Selected topics on quantum information

Mika Hirvensalo

Department of Mathematics and Statistics University of Turku mikhirve@utu.fi

Thessaloniki, May 2016

Quantum Information

P.

< Ξ

• What is quantum information?

- What is quantum information?
- Reply: Quantum information is information represented in quantum systems.

伺 ト く ヨ ト く ヨ ト

- What is quantum information?
- Reply: Quantum information is information represented in quantum systems.
- What is information?

- What is quantum information?
- Reply: Quantum information is information represented in quantum systems.
- What is information?
- What is a quantum system?

• Information is difference of entropies

< ∃⇒

- Information is difference of entropies
- What is entropy?

Entropy

Ludwig Boltzmann (1844-1906)

æ

$$S = k \cdot \log W$$
,

where k is a constant, W is the number of microstates corresponding to a macroscopic state

イロン 不同 とくほう イロン

æ

H(n) = number of elementary units (bits, trits, etc.) to encode n (uniform) conditions.

- **→** → **→**

- ∢ ≣ ▶

H(n) = number of elementary units (bits, trits, etc.) to encode n (uniform) conditions.

• $\{1,2\}\mapsto \{0,1\}$,

伺 ト く ヨ ト く ヨ ト

3

H(n) = number of elementary units (bits, trits, etc.) to encode n (uniform) conditions.

- $\{1,2\} \mapsto \{0,1\}$,
- $\{1,2,3\}\mapsto \{0,11,10\}$,

/⊒ > < ∃ >

< ≣ ►

3

H(n) = number of elementary units (bits, trits, etc.) to encode n (uniform) conditions.

- $\{1,2\}\mapsto \{0,1\}$,
- $\{1,2,3\}\mapsto \{0,11,10\}$,
- $\{1,2,3,4\}\mapsto\{00,01,10,11\},$ etc.

-

H(n) = number of elementary units (bits, trits, etc.) to encode n (uniform) conditions.

•
$$\{1,2\}\mapsto \{0,1\}$$
,

•
$$\{1,2,3\}\mapsto \{0,11,10\}$$
,

•
$$\{1,2,3,4\} \mapsto \{00,01,10,11\}$$
, etc.

Binary (elementary) entropy

$$H_2(n) = \log_2 n = \frac{1}{\log 2} \log n$$

伺 ト く ヨ ト く ヨ ト

H(n) = number of elementary units (bits, trits, etc.) to encode n (uniform) conditions.

•
$$\{1,2\}\mapsto \{0,1\}$$
,

•
$$\{1,2,3\} \mapsto \{0,11,10\}$$
,

•
$$\{1,2,3,4\} \mapsto \{00,01,10,11\}$$
, etc.

Binary (elementary) entropy

$$H_2(n) = \log_2 n = \frac{1}{\log 2} \log n$$

Entropy measures uncertainty

A⊒ ▶ < 3

Ternary (elementary) entropy

$$H_3(n) = \frac{1}{\log 3} \log n$$

□ ▶ ▲ 臣 ▶ ▲ 臣

Ternary (elementary) entropy

 $H_3(n) = \frac{1}{\log 3} \log n$

q-ary (elementary) entropy

 $H_q(n) = \frac{1}{\log q} \log n$

<回> < E> < E> = E

Identical particles with same internal condition are indistinguishable.

- **→** → **→**

< ∃ >

Identical particles with same internal condition are indistinguishable.

Let *l* be the number of particles, each having *n* potential conditions Σ = {1, 2, ..., n}, *l* ≫ n.

伺 ト く ヨ ト く ヨ ト

3

Identical particles with same internal condition are indistinguishable.

- Let *l* be the number of particles, each having *n* potential conditions Σ = {1, 2, ..., n}, *l* ≫ n.
- List the conditions of all particles: $c_1c_2...c_l \in \{1,2,...,n\}^l$

Identical particles with same internal condition are indistinguishable.

- Let *l* be the number of particles, each having *n* potential conditions Σ = {1, 2, ..., n}, *l* ≫ n.
- List the conditions of all particles: $c_1c_2...c_l \in \{1, 2, ..., n\}^l$
- Assume condition (letter) *i* occurs k_i times, so $k_1 + \ldots + k_n = l$ and $p_i = \frac{k_i}{l}$ is the probability (frequency) of condition *i*

Combinatorics: There are /! $\overline{k_1! \dots k_n!}$ such lists (strings of conditions)

- ● ● ●

э

Combinatorics:

There are

$$\frac{l!}{k_1! \dots k_n!}$$

such lists (strings of conditions)

