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Quantum Information

What is quantum information?

Reply: Quantum information is information represented in
quantum systems.

What is information?

What is a quantum system?
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Information

Information is difference of entropies

What is entropy?
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Entropy

Ludwig Boltzmann (1844-1906)
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Entropy

S = k · logW ,

where k is a constant, W is the
number of microstates corresponding
to a macroscopic state
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Entropy

“Elementary” entropy

H(n) = number of elementary units (bits, trits, etc.) to encode n
(uniform) conditions.

{1, 2} 7→ {0, 1},
{1, 2, 3} 7→ {0, 11, 10},
{1, 2, 3, 4} 7→ {00, 01, 10, 11}, etc.

Binary (elementary) entropy

H2(n) = log2 n = 1
log 2 log n

Entropy measures uncertainty
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Entropy

Ternary (elementary) entropy

H3(n) = 1
log 3 log n

q-ary (elementary) entropy

Hq(n) = 1
log q log n
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Entropy

Boltzmann:

Identical particles with same internal condition are
indistinguishable.

Let l be the number of particles, each having n potential
conditions Σ = {1, 2, . . . , n}, l � n.

List the conditions of all particles: c1c2 . . . cl ∈ {1, 2, . . . , n}l

Assume condition (letter) i occurs ki times, so
k1 + . . .+ kn = l and pi = ki

l is the probability (frequency) of
condition i
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Entropy

Combinatorics:

There are
l!

k1! . . . kn!

such lists (strings of conditions)

Elementary entropy:

K log
l!

k1! . . . kn!

Per particle:
K

l
log

l!

k1! . . . kn!
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Entropy

Stirling: log k! = k log k − k + O(log k), so

K

l
log

l!

k1! . . . kn!

=
K

l
(l log l − l + O(log l)

−
n∑

i=1

(ki log ki − ki + O(log ki )))

= −K
n∑

i=1

pi log pi + O(
log l

l
).
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Entropy

For a probability distribution (p1, . . . , pn) of events {e1, . . . , en},
define

H(p1, . . . , pn) = −K
n∑

i=1

pi log pi

For p1 = . . . = pn = 1
n

H(
1

n
, . . . ,

1

n
) = −K · n · 1

n
log

1

n
= K log n
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Entropy

H(p1, . . . , pn) symmetric,
continuous

H( 1
n , . . . ,

1
n ) non-negative, strictly

increasing in n

H(p1, . . . , pn) +pnH(q1, . . . , qm)
= H(p1, . . . , pn−1, pnq1, . . . , pnqm)

⇒ H(p1, . . . , pm) = −K
n∑

i=1

pi log pi

Claude Shannon (1916-2001)
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Joint Entropy

Let
X = {x1, . . . , xn}

be a random variable with distribution p(x1), . . ., p(xn).

Then

H(X ) = −
n∑

i=1

p(xi ) log p(xi ).

If also Y = {y1, . . . , ym} is a random variable,

the joint entropy is

H(X ,Y ) = −
n∑

i=1

m∑
j=1

p(xi , yj) log p(xi , yj)
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Conditional Entropy

Joint entropy

H(X ,Y ) = −
n∑

i=1

m∑
j=1

p(xi , yj) log p(xi , yj)

If we know Y = yj , then

H(X | yj) = −
n∑

i=1

p(xi | yj) log p(xi | yj)

and define

H(X | Y ) =
m∑
j=1

p(yj)H(X | yj).

“Uncertainty of X when Y is known”
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Conditional Entropy

Lemma

H(X | Y ) ≤ H(X )

Lemma

H(X ,Y ) ≤ H(X ) + H(Y )

Lemma

H(X | Y ) = H(X ,Y )− H(Y )

(Uncertainty of X when Y is known)
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Conditional Entropy

Example

Team A wins with probability 1
2 , X = {win, loss}. Then

H(X ) = −( 1
2 log2

1
2 + 1

2 log2
1
2 ) = 1.

Example

As a home team, A wins with 3
4 probability, but as visitor, A wins

only with 1
3 probability.

H(X | h) = −(
3

4
log2

3

4
+

1

4
log2

1

4
) = 0.811278 . . . ,

H(X | v) = −(
1

3
log2

1

3
+

2

3
log2

2

3
) = 0.918296 . . .
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Conditional Entropy

Example (Continued)

H(X | h) = −(
3

4
log2

3

4
+

1

4
log2

1

4
) = 0.811278 . . . ,

H(X | v) = −(
1

3
log2

1

3
+

2

3
log2

2

3
) = 0.918296 . . .

