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Hilbert’s tenth problem is reprinted in: “Mathematical developments arising
form Hilbert problems” (Proceedings of Symposia in Pure Mathematics, American
Mathematical Society, Providence, Rhode Island, 1976) and translated as

10. Determination of the Solvability of a Diophantine Equation.

Given a diophantine equation with any number of unknown quantities and with
rational integer numerical coefficients: To devise a process according to which it

can be determined by a finite number of operations wheter the equation is solvable

in rational integers.

Preliminaries

The set of natural numbers here is N = {0, 1, 2, . . .}, Z+ = N \ {0}, Z =
{. . . ,−2,−1, 0, 1, 2, . . .}.

Diophantine equation is of form

D(x1, . . . , xm) = 0, (1.1.1)

where D(x1, . . . , xm) ∈ Z[x1, . . . , xm]. Sometimes form

DL(x1, . . . , xm) = DR(x1, . . . , xm), (1.1.2)

Where DL(x1, . . . , xm), DR(x1, . . . , xm) ∈ Z+[x1, . . . , xm] is preferrable.

System










D1(x1, . . . , xm) = 0

. . .

Dk(x1, . . . , xm) = 0

(1.2.1)

has an integer solution if and only if the Diophantine equation

D2
1(a1, . . . , xm) + . . . + D2

k(x1, . . . , xm) = 0 (1.2.2)

has one.

We will call two systems of Diophantine equations (solvability) equivalent, if
they have the same solvability status.

Introducing new variables any Diophantine equation can be tranformed into an
equivalent system consisting of equations of forms

α = β + γ
1
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and

α = βγ,

where α, β and γ are either natural numbers or variables. Take, for instance

4x2y − 5x3 + 2y = 0.

Transposing the negative terms we get

4x2y + 2y = 5z3.

Substituting r1 = 4x, s1 = 2y, t1 = 5z we get

r1xy + s1 = t1z
2.

Continuing this way, r2 = r1x, t2 = t1z, we have

r2y + s1 = t2z.

Furthermore, letting r3 = r2y and t3 = t2z the equation becomes

r3 + s1 = t3.

Finally substituting q1 = r3 + s1 we see that the original equation is equivalent to
system







r1 = 4x r2 = r1x r3 = r2y
t1 = 5z t2 = t1z t3 = t2z
s1 = 2y q1 = r3 + s1 q1 = t2

We conclude that each Diophantine equation is (solvability) equivalent to a Dio-
phantine equation of degree four.

Open problem: Is the restriction of Hilbert’s Tenth problem to equations of
degree 3 undecidable?

Solutions in natural numbers

Let p be an odd prime number. Then the Diophantine equation

(x + 1)p + (y + 1)p = (z + 1)p

has infinitely many solutions of form x = z, y = −1, but it has no natural number
solutions (Wiles 1995).

Let

D(x1, . . . , xm) = 0 (1.3.2)
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be an arbitrary Diophantine equation. Any solution of system



















D(x1, . . . , xm) = 0

x1 = y2
11 + y2

12 + y2
13 + y2

14

. . .

xm = y2
m1 + y2

m2 + y2
m3 + y2

m4

(1.3.3)

is clearly an integer solution of (1.3.2), but since any natural number can be ex-
pressed as a sum of four squares, also any solution of (1.3.2) yields a solution of
(1.3.3). System (1.3.3) can be compressed into a single equation

E(x1, . . . , xm, y11, . . . , ym4) = 0 (1.3.4)

that is solvable in integers if and only if (1.3.2) is solvable in natural numbers.

We have seen that it suffices to establish the unsolvability of Hilbert’s Tenth
Problem for solutions in natural numbers.

For this on, latin letters a, b, c, . . . will stand for natural numbers, unless
explicitely otherwise stated.