Elementary entropy:

$$K \log \frac{l!}{k_1! \dots k_n!}$$

- ● ● ●

-∢ ≣ →

Combinatorics:

There are

$$\frac{l!}{k_1! \dots k_n!}$$

such lists (strings of conditions)

Elementary entropy:

$$K \log \frac{l!}{k_1! \dots k_n!}$$

Per particle:

$$\frac{K}{l}\log\frac{l!}{k_1!\dots k_n!}$$

A ►

< ∃ →

Stirling: $\log k! = k \log k - k + O(\log k)$, so

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Entropy

Stirling: $\log k! = k \log k - k + O(\log k)$, so

$$\frac{K}{l} \log \frac{l!}{k_1! \dots k_n!} = \frac{K}{l} (l \log l - l + O(\log l)) \\ - \sum_{i=1}^n (k_i \log k_i - k_i + O(\log k_i)) \\ = -K \sum_{i=1}^n p_i \log p_i + O(\frac{\log l}{l}).$$

)

回 と く ヨ と く ヨ と 。

Ξ.

For a probability distribution (p_1, \ldots, p_n) of events $\{e_1, \ldots, e_n\}$, define

$$H(p_1,\ldots,p_n)=-K\sum_{i=1}^n p_i\log p_i$$

伺 ト く ヨ ト く ヨ ト

For a probability distribution (p_1, \ldots, p_n) of events $\{e_1, \ldots, e_n\}$, define

$$H(p_1,\ldots,p_n)=-K\sum_{i=1}^n p_i\log p_i$$

For
$$p_1 = \ldots = p_n = \frac{1}{n}$$

$$H(\frac{1}{n}, \ldots, \frac{1}{n}) = -K \cdot n \cdot \frac{1}{n} \log \frac{1}{n} = K \log n$$

伺 ト く ヨ ト く ヨ ト

Claude Shannon (1916-2001)

- $H(p_1, \ldots, p_n)$ symmetric, continuous
- $H(\frac{1}{n}, \dots, \frac{1}{n})$ non-negative, strictly increasing in n
- $H(p_1,...,p_n) + p_n H(q_1,...,q_m)$ = $H(p_1,...,p_{n-1},p_nq_1,...,p_nq_m)$

$$\Rightarrow H(p_1,\ldots,p_m) = -K\sum_{i=1}^n p_i \log p_i$$

Joint Entropy

Э

æ

Let

$$X = \{x_1, \ldots, x_n\}$$

be a random variable with distribution $p(x_1), \ldots, p(x_n)$.

A ►

'문▶' ★ 문▶

Let

$$X = \{x_1, \ldots, x_n\}$$

be a random variable with distribution $p(x_1), \ldots, p(x_n)$.

伺 ト イヨト イヨト

Let

$$X = \{x_1, \ldots, x_n\}$$

be a random variable with distribution $p(x_1), \ldots, p(x_n)$.

Then $H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i).$

If also $Y = \{y_1, \dots, y_m\}$ is a random variable,

the joint entropy is

$$H(X, Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log p(x_i, y_j)$$

伺 ト イヨト イヨト

Conditional Entropy

Joint entropy

$$H(X, Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log p(x_i, y_j)$$

∢ ≣⇒
Conditional Entropy

Joint entropy

$$H(X, Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log p(x_i, y_j)$$

If we know $Y = y_j$, then

$$H(X \mid y_j) = -\sum_{i=1}^n p(x_i \mid y_j) \log p(x_i \mid y_j)$$

・聞き ・ ほき・ ・ ほき

3

Conditional Entropy

Joint entropy

$$H(X, Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log p(x_i, y_j)$$

If we know $Y = y_j$, then

$$H(X \mid y_j) = -\sum_{i=1}^n p(x_i \mid y_j) \log p(x_i \mid y_j)$$

and define

$$H(X \mid Y) = \sum_{j=1}^{m} p(y_j)H(X \mid y_j).$$

æ

・聞き ・ ヨキ・ ・ ヨキー

Conditional Entropy

Joint entropy

$$H(X, Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log p(x_i, y_j)$$

If we know $Y = y_j$, then

$$H(X \mid y_j) = -\sum_{i=1}^n p(x_i \mid y_j) \log p(x_i \mid y_j)$$

and define

$$H(X \mid Y) = \sum_{j=1}^{m} p(y_j) H(X \mid y_j).$$

"Uncertainty of X when Y is known"

