−−−→ 0,

and therefore the sequence converges. Next we classify the p-adic numbers with
respect to the value.

Definition. A p-adic number a is said to be

1) a p-adic integer, if ordp(a) ≥ 0, and

2) a p-adic unit, if ordp(a) = 0.

The set of p-adic integers will unconventionally be denoted by Zp∞ , and the set
of p-adic units by Up∞ . Furthermore, we will denote

Mp∞ = {a ∈ Qp | ordp(a) > 0}.

It is easy to see that Zp∞ forms a subring of Q, and that Q is the field of fractions
of Zp∞ . Moreover, Up∞ is the unit group of Zp∞ . It is also easy to see that Zp∞ is
a local ring with maximal ideal Mp∞ . A similar argumentation as in lemma II.4.3
gives us the structure of the ideals of Zp∞ ; all of them are given by

0 ⊂ . . . ⊂ p3Zp∞ ⊂ p2Zp∞ ⊂ pZp∞ = Mp∞ ⊂ Zp∞ .

III.2. Representing the p-adic numbers.

Let ordp(a) = n. Then ordp(
a

pn ) = n − n = 0, so a
pn is a p-adic unit, let us

denoite u = a
pn . Therefore each nonzero p-adic number can be written as a = upn,

where u is a unit and n = ordp(a). Furthermore, the exponent of p is unique;
this can be verified by counting orders in both sides of upn = vpm, and since all
elements here are in field, we can cancel pn in upn = vpn to obtain

Proposition III.1.1. Each nonzero p-adic number α can be represented uniquely
in the form α = upn, where u is a unit and n = ordp(α).

The quotient field Z/pZ ∼= Fp, and the set of representatives modulo p can be
chosen to be

T = {0, 1, 2, . . . , p − 1}.

It can (easily) be shown, that also Zp∞/pZp∞
∼= Fp, and the set above is suitable

to represent the cosets modulo pZp∞ . So for each p-adic integer α there exists a
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representation α = u0 + pα1, where u0 ∈ T . Applying the same procedure to α1

and so on we obtain a representation for a p-adic number by a convergent series

α = u0 + u1p + u2p
2 + u3p

3 . . . ,

ui ∈ T . In general, any p-adic number can be represented as a convergent series
like above, but also negative powers of p can be included;

α = u−np−n + u−n+1p
−n+1 + . . . + u−1p

−1 + a0 + a1p + a2p
2 + . . . ,

ui ∈ T , u−n 6= 0. It is also obvious that ordp(α) = −n above.

III.3. Some further connections.

The value group of a p-adic number field Qp is the additive group of all possible
orders of nonzero elements in Qp and (exponent) valuation is a group morphism
from Q∗

p onto the value group. We have seen that in ordp(p
n) = n, so we see that

the value group of Qp is Z. The additive group of integers is always a subgroup of
the value group of any extension of Qp. Let us suppose that F/Qp is a finite field
extension. It can be shown that the p-adic valuation can be uniquely extended to
F. Suppose that the value groups of F and Qp are G and Z respectively. In the
extension field F the consepts of integer ring and the unit group of the integer ring
can be defined exactly in the same fashion as in Qp:

ZF = {α ∈ F | ordp(α) ≥ 0}

UF = {α ∈ F | ordp(α) = 0}

The index e = [G : Z] is said to be the ramification index of the extension. The
extension F/Qp is ramified, if e > 1 and unramified, if e = 1. As in the theory of
Galois rings, the maximal ideal of the integer ring of F is generated by p. Moreover,
when the extension is unramified, the residue class field exntension is of the same
degree than the extension of Qp: Let n = [F : Qp]. Then Zp∞/pZp∞

∼= Fp, and
ZF/pZF

∼= Fpn . In general case the connection is given by n = ef , where e is the
ramification index and f is degree of the residue class field extension.

It can be shown that each p-adic number field has an unramified extension of
arbitrary degree m, and that this extension is unique up to isomorphism. Fur-
thermore, this extension is obtained by adjoining the n:th root of unity, where
n = pm − 1.

Another formulation of Hensel’s lemma holds in p-adic number fields. Here we
denote the projection Zp∞ → Zp∞/pZp∞

∼= Fp by π as usual.