Families of Diophantine equations

Let D be a polynomial with integer coefficients with variables a1, . . . , an, x1,
. . . , xn. Fixing parameters a1, . . . , an in equation

D(a1, . . . , an, x1, . . . , xm) = 0 (1.4.1)

yields a particular equation in a family of Diophantine equations. The parametric
equation (1.4.1) defines a set M that consists of those n-tuples (a1, . . . , an) for
which (1.4.1) has a solution in natural numbers:

(a1, . . . , an) ∈ M ⇐⇒ ∃x1, . . . , xm [D(a1, . . . , an, x1, . . . , xm) = 0]. (1.4.2)

Eqivalence (1.4.2) is a Diophantine representation of M. Any subset of Nn that has
a Diophantine representation, is called a Diophantine set of dimension n. Clearly
there are infinitely many Diophantine representations for a Diophantine set.

If A ⊆ Na and f : A → N is a function and set

{(f(x1, . . . , xn), x1, . . . , xn) | (x1, . . . , xn) ∈ A}

is a Diophantine set, we say that f is a Diophantine function. In the same manner,
we define a Diophantine relation.

No restrictions were imposed on the equation (1.4.1), but as we have seen, we
could require that (1.4.1) should be an equation of degree four.
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Examples. Set E of even numbers is Diophantine:

a ∈ E ⇐⇒ ∃x [2x = a].

We will also say that property “is an even number” is Diophantine and denote

Even(a) ⇐⇒ ∃x [2x = a]

Relation {(a, b) ∈ N2 | a 6= b} is Diophantine:

a 6= b ⇐⇒ ∃x[(a − b)2 = x + 1].

Union and intersection of Diophantine sets of the same dimension is also Diophan-
tine: If

D1(a1, . . . , an, x1, . . . , xm1
) = 0

and
D2(a1, . . . , an, x1, . . . , xm2

) = 0

define Diophantine representations for two sets, then the equation

D1(a1, . . . , an, x1, . . . , xm1
) · D2(a1, . . . , an, x1, . . . , xm2

) = 0

yields a Diophantine representation for their union and

D2
1(a1, . . . , an, x1, . . . , xm1

) + D2
2(a1, . . . , an, y1, . . . , ym2

) = 0

gives the required representation for the intersection.

Equation
D(a, x1, . . . , xm) = 0

has a solution x1, . . . , xm if and only if the equation

(x0 + 1)(1 − D2(x0, . . . , xm)) − 1 = a

has a solution in unknowns x0, . . . , xm. Therefore, a set of natural numbers is
Diophantine if and only if it is the set of all natural number values assumed by
some polynomial with integer coefficients for natural number values of its variables.

Generalized Diophantine representations

Let P be a polynomial with integer coefficients. We handle also equations of
form

P (t1, . . . , tk) = 0, (1.5.7)

where t1, . . . , tk are Diophantine terms, that is, expressions constructed in the
natural manner from variables, natural numbers, symbols “+”, “-”, “·”and symbols
for Diophantine functions. To be precise, we define the Diophantine terms to be
the smallest set that satisfies the following:

1) Natural numbers and variable symbols are Diophantine terms.
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2) If t1 and t2 are Diophantine terms, then also t1 + t2, t1 − t2 and t1t2 are Dio-
phantine terms.

3) If F is a Diophantine function and t1, . . . , tk Diophantine terms, then also
F (t1, . . . , tk) is a Diophantine term.

Inductively, introducing new variables, we can obtain a system of equations of
forms (1.2.5), (1.2.6) and

α = F (β1, . . . , βn), (1.5.8)

where F is a Diophantine function and α, β1, . . . , βn variables or natural numbers,
that has a solution if and only if (1.5.7) has.

Moreover, we can replace each equation (1.5.8) by

α = F (β1, . . . , βn) ⇐⇒ ∃y1 . . . ym [D(α, β1, . . . , βn, y1, . . . , ym) = 0], (1.5.6)

where D gives the Diophantine representation of F and y1, . . . , ym are new variables
that has not yet beem used. The resulting system can then be compressed into a
single equation equivalent to (1.5.7).