æ

・聞き ・ 国を ・ 国を

$$H(X \mid Y) \leq H(X)$$

- ● ● ●

< ≣

 $H(X \mid Y) \leq H(X)$

Lemma

 $H(X,Y) \leq H(X) + H(Y)$

æ

御 と く ヨ と く ヨ とし

 $H(X \mid Y) \leq H(X)$

Lemma

$$H(X,Y) \leq H(X) + H(Y)$$

Lemma

$$H(X \mid Y) = H(X, Y) - H(Y)$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

 $H(X \mid Y) \leq H(X)$

Lemma

$$H(X,Y) \leq H(X) + H(Y)$$

Lemma

$$H(X \mid Y) = H(X, Y) - H(Y)$$

(Uncertainty of X when Y is known)

▲ 同 ▶ → 三 ▶

- ∢ ⊒ →

э

Example

Team *A* wins with probability $\frac{1}{2}$, $X = \{\text{win}, \text{loss}\}$. Then $H(X) = -(\frac{1}{2}\log_2 \frac{1}{2} + \frac{1}{2}\log_2 \frac{1}{2}) = 1$.

Example

Team *A* wins with probability $\frac{1}{2}$, $X = \{\text{win}, \text{loss}\}$. Then $H(X) = -(\frac{1}{2}\log_2 \frac{1}{2} + \frac{1}{2}\log_2 \frac{1}{2}) = 1$.

Example

As a *home team*, A wins with $\frac{3}{4}$ probability, but as *visitor*, A wins only with $\frac{1}{3}$ probability.

$$H(X \mid h) = -(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}) = 0.811278...,$$

$$H(X \mid v) = -(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}) = 0.918296...$$

Example (Continued)

$$H(X \mid h) = -(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}) = 0.811278...,$$

$$H(X \mid v) = -(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}) = 0.918296...$$

∢ ≣⇒

Example (Continued)

$$H(X \mid h) = -(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}) = 0.811278...,$$

$$H(X \mid v) = -(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}) = 0.918296...$$

Let $Y = \{0, 1\}$ be a fair coin toss for deciding if team A plays home. Then

$$H(X \mid Y) = \frac{1}{2}H(X \mid h) + \frac{1}{2}H(X \mid v) = 0.864787...$$

伺 ト く ヨ ト く ヨ ト

Definition (Mutual information of X and Y)

$$I(X:Y) = H(X) - H(X \mid Y)$$

▲ 御 ▶ ▲ 理 ▶ ▲ 理 ▶

э

Definition (Mutual information of X and Y)

$$I(X:Y) = H(X) - H(X \mid Y)$$

$$I(X : Y) = H(X) - H(X | Y) = H(X) - (H(X, Y) - H(Y)) = H(X) + H(Y) - H(X, Y) = I(Y : X)$$

Definition (Mutual information of X and Y)

$$I(X:Y) = H(X) - H(X \mid Y)$$

$$I(X : Y) = H(X) - H(X | Y) = H(X) - (H(X, Y) - H(Y)) = H(X) + H(Y) - H(X, Y) = I(Y : X)$$

I(X : Y)

"Uncertainty of X minus uncertainty of X when Y known"

3

Example

X is the team A result, Y is the coin toss outcome. Then

 $I(X : Y) = 1 - 0.864787 \dots = 0.135213 \dots$

伺 ト イ ヨ ト イ ヨ ト

3

Example

X is the team A result, Y is the coin toss outcome. Then

$$I(X : Y) = 1 - 0.864787 \dots = 0.135213 \dots$$

Example

Team B wins with 1/2 probability, but with 99 probability as home team and only with 5 probability as visitor. Then

$$H(X \mid h) = -\left(\frac{99}{100}\log_2\frac{99}{100} + \frac{1}{100}\log_2\frac{1}{100}\right) = 0.0807931...,$$

$$H(X \mid v) = -\left(\frac{5}{100}\log_2\frac{5}{100} + \frac{95}{100}\log_2\frac{95}{100}\right) = 0.286397...$$

Example (Continued)

$$H(X \mid Y) = \frac{1}{2}H(X \mid h) + \frac{1}{2}H(X \mid v) = 0.274894...$$

and

$$I(X : Y) = 1 - 0.274894 \dots = 0.725106 \dots$$

∢ ≣⇒

Quantum Entropy

John von Neumann (1903–1957)

- Quantum entropy by Gedanken Experiment (1927)
- Coincides with Shannon (and Boltzmann) entropy on classical systems

n-level system \leftrightarrow *n* perfectly distinguishable values Formalism based on $H_n \simeq \mathbb{C}^n$ (*n*-dimensional Hilbert space)