Let Y = {0, 1} be a fair coin toss for deciding if team A plays
home. Then

H(X | Y ) =
1

2
H(X | h) +

1

2
H(X | v) = 0.864787 . . .
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Information

Definition (Mutual information of X and Y )

I (X : Y ) = H(X )− H(X | Y )

I (X : Y ) = H(X )− H(X | Y )

= H(X )− (H(X ,Y )− H(Y ))

= H(X ) + H(Y )− H(X ,Y )

= I (Y : X )

I (X : Y )

“Uncertainty of X minus uncertainty of X when Y known”
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Information

Example

X is the team A result, Y is the coin toss outcome. Then

I (X : Y ) = 1− 0.864787 . . . = 0.135213 . . .

Example

Team B wins with 1/2 probability, but with 99 probability as home
team and only with 5 probability as visitor. Then

H(X | h) = −(
99

100
log2

99

100
+

1

100
log2

1

100
) = 0.0807931 . . . ,

H(X | v) = −(
5

100
log2

5

100
+

95

100
log2

95

100
) = 0.286397 . . .
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Information

Example (Continued)

H(X | Y ) =
1

2
H(X | h) +

1

2
H(X | v) = 0.274894 . . .

and
I (X : Y ) = 1− 0.274894 . . . = 0.725106 . . .
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Quantum Entropy

Quantum entropy by Gedanken
Experiment (1927)

Coincides with Shannon (and
Boltzmann) entropy on classical
systems

John von Neumann (1903–1957)
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Quantum formalism revisited

n-level system ↔ n perfectly distinguishable values

Formalism based on Hn ' Cn (n-dimensional Hilbert space)

Hermitian inner product 〈x | y〉 = x∗1y1 + . . .+ x∗nyn

Norm ||x || =
√
〈x | x〉

Ket-vector |x〉 =

 x1
...
xn


Bra-vector 〈x | = (|x〉)∗ = (x∗1 , . . . , x

∗
n )

Adjoint matrix: (A∗)ij = A∗ji for m × n matrix A
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More formalism

Trace: Tr(A) =
∑n

i=1 Aii

For orthonormal basis {x1, . . . , xn}, Tr(A) =
∑n

i=1〈x i | Ax i 〉
Positivity: A ≥ 0 iff (∀x) 〈x | Ax〉 ≥ 0

Self-adjointness: A∗ = A

Unitarity: UU∗ = U∗U = I

Normality: A∗A = AA∗
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More formalism

Kronecker product (tensor product):

A =


a11 a12 . . . a1s

a21 a22 . . . a2s
...

...
. . .

...
ar1 ar2 . . . ars

 ,B =


b11 b12 . . . b1u

b21 b22 . . . b2u
...

...
. . .

...
bt1 bt2 . . . btu



A⊗ B =


a11B a12B . . . a1sB
a21B a22B . . . a2sB

...
...

. . .
...

ar1B ar2B . . . arsB
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More formalism

|x〉〈y |=

 x1
...
xn

⊗ (y∗1 , . . . , y
∗
n ) =

 x1y
∗
1 x1y

∗
2 . . . x1y

∗
n

...
...

. . .
...

xny
∗
1 xny

∗
2 . . . xny

∗
n


|x〉〈y | |z〉 = 〈y | z〉 |x〉
If especially ||x || = 1, |x〉〈x | is a projection onto a subspace
generated by x .
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More formalism

Theorem (Spectral representation)

Each normal A has spectral representation

A = λ1 |x1〉〈x1 | + . . .+ λn |xn〉〈xn |,

where {x1, . . ., xn} is an orthonormal basis of Hn and λ1, . . ., λn
the eigenvalues of A.

If A is self-adjoint, each λi ∈ R
If A is unitary, each λi has |λi | = 1

If A is positive, each λi ≥ 0.

Tr(A) = λ1 + . . .+ λn.
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Structure of Quantum Mechanics

State of a physical system:

Unit-trace, positive operator T :

T = λ1 |x1〉〈x1 | + . . .+ λn |xn〉〈xn |,

where λi ≥ 0, λ1 + . . .+ λn = 1 (density matrix).

Observables:

Self-adjoint operator A:

A = µ1 |y1〉〈y1 | + . . .+ µn |yn〉〈yn |,

where µi ∈ R are the potential values of A
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Self-adjoint operator A:

A = µ1 |y1〉〈y1 | + . . .+ µn |yn〉〈yn |,

where µi ∈ R are the potential values of A

Mika Hirvensalo Selected topics on quantum information 27 of 43



Structure of Quantum Mechanics

Minimal interpretation:

P(µi ) = Tr(T |y i 〉〈y i |)

is the probability of seeing value µi if A is observed when the
system is in state T .
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Example

Let n = 2 (quantum bit), |0〉 =

(
1
0

)
, |1〉 =

(
0
1

)

T =
1

2
|0〉〈0 | +

1

2
|1〉〈1 |=

(
1
2 0
0 1

2

)
and

A = σz = 1· |0〉〈0 | −1· |1〉〈1 | .