In generalized Diophantine equations we will also use symbols & and ∨ for the
intersection and union of Diophantine relations:

R(a1, . . . , an) ⇐⇒ ∃x1, . . . , xm [D(a1, . . . , an, x1, . . . , xm) = 0]

is called a Diophantine representation of relation R. If R1 and R2 are Diophantine
relations of same dimensions, then

R(a1, . . . , an) ⇐⇒ R1(a1, . . . , an) ∨R2(a1, . . . , an)

and
S(a1, . . . , an) ⇐⇒ R1(a1, . . . , an) &R2(a1, . . . , an)

are the generalized Diophantine representations for their union and intersection
respectively. We have seen that both of them also have the genuine Diophantine
representation.

If R is a Diophantine relation and t1, . . . , tn Diophantine terms, then generalized
Diophantine assertion is equivalent to

∃t1, . . . rn[R(t1, . . . , tn) & t1 = t1 & . . . , & tn = tn].

Examples. Property Even(a) has a genuine Diophantine representation:

Even(a) ⇐⇒ ∃x [2x = a].

Property Odd(a) has a generalized Diophantine representation

Odd(a) ⇐⇒ Even(a + 1),

but also a genuine Diophantine representation:

Odd(a) ⇐⇒ ∃x [2x + 1 = a].

Then
Even(a) ⇐⇒ Odd(a + 1)

is a generalized Diophantine representation.
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Some Diophantine sets, properties, relations, and functions

We have seen that relation 6= is Diophantine in N2. We have also

a ≤ b ⇐⇒ ∃x [a + x = b],

a < b ⇐⇒ ∃x [a + x + 1 = b], and

a | b ⇐⇒ ∃x[ax = b]

A generalized Diophantine representation for the congruence with respect to a pos-
itive modulus is given by

a ≡ b (mod c) ⇐⇒ c | (b − a).

The function “remainder on dividing b by c” has a generalized Diophantine repre-
sentation:

a = rem(b, c) ⇐⇒ a < c & b ≡ a (mod c).

Function arem(b, c) is the least absolute value |χ| among all numbers χ congruent
to b with respect to modulus c, that is,

arem (b, c) ≡ ±b arem 0 ≤ arem(b, c) ≤
c

2
.

Function arem(b, c) is Diophantine:

a = arem b, c ⇐⇒ 2a ≤ c & [c | (b − a) ∨ c | (b + a)].

Also, non-divisibility is Diophantine:

a - b ⇐⇒ rem(b, a) > 0.

In the semiring of natural numbers we cannot speak about proper division, but
the integer part of b/c, written as b div c can be well defined and is a Diophantine
function:

a = b div c ⇐⇒ ac + rem(b, c) = b.

Greatest common divisor:

a = gcd(b, c) ⇐⇒ bc > 0 & a | b & a | c & [∃xy [a = bx − cy] ∨ ∃xy [a = cy − bx]] .

Least common multiple:

a = lcm(b, c) ⇐⇒ bc = a gcd(b, c).
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Exponentiation is Diophantine

The aim is to show that set of triples

{(a, b, c) | a = bc}

is Diophantine. If that holds, then also the set

{(a, b) | ∃n [a = bn]}

would be Diophantine. We can consider the powers of b as the set of all members
of the first-order recurrent sequence

βb(0) = 1, βb(n + 1) = bβb(n).

The proof here will utilize the recurrent sequence

αb(0) = 0, αb(1) = 1, αb(n + 2) = bαb(n + 1) − αb(n). (2.1.4)

We will try to show that the set

{a, b, c) | b ≥ 4, & a = α(b)}

is Diophantine. It is immediate that αb(n) is a monotonously growing and αb(n) ≥
n. For a fixed n and large b the function αb(n) behaves much like bn, indeed by
induction we get

(b − 1)n ≤ αb(n + 1) ≤ bn.