- Hermitian inner product $\langle \pmb{x} \mid \pmb{y} \rangle = x_1^* y_1 + \ldots + x_n^* y_n$
- Norm $||\mathbf{x}|| = \sqrt{\langle \mathbf{x} | \mathbf{x} \rangle}$ • Ket-vector $|\mathbf{x}\rangle = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$
- Bra-vector $\langle \boldsymbol{x} | = (|\boldsymbol{x}\rangle)^* = (x_1^*, \dots, x_n^*)$
- Adjoint matrix: $(A^*)_{ij} = A^*_{ji}$ for $m \times n$ matrix A

- Trace: $\operatorname{Tr}(A) = \sum_{i=1}^{n} A_{ii}$
- For orthonormal basis $\{x_1, \ldots, x_n\}$, $\operatorname{Tr}(A) = \sum_{i=1}^n \langle x_i \mid Ax_i \rangle$
- Positivity: $A \ge 0$ iff $(\forall x) \langle x \mid Ax \rangle \ge 0$
- Self-adjointness: $A^* = A$
- Unitarity: $UU^* = U^*U = I$
- Normality: $A^*A = AA^*$

Kronecker product (tensor product):

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1s} \\ a_{21} & a_{22} & \dots & a_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \dots & a_{rs} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1u} \\ b_{21} & b_{22} & \dots & b_{2u} \\ \vdots & \vdots & \ddots & \vdots \\ b_{t1} & b_{t2} & \dots & b_{tu} \end{pmatrix}$$
$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1s}B \\ a_{21}B & a_{22}B & \dots & a_{2s}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1}B & a_{r2}B & \dots & a_{rs}B \end{pmatrix}$$

聞 と く き と く き と

More formalism

•
$$|\mathbf{x}\rangle\langle \mathbf{y}| = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \otimes (y_1^*, \dots, y_n^*) = \begin{pmatrix} x_1y_1^* & x_1y_2^* & \dots & x_1y_n^* \\ \vdots & \vdots & \ddots & \vdots \\ x_ny_1^* & x_ny_2^* & \dots & x_ny_n^* \end{pmatrix}$$

• $|\mathbf{x}\rangle\langle \mathbf{y}| |\mathbf{z}\rangle = \langle \mathbf{y}| |\mathbf{z}\rangle |\mathbf{x}\rangle$

• If especially $||\mathbf{x}|| = 1$, $|\mathbf{x}\rangle\langle\mathbf{x}|$ is a projection onto a subspace generated by \mathbf{x} .

글 > - < 글 >

э

Theorem (Spectral representation)

Each normal A has spectral representation

$$A = \lambda_1 | \mathbf{x}_1 \rangle \langle \mathbf{x}_1 | + \ldots + \lambda_n | \mathbf{x}_n \rangle \langle \mathbf{x}_n |,$$

where $\{x_1, \ldots, x_n\}$ is an orthonormal basis of H_n and $\lambda_1, \ldots, \lambda_n$ the eigenvalues of A.

Theorem (Spectral representation)

Each normal A has spectral representation

$$A = \lambda_1 | \mathbf{x}_1 \rangle \langle \mathbf{x}_1 | + \ldots + \lambda_n | \mathbf{x}_n \rangle \langle \mathbf{x}_n |,$$

where $\{x_1, \ldots, x_n\}$ is an orthonormal basis of H_n and $\lambda_1, \ldots, \lambda_n$ the eigenvalues of A.

- If A is self-adjoint, each $\lambda_i \in \mathbb{R}$
- If A is unitary, each λ_i has $|\lambda_i| = 1$
- If A is positive, each $\lambda_i \geq 0$.

•
$$\operatorname{Tr}(A) = \lambda_1 + \ldots + \lambda_n$$
.

Structure of Quantum Mechanics

< Ξ

State of a physical system:

Unit-trace, positive operator T:

$$T = \lambda_1 | \mathbf{x}_1 \rangle \langle \mathbf{x}_1 | + \ldots + \lambda_n | \mathbf{x}_n \rangle \langle \mathbf{x}_n |,$$

where $\lambda_i \geq 0$, $\lambda_1 + \ldots + \lambda_n = 1$ (density matrix).

State of a physical system:

Unit-trace, positive operator T:

$$T = \lambda_1 | \mathbf{x}_1 \rangle \langle \mathbf{x}_1 | + \ldots + \lambda_n | \mathbf{x}_n \rangle \langle \mathbf{x}_n |,$$

where $\lambda_i \geq 0$, $\lambda_1 + \ldots + \lambda_n = 1$ (density matrix).