Then

P(1) = Tr(T |0〉〈0 |) = Tr(
1

2
|0〉〈0 |) =

1

2
, and

P(−1) = Tr(T |1〉〈1 |) = Tr(
1

2
|1〉〈1 |) =

1

2
.
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Example

T = 1· |0〉〈0 | +0· |1〉〈1 |=
(

1 0
0 0

)
and

A = σz = 1· |0〉〈0 | −1· |1〉〈1 | .

Then

P(1) = Tr(T |0〉〈0 |) = Tr(|0〉〈0 |) = 1, and

P(−1) = Tr(T |1〉〈1 |) = Tr(0) = 0.
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Example

T =
1

2
|0〉〈0 | +

1

2
|1〉〈1 |=

(
1
2 0
0 1

2

)
and

A = σx =

(
0 1
1 0

)
= 1· |y1〉〈y1 | −1· |y2〉〈y2 |,

where y1 = 1√
2

(1, 1) and y2 = 1√
2

(−1, 1). Then

P(1) = Tr(T |y1〉〈y1 |) =
1

2
, and

P(−1) = Tr(T |y2〉〈y2 |) =
1

2
.
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Remark

The expected value of observable A in state T is

ET (A) =
n∑

i=1

µiP(µi )

=
n∑

i=1

µiTr(T |y i 〉〈y i |)

= Tr(TA).
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The State Set Structure

If T1 and T2 are states, and λ ∈ (0, 1), then also
λT1 + (1− λ)T2 is. (convexity)

T is extremal if T = λT1 + (1− λ)T2 with λ ∈ (0, 1) implies
T1 = T2.

Extremals are called pure or vector states

Lemma

T is pure if and only if T =|x〉〈x | for some unit-length x .

For a pure state T =|x〉〈x | and observable
A =

∑n
i=1 µi |y i 〉〈y i |

P(µi ) = Tr(T |y i 〉〈y i |) = 〈y i ||x〉〈x ||y i 〉〈y i | y i 〉 = |〈x | y i 〉|
2.

Mika Hirvensalo Selected topics on quantum information 33 of 43



The State Set Structure

If T1 and T2 are states, and λ ∈ (0, 1), then also
λT1 + (1− λ)T2 is. (convexity)

T is extremal if T = λT1 + (1− λ)T2 with λ ∈ (0, 1) implies
T1 = T2.

Extremals are called pure or vector states

Lemma

T is pure if and only if T =|x〉〈x | for some unit-length x .

For a pure state T =|x〉〈x | and observable
A =

∑n
i=1 µi |y i 〉〈y i |

P(µi ) = Tr(T |y i 〉〈y i |) = 〈y i ||x〉〈x ||y i 〉〈y i | y i 〉 = |〈x | y i 〉|
2.

Mika Hirvensalo Selected topics on quantum information 33 of 43



The State Set Structure

If T1 and T2 are states, and λ ∈ (0, 1), then also
λT1 + (1− λ)T2 is. (convexity)

T is extremal if T = λT1 + (1− λ)T2 with λ ∈ (0, 1) implies
T1 = T2.

Extremals are called pure or vector states

Lemma

T is pure if and only if T =|x〉〈x | for some unit-length x .

For a pure state T =|x〉〈x | and observable
A =

∑n
i=1 µi |y i 〉〈y i |

P(µi ) = Tr(T |y i 〉〈y i |) = 〈y i ||x〉〈x ||y i 〉〈y i | y i 〉 = |〈x | y i 〉|
2.

Mika Hirvensalo Selected topics on quantum information 33 of 43



The State Set Structure

If T1 and T2 are states, and λ ∈ (0, 1), then also
λT1 + (1− λ)T2 is. (convexity)

T is extremal if T = λT1 + (1− λ)T2 with λ ∈ (0, 1) implies
T1 = T2.

Extremals are called pure or vector states

Lemma

T is pure if and only if T =|x〉〈x | for some unit-length x .

For a pure state T =|x〉〈x | and observable
A =

∑n
i=1 µi |y i 〉〈y i |

P(µi ) = Tr(T |y i 〉〈y i |) = 〈y i ||x〉〈x ||y i 〉〈y i | y i 〉 = |〈x | y i 〉|
2.

Mika Hirvensalo Selected topics on quantum information 33 of 43



The State Set Structure

If T1 and T2 are states, and λ ∈ (0, 1), then also
λT1 + (1− λ)T2 is. (convexity)

T is extremal if T = λT1 + (1− λ)T2 with λ ∈ (0, 1) implies
T1 = T2.

Extremals are called pure or vector states

Lemma

T is pure if and only if T =|x〉〈x | for some unit-length x .

For a pure state T =|x〉〈x | and observable
A =

∑n
i=1 µi |y i 〉〈y i |

P(µi ) = Tr(T |y i 〉〈y i |) = 〈y i ||