The assertion is clear for n = 0. We have

αb(n + 2) = bαb(n + 1) − αb(n) ≤ bαb(n + 1) ≤ b · bn = bn+1

and
αb(n + 2) = bαb(n + 1) − αb(n)

≥ bαb(n + 1) − αb(n + 1)

= (b − 1)αb(n + 1) ≥ (b − 1)(b − 1)b

= (b − 1)n+1.

We shall see that

bc = lim
x→∞

αbx+4(c + 1)

αx(c + 1)
,

and the limit number for x can be expressed using function αb. Using this knowledge
we see that

bc = αbx+4(c + 1) div αx(c + 1),

when x is large enough.

We will begin with set

{(a, b) | b ≥ 2 & ∃n [a = αb(n)]} (2.1.5)
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and show that it is Diophantine. Now, the recurrence relation can be expressed
using matrices (with αb(−1) = −1).

Ab(n) =

(

αb(n + 1) −αb(n)
αb(n) −αb(n − 1)

)

and Ξb =

(

b −1
1 0

)

.

We see that Ab(0) = I, Ab(n + 1) = Ab(n)Ξb, which implies that

Ab(n) = Ξn
b .

Therefore, det(Ab(n)) = 1 for each n, which means that

1 = −αb(n)αb(n − 1) + α2
b(n)

= α2
b(n + 1) − bαb(n + 1)αb(n) + α2

b(n)

= α2
b(n − 1) − bαb(n − 1)αb(n) + α2

b(n)

We will see that if
x2 − bxy + y2 = 1, (2.1.12)

then x and y are consequtive members of the sequence (2.1.4), that is, either

x = αb(m + 1), y = αb(m) (2.1.13)

or
x = αb(m), y = αb(m + 1). (2.1.14)

Moreover, if we require (2.1.12) and y < x, it turns out that there will be m such
that (2.1.13) hodls. This is proved by induction on y. If y = 0, then we have x = 1,
so (2.1.13) holds with m = 0. Let y > 0. then we have

x =
1 − y2

x
+ by ≤ by (2.1.17)

and

x =
1

x
−

y2

x
+ by > by − y. (2.1.18)

Let x1 = y and y1 = by − x. Then y1 < x1 and direct calculation gives

x2
1 − bx1y1 + y2

1 = 1.

By the induction hypothesis, there exists m1 such that

x1 = αb(m1 + 1) and y1 = αbm1 (2.1.20)

Letting m = m1 + 1 we have

x = bx1 − y1 = αb(m + 1) and y = x1 = αb(m),

which proves tha claim.
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The special recurrent sequences are Diophantine

The next goal is to show that

{(a, b, c) | b ≥ 4 & a = αb(c)} (2.2.1)

Is Diophantine. The set (2.2.1) can be considered as the union of the termis of the
sequences

(αb(0), b, 0), . . . , (αb(n), b, n). (2.2.2)

for b ≥ 4. Using induction on (2.1.4), it is easy to see that

α2(n) = n

Therefore, for b = 2 the sequence (2.2.2) is

(0, 2, 0), . . . , (n, 2, n).

By induction it is also easy to see that if b1 ≡ b2 (mod q), then

αb1(n) ≡ αb2(n) (mod q). (2.2.5)

Particulary,
αb(n) ≡ α2(n) = n (mod b − 2), (2.2.7)

So the first b − 2 members of (2.2.2) coincide with the first b − 2 memebers of the
sequence

(αb(0), b, rem(αb(0), b− 2)), . . . , (αb(n), b, rem(αb(n), b − 2)). (2.2.8)

In this sequence, n occurs only as an argument of α. Since the set (2.1.5) is
Diophantine and rem is a Diophantine function, also the set of triples (2.2.8) is
Diophantine. But only the initial segments of (2.2.2) and (2.2.8) are equal. Let
then

w ≡ b (mod v) (2.2.9)

w ≡ 2 (mod u) (2.2.10)

v > 2αb(k) (2.2.11)

u > 2k (2.2.12)

and n ≤ k. Then 2αb(n) ≤ 2αb(k) < v and αw(n) ≡ αb(n) (mod v), so we conclude
that

αb(n) = arem(αw(n), v).