Observables:

Self-adjoint operator A:

$$A = \mu_1 | \mathbf{y}_1 \rangle \langle \mathbf{y}_1 | + \ldots + \mu_n | \mathbf{y}_n \rangle \langle \mathbf{y}_n |,$$

where $\mu_i \in \mathbb{R}$ are the potential values of A

Minimal interpretation:

$$\mathbb{P}(\mu_i) = \mathsf{Tr}(T \mid \boldsymbol{y}_i \rangle \langle \boldsymbol{y}_i \mid)$$

is the probability of seeing value μ_i if A is observed when the system is in state T.

Example

Let
$$n = 2$$
 (quantum bit), $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
$$\mathcal{T} = \frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |1\rangle\langle 1| = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

 $\quad \text{and} \quad$

$$A = \sigma_z = 1 \cdot |0\rangle \langle 0| -1 \cdot |1\rangle \langle 1|.$$

Then

$$\mathbb{P}(1) = \operatorname{Tr}(\mathcal{T} \mid 0 \rangle \langle 0 \mid) = \operatorname{Tr}(\frac{1}{2} \mid 0 \rangle \langle 0 \mid) = \frac{1}{2}, \text{ and}$$
$$\mathbb{P}(-1) = \operatorname{Tr}(\mathcal{T} \mid 1 \rangle \langle 1 \mid) = \operatorname{Tr}(\frac{1}{2} \mid 1 \rangle \langle 1 \mid) = \frac{1}{2}.$$

< ≣⇒

@▶ ∢ ≣▶

$$\mathcal{T} = 1 \cdot \mid 0
angle \langle 0 \mid + 0 \cdot \mid 1
angle \langle 1 \mid = \left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight)$$

 $\quad \text{and} \quad$

$$A = \sigma_z = 1 \cdot |0\rangle \langle 0| -1 \cdot |1\rangle \langle 1|.$$

Then

$$\begin{split} \mathbb{P}(1) &= & \mathsf{Tr}(\mathcal{T} \mid 0 \rangle \langle 0 \mid) = \mathsf{Tr}(\mid 0 \rangle \langle 0 \mid) = 1, \text{ and} \\ \mathbb{P}(-1) &= & \mathsf{Tr}(\mathcal{T} \mid 1 \rangle \langle 1 \mid) = \mathsf{Tr}(0) = 0. \end{split}$$

< ≣⇒

@▶ ∢ ≣▶

Example

$$\mathcal{T} = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1| = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$$

 and

$$\begin{aligned} A &= \sigma_{\mathsf{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 1 \cdot |\mathbf{y}_1\rangle \langle \mathbf{y}_1| - 1 \cdot |\mathbf{y}_2\rangle \langle \mathbf{y}_2|, \\ \text{where } \mathbf{y}_1 &= \frac{1}{\sqrt{2}}(1, 1) \text{ and } \mathbf{y}_2 = \frac{1}{\sqrt{2}}(-1, 1). \text{ Then} \\ \mathbb{P}(1) &= \operatorname{Tr}(T |\mathbf{y}_1\rangle \langle \mathbf{y}_1|) = \frac{1}{2}, \text{ and} \\ \mathbb{P}(-1) &= \operatorname{Tr}(T |\mathbf{y}_2\rangle \langle \mathbf{y}_2|) = \frac{1}{2}. \end{aligned}$$

< ≣⇒

The expected value of observable A in state T is

$$\mathbb{E}_{T}(A) = \sum_{i=1}^{n} \mu_{i} \mathbb{P}(\mu_{i})$$
$$= \sum_{i=1}^{n} \mu_{i} \operatorname{Tr}(T \mid \mathbf{y}_{i} \rangle \langle \mathbf{y}_{i} \mid)$$
$$= \operatorname{Tr}(TA).$$

回 と く ヨ と く ヨ と

э

• If T_1 and T_2 are states, and $\lambda \in (0, 1)$, then also $\lambda T_1 + (1 - \lambda)T_2$ is. (convexity)

< ∃ →

- If T_1 and T_2 are states, and $\lambda \in (0, 1)$, then also $\lambda T_1 + (1 \lambda)T_2$ is. (convexity)
- T is extremal if $T = \lambda T_1 + (1 \lambda)T_2$ with $\lambda \in (0, 1)$ implies $T_1 = T_2$.

- If T_1 and T_2 are states, and $\lambda \in (0, 1)$, then also $\lambda T_1 + (1 \lambda)T_2$ is. (convexity)
- T is extremal if $T = \lambda T_1 + (1 \lambda)T_2$ with $\lambda \in (0, 1)$ implies $T_1 = T_2$.