Moreover, 2n ≤ 2k < u and αw(n) ≡ α2(n) = n (mod u). Therefore also
arem(αw(n), u) = n. We have then a sequence

(arem(αw(0), v), b, arem(αw(0), u))), . . . ,

. . . , (arem(αw(n), v), b, arem(αw(n), u))), . . . (2.2.13)
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where k first terms equal to those one of (2.2.2). The union of sequences (2.2.13)
where u, v and w satisfy (2.2.9) and (2.2.10) certainly contains all triples of (2.2.2).
However, there may be some additional triples.

We will now study the recurrent relation to understand the occurrence of the
extra triples. Let

v = αb(m + 1) − αb(m − 1). (2.2.16)

Then
αb(m + 1) ≡ αb(m − 1) (mod v), (2.2.17)

and because the recurrent relation can be written as

αb(n − 2) = bαb(n − 1) − αb(n), (2.2.18)

we have
αb(m + 2) = bαb(m + 1) − αb(m)

≡ bαb(m − 1) − αb(m) (mod v)

= αb(m − 2)

(2.2.19)

By induction we get also

αb(m + 3) ≡ αb(m − 3) (mod v)

. . .

αb(2m − 1) ≡ αb(1) (mod v)

αb(2m) ≡ αb(0) (mod v)

(2.2.20)

Moreover,
αb(2m) ≡ αb(0) = 0 = −αb(0) (mod v) (2.2.21)

and
αb(2m + 1 = bαb(2m) − αb(2m − 1) ≡ −αb(1). (mod v) (2.2.22)

By induction we get
αb(2m + n) ≡ −αb(n) (mod v) (2.2.23)

So, for this choise of v (2.2.16), sequence αb(0), . . . , αb(n), . . . modulo v has the
following period of 4m terms:

0, 1,. . . , αb(m − 1), αb(m), αb(m − 1),. . . , 1,
0,−1,. . . ,−αb(m − 1),−αb(m),−αb(m − 1),. . . ,−1.

(2.2.24)

But this is also the period modulo v of the sequence

αw(0), . . . , αw(n), . . . (2.2.25)

Because
v = αb(m + 1) − αb(m − 1)

= bαb(m) − 2αb(m − 1)

≥ 2αb(m)



11

for b ≥ 4, also the sequence

arem(αw(0), v), . . . , arem(αw(n), v) (2.2.26)

has the period of 2m terms

0, 1 . . . , αb(m − 1), αb(m), αb(m − 1), . . . , 1. (2.2.27)

Now (2.2.10) implies that the sequence (2.2.25) modulo u has the period of u terms

0, 1, . . . , u − 1. (2.2.28)

Introducing the condition
u | m (2.2.29)

we guarantee that the length of the period of the sequence (2.2.26) is a multiple of
the length of the period of the sequence

arem(αw(0), u), . . .arem(αw(n), u), . . . (2.2.30)

Therefore, the extra triples in (2.2.13) will appear among the m + 1 members (this
is an almost symmetric period) of this sequence. For these initial triples codition

2 arem(αw(n), v) < u (2.2.14)

which can be written as
2αb(n) < u (2.2.31)

implies
2n < u, (2.2.32)

because
n ≤ αb(n). (2.2.33)

Now
arem(αw(n), u) = arem(n, u) = n (2.2.34,)

so condition (2.2.14) eliminates all extra triples. But still it is not known how to
express conditions (2.2.16) and (2.2.29) without knowing that α is Diophantine.
Because of this, we shall prove that

α2
b(k) | αb(m) =⇒ αb(k) | m (2.2.35)

and replace (2.2.29) with
u2 | αb(m). (2.2.37,)

where
u = αb(k). (2.2.36)

Let first b, k and m satisfy
α2

b(k) | αb(m). (2.3.1)

Let
m = n + kl, 0 ≤ n < k. (2.3.2)
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Then
(

αb(m + 1) −αb(m)
αb(m) −αb(m − 1)

)

= Ab(m)

= Ξm
b

= Ξn+kl
b

= Ξn
b (Ξk

b )l

= Ab(n)Al
b(k)

=

(

αb(n + 1) −αb(n)
αb(n) −αb(n − 1)

)

·

(

αb(k + 1) −αb(k)
αb(k) −αb(k − 1)

)l

.

(2.3.3)

Therefore
(

αb(m + 1) −αb(m)
αb(m) −αb(m − 1)

)

≡

(

αb(n + 1) −αb(n)
αb(n) −αb(n − 1)

) (

αb(k + 1) 0
0 −αb(k − 1)

)

(mod αb(k)).

(2.3.4)

We conclude that

αb(m) ≡ αb(n)αl
b(k + 1) (mod αb(k)). (2.3.5)

By (2.1.11) gcd(αb(k), αb(k + 1)) = 1, so from (2.3.1) and (2.3.5) we have

αb(k) | αb(n), (2.3.6)

but also αb(n) < αb(k). Therefore n = 0 and m = kl. Also

Ab(m) = Al
b(k)

= (αb(k)Ξb − αb(k − 1) − αb(k − 1)I)l

=

l
∑

i=0

(−1)l−i

(

l

i

)

αi
b(k)αl−i

b (k − 1)Ξi
b,

(2.3.7)

which implies that

αb(m) =

(

αb(m + 1) −αb(m)
αb(m) −αb(m − 1)

)

≡ (−1)lαl
b(k − 1)I + (−1)l−1lαb(k)αl−1

b (k − 1)Ξ (mod α2
b(k)),

(2.3.8)

so we have
αb(m) =≡ (−1)l−1lαb(k)αl−1

b (k − 1), (mod 2.3.9)

which implies that
αb(k) | lαl−1

b (k − 1). (2.3.10)

Since gcd(αb(k), αb(k − 1)) = 1, we have finally

αb(k) | l (2.3.11)
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b ≥ 4 (2.3.12)

u2 − but + t2 = 1 (2.3.13)

s2 − bsr + r2 = 1 (2.3.14)

r < s (2.3.15)

u2 | s (2.3.16)

v = bs − 2r (2.3.17)

v | (w − b) (2.3.18)

u | w − 2 (2.3.19)

w > 2 (2.3.20)

x2 − wxy + y2 = 1 (2.3.21)

2a < u (2.3.22)

a = arem(x, v) (2.3.23)

c = arem(x, u) (2.3.24)

(2.3.12), (2.3.13) =⇒ ∃k [u = αb(k)](2.3.26)

(2.3.12), (2.3.14), (2.3.15) =⇒ ∃m [s = αb(m), r = αb(m − 1)](2.3.27)

(2.3.16), (2.3.26), (2.3.27) =⇒ u | m(2.3.28)

(2.3.17), (2.3.27) =⇒ v = αb(m + 1) − αb(m − 1)(2.3.29)

(2.3.20), (2.3.21) =⇒ ∃n [x = αw(n)](2.3.30)

(2.3.18), (2.3.19) =⇒ x ≡ αb(n) (mod v), (2.3.31)

x ≡ n (mod u).(2.3.32)

If n = 2lm ± j, where j ≤ m, we have

Ab(n) = Ξn
b

= Ξ2lm±j
b

= ((Ξm
b )2)lΞ±j

b

= (Ab(m)2)lAb(j)
±1,

(2.3.35)

Ab(m) =

(

αb(m + 1) −αb(m)
αb(m) −αb(m − 1)