Extremals are called *pure or vector states*
The State Set Structure

- If T_1 and T_2 are states, and $\lambda \in (0, 1)$, then also $\lambda T_1 + (1 \lambda)T_2$ is. (convexity)
- T is extremal if $T = \lambda T_1 + (1 \lambda)T_2$ with $\lambda \in (0, 1)$ implies $T_1 = T_2$.

Extremals are called *pure or vector states*

Lemma

T is pure if and only if $T = |\mathbf{x}\rangle \langle \mathbf{x} |$ for some unit-length \mathbf{x} .

The State Set Structure

- If T_1 and T_2 are states, and $\lambda \in (0, 1)$, then also $\lambda T_1 + (1 \lambda)T_2$ is. (convexity)
- T is extremal if $T = \lambda T_1 + (1 \lambda)T_2$ with $\lambda \in (0, 1)$ implies $T_1 = T_2$.

Extremals are called *pure or vector states*

Lemma

T is pure if and only if $T = |\mathbf{x}\rangle \langle \mathbf{x} |$ for some unit-length \mathbf{x} .

• For a pure state $T = |\mathbf{x}\rangle\langle\mathbf{x}|$ and observable $A = \sum_{i=1}^{n} \mu_i |\mathbf{y}_i\rangle\langle\mathbf{y}_i|$

$$\mathbb{P}(\mu_i) = \operatorname{Tr}(T \mid \boldsymbol{y}_i \rangle \langle \boldsymbol{y}_i \mid) = \langle \boldsymbol{y}_i \mid \mid \boldsymbol{x} \rangle \langle \boldsymbol{x} \mid \mid \boldsymbol{y}_i \rangle \langle \boldsymbol{y}_i \mid \boldsymbol{y}_i \rangle = |\langle \boldsymbol{x} \mid \boldsymbol{y}_i \rangle|^2.$$

Pure states

Let $T = |\mathbf{x}\rangle \langle \mathbf{x} |$ be a pure state and

$$\boldsymbol{A} = \mu_1 | \boldsymbol{y}_1 \rangle \langle \boldsymbol{y}_1 | + \ldots + \mu_n | \boldsymbol{y}_n \rangle \langle \boldsymbol{y}_n |$$

an observable. In representation

$$\mathbf{x} = \alpha_1 \mathbf{y}_1 + \ldots + \alpha_n \mathbf{y}_n$$

 $\alpha_i = \langle \boldsymbol{y}_i \mid \boldsymbol{x} \rangle$ (amplitude of \boldsymbol{y}_i), so $\mathbb{P}(\mu_i) = |\alpha_i|^2$.

高 と く ヨ と く ヨ と

3

Pure states

Let $T = |\mathbf{x}\rangle \langle \mathbf{x} |$ be a pure state and

$$A = \mu_1 | \mathbf{y}_1 \rangle \langle \mathbf{y}_1 | + \ldots + \mu_n | \mathbf{y}_n \rangle \langle \mathbf{y}_n |$$

an observable. In representation

$$\mathbf{x} = \alpha_1 \mathbf{y}_1 + \ldots + \alpha_n \mathbf{y}_n$$

$$lpha_i = \langle m{y}_i \mid m{x}
angle$$
 (amplitude of $m{y}_i$), so
 $\mathbb{P}(\mu_i) = |lpha_i|^2$.

Corollary

For each pure state T there is a nontrivial observable A such that $\mathbb{P}(\mu_1) = 1$ for a potential value μ_1 of A.

伺 と く ヨ と く ヨ と

Remark

For a pure state $T = |\mathbf{x}\rangle \langle \mathbf{x} |$ the expected value of observable A is

 $\mathbb{E}_{T}(A) = \mathsf{Tr}(TA) = \mathsf{Tr}(|\mathbf{x}\rangle\langle \mathbf{x} | A) = \langle \mathbf{x} | | \mathbf{x} \rangle \langle \mathbf{x} | A\mathbf{x} \rangle = \langle \mathbf{x} | A\mathbf{x} \rangle.$

伺 と く ヨ と く ヨ と …

3

Remark

For a pure state $T = |\mathbf{x}\rangle \langle \mathbf{x} |$ the expected value of observable A is

$$\mathbb{E}_{\mathcal{T}}(A) = \mathsf{Tr}(\mathcal{T}A) = \mathsf{Tr}(|\mathbf{x}\rangle\langle \mathbf{x} | A) = \langle \mathbf{x} | | \mathbf{x} \rangle \langle \mathbf{x} | A\mathbf{x} \rangle = \langle \mathbf{x} | A\mathbf{x} \rangle.$$

Remark

For any $\theta \in \mathbb{R}$,

$$|e^{i\theta}x\rangle\langle e^{i\theta}x|=|x\rangle\langle x|,$$

so pure state presentation as a unit-length vector is not unique.

- **→** → **→**

→

Example

and

Let
$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$
 and $|1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$
vector $\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$ corresponds to a state
 $\begin{pmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{pmatrix} \otimes (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = \begin{pmatrix} \frac{1}{2} & \frac{1}{2}\\\frac{1}{2} & \frac{1}{2} \end{pmatrix},$

/

``

1

$$\mathbb{P}(1) = \mathsf{Tr}\left(\left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)\right) = \mathsf{Tr}\left(\left(\begin{array}{cc} \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{array}\right)\right) = \frac{1}{2}.$$

This could be read directly from the vector presentation.

Example

Let
$$\mathbf{y}_1 = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
, $\mathbf{y}_2 = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$, and
 $A = 1 |\mathbf{y}_1\rangle\langle\mathbf{y}_1| - 1 \cdot |\mathbf{y}_2\rangle\langle\mathbf{y}_2| = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} - \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Then for vector $\mathbf{x} = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

$$\mathbb{P}(-1) = \mathsf{Tr}\left(\left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right) \left(\begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{array}\right)\right) = \mathsf{Tr}\left(\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)\right) = 0.$$

This could be directly read from

$$\boldsymbol{x} = 1 \cdot \boldsymbol{y}_1 + 0 \cdot \boldsymbol{y}_2.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Compound Systems

Down \rightarrow Up:

Tensor product construction: $T = T_1 \otimes T_2$, $A = A_1 \otimes A_2$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Down \rightarrow Up:

Tensor product construction: $T = T_1 \otimes T_2$, $A = A_1 \otimes A_2$

Example

Pure state

$$\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\otimes\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$$

Or:

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1$$

伺 ト く ヨ ト く ヨ ト

Compound Systems

< Ξ

Compound Systems

$\mathsf{Up} \to \mathsf{Down}$:

By partial trace: $T_1 = Tr_1(T)$

Partial trace

 T_1 is chosen so that $Tr(T(A_1 \otimes I)) = Tr(T_1A_1)$ for each observable A_1

- **→** → **→**

- ₹ 🖬 🕨

$\mathsf{Up} \to \mathsf{Down}$:

By partial trace: $T_1 = Tr_1(T)$

Partial trace

 T_1 is chosen so that $Tr(T(A_1 \otimes I)) = Tr(T_1A_1)$ for each observable A_1

Remark

 $\operatorname{Tr}(T(A_1 \otimes I))$ is the average value of observable $A_1 \otimes I$ in state T. As well, $\operatorname{Tr}(T_1A_1)$ is the average value of observable A_1 in state T_1 . T_1 is unique and an explicit formula for $\operatorname{Tr}_1(T)$ exists.

Example

A vector

$$rac{1}{\sqrt{2}}\ket{00}+rac{1}{\sqrt{2}}\ket{11}$$

correspondes to a pure state

$$\mathcal{T} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} \otimes (\frac{1}{\sqrt{2}}, 0, 0, \frac{1}{\sqrt{2}}) = \begin{pmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

Subsystem states:

$$T_1 = T_2 = \left(\begin{array}{cc} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{array}\right)$$

- **→** → **→**

- ∢ ≣ ▶

< Ξ

von Neumann Entropy

 $S = -K \operatorname{Tr}(T \log T)$

聞 と く き と く き と

von Neumann Entropy

 $S = -K \operatorname{Tr}(T \log T)$

where f(T) for

$$T = p_1 |\mathbf{x}_1\rangle \langle \mathbf{x}_1 | + \ldots + p_n |\mathbf{x}_n\rangle \langle \mathbf{x}_n |$$

is defined as

$$f(T) = f(\lambda_1 | \mathbf{x}_1 \rangle \langle \mathbf{x}_1 | + \ldots + \lambda_n | \mathbf{x}_n \rangle \langle \mathbf{x}_n |)$$

= $f(\lambda_1) | \mathbf{x}_1 \rangle \langle \mathbf{x}_1 | + \ldots + f(\lambda_n) | \mathbf{x}_n \rangle \langle \mathbf{x}_n |.$

聞 と く き と く き と

von Neumann Entropy

 $S = -K \operatorname{Tr}(T \log T)$

where f(T) for

$$T = p_1 |\mathbf{x}_1\rangle \langle \mathbf{x}_1 | + \ldots + p_n |\mathbf{x}_n\rangle \langle \mathbf{x}_n |$$

is defined as

$$f(T) = f(\lambda_1 | \mathbf{x}_1 \rangle \langle \mathbf{x}_1 | + \ldots + \lambda_n | \mathbf{x}_n \rangle \langle \mathbf{x}_n |)$$