)

≡ −

(

−αb(m − 1) αb(m)
−αb(m) αb(m + 1)

)

(mod v)

= −Ab(m)−1,

(2.3.36)

Ab(m)2 ≡ −I (mod v) (2.3.37)

and
Ab(n) ≡ ±Ab(j)

±1 (mod v) (2.3.38)
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Now
x ≡ αb(n) ≡ ±αb(j) (mod v) (2.3.39)

and

2αb(j) ≤ 2αb(m) ≤ (b − 2)αb(m) < bαb(m) − 2αb(m − 1) = v. (2.3.40)

Therefore
a = arem(x, v) = arem(αb(n), v) = αb(j). (2.3.41)

From (2.3.22) and (2.3.41) we have

2j ≤ 2αb(j) = 2a < u, (2.3.42)

Finally (2.3.28), (2.3.31), (2.3.33) and (2.3.42) imply

c = arem(x, u) = arem(n, u) = j (2.3.43)

which gives us a = αb(c).

To the other direction, we suppose that numbers a, b and c satisfy b ≥ 4 and
a = αb(c). We should show that there are numbers r, s, t, u, v and w that satisfy
(2.3.13)-(2.3.24). We will choose k and u such that (2.3.22) and (2.3.26) hold and u
is odd. r and s will are chosen to satisfy (2.3.27) with m = uk. Now both (2.3.14)
and (2.3.15) both hold. Because

s = αb(uk) ≡ (−1)u−1uαb(k)αu−1

b (k − 1) (mod u2), (2.3.46)

so (2.3.16) also holds.

bs − 2r ≥ 4αb(m) − 2αb(m − 1) > 2αb(m),

so we can choose v such that (2.3.17) will hold. Then gcd(u, v) = 1 since if d | u
and d | v, then (2.3.16) implies that d | s and from (2.3.17) d | 2r. However, u was
chosen to be odd and therefore d also is odd, so d | r and d | 1 by (2.3.14). By
the Chinese Remainder Theorem w satisfying (2.3.18), (2.3.19) and (2.3.20) can be
found. Let then

x = αw(c) ≡ αb(c) = a (mod v) (2.3.49)

Now v > 2a by (2.3.17), (2.3.25) and (2.3.47), so (2.3.23) is valid. By (2.2.7) it
follows that

x ≡ c (mod w − 2) (2.3.51)

and (2.3.19) guarantees that also

x ≡ c (mod u). (2.3.52)

Because
2c ≤ 2αb(c) = 2a < u

by (2.2.33), (2.3.25) and (2.3.22), so (2.3.24) holds.
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Exponentiation is Diophantine

We recall that
(b − 1)n ≤ αb(n + 1) ≤ bn (2.4.1)

and will show that

bc = lim
x→∞

αbx+c(c + 1)

αx(c + 1)
(2.4.2)

It is easily seen that
αbx+c(c + 1)

αx(c + 1)
≥

(bx + 3)c

xc
≥ bc, (2.4.3)

so if (2.4.2) holds, then for large x we have

b2 = αbx+4(c + 1) div αx(c + 1). (2.4.4)

For b = c = 0, x ≥ 4 we have

αbx+4(c + 1)

αx(c + 1)
= 1 (2.4.5)

and for b = 0, c > 0, x > 4 we have

αbx+4(c + 1)

αx(c + 1)
<

4c

(x − 1)c
≤ 1. (2.4.6)

For b > 0, x > 16c we have

αbx+4(c + 1)

αx(c + 1)
≤

(bx + 4)c

(x − 1)c

≤
(1 + 4

x
)c

(1 − 1

x
)c

bc

≤
bc

(1 − 1

x
)c(1 − 4

x
)c

≤
bc

(1 − 4

x
)2c

≤
bc

1 − 8c
x

≤ bc
(

1 +
8c

x

)

.

(2.4.7)