= $f(\lambda_1) | \mathbf{x}_1 \rangle \langle \mathbf{x}_1 | + \ldots + f(\lambda_n) | \mathbf{x}_n \rangle \langle \mathbf{x}_n |.$

Hence

$$T \log T = p_1 \log p_1 |\mathbf{x}_1\rangle \langle \mathbf{x}_1 | + \ldots + p_n \log p_n |\mathbf{x}_n\rangle \langle \mathbf{x}_n |$$

- ● ● ●

< ∃ →

von Neumann Entropy

 $S = -K \operatorname{Tr}(T \log T)$

where f(T) for

$$T = p_1 |\mathbf{x}_1\rangle \langle \mathbf{x}_1 | + \ldots + p_n |\mathbf{x}_n\rangle \langle \mathbf{x}_n |$$

is defined as

$$f(T) = f(\lambda_1 | \mathbf{x}_1 \rangle \langle \mathbf{x}_1 | + \ldots + \lambda_n | \mathbf{x}_n \rangle \langle \mathbf{x}_n |)$$

= $f(\lambda_1) | \mathbf{x}_1 \rangle \langle \mathbf{x}_1 | + \ldots + f(\lambda_n) | \mathbf{x}_n \rangle \langle \mathbf{x}_n |.$

Hence

$$T \log T = p_1 \log p_1 |\mathbf{x}_1\rangle \langle \mathbf{x}_1 | + \ldots + p_n \log p_n |\mathbf{x}_n\rangle \langle \mathbf{x}_n |$$

and

$$S(T) = -K \operatorname{Tr}(T \log T) = -K(p_1 \log p_1 + \ldots + p_n \log p_n)$$

< Ξ

For a pure state
$$T = |x\rangle \langle x$$

 $S(T) = -1 \cdot \log 1 = 0$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

For a pure state $T = |x\rangle \langle x|$

 $S(T) = -1 \cdot \log 1 = 0$

Example

Let A and B be qubits with joint state $T = |\mathbf{x}\rangle\langle\mathbf{x}|$, where $\mathbf{x} = \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$.

伺 ト く ヨ ト く ヨ ト

For a pure state $T = |\mathbf{x}\rangle \langle \mathbf{x} |$

 $S(T) = -1 \cdot \log 1 = 0$

Example

Let *A* and *B* be qubits with joint state $T = |\mathbf{x}\rangle \langle \mathbf{x}|$, where $\mathbf{x} = \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$.

• S(T) = 0, but for subsystem states $S(T_1) = S(T_2) = 1$.

伺 と く ヨ と く ヨ と

For a pure state $T = |\mathbf{x}\rangle \langle \mathbf{x} |$

 $S(T) = -1 \cdot \log 1 = 0$

Example

Let A and B be qubits with joint state $T = |\mathbf{x}\rangle \langle \mathbf{x} |$, where

$$\alpha = rac{1}{\sqrt{2}} \ket{00} + rac{1}{\sqrt{2}} \ket{11}.$$

- S(T) = 0, but for subsystem states $S(T_1) = S(T_2) = 1$.
- Conditional entropy

$$S(T_1 | T_2) = S(T_1, T_2) - S(T_2) = 0 - 1 = -1$$

伺 ト く ヨ ト く ヨ ト

For a pure state $T = |\mathbf{x}\rangle \langle \mathbf{x} |$

 $S(T) = -1 \cdot \log 1 = 0$

Example

Let A and B be qubits with joint state $T = |\mathbf{x}\rangle \langle \mathbf{x} |$, where

$$\mathbf{r} = rac{1}{\sqrt{2}} \ket{00} + rac{1}{\sqrt{2}} \ket{11}.$$

- S(T) = 0, but for subsystem states $S(T_1) = S(T_2) = 1$.
- Conditional entropy $S(T_1 | T_2) = S(T_1, T_2) - S(T_2) = 0 - 1 = -1$
- Mutual information:

$$I(T_1: T_2) = S(T_1) - S(T_1 | T_2) = 1 - (-1) = 2$$

(日) (同) (日)

3

Theorem (Holevo Bound)

Let ρ_1, \ldots, ρ_n be states of n-level quantum system, produced with probabilities p_1, \ldots, p_n . Let also X be a random variable with value *i* if ρ_i is produced, and Y any observable on H_n . Then

$$I(X:Y) \leq S(\sum_{i=1}^{n} p_i \rho_i) - \sum_{i=1}^{n} p_i S(\rho_i)$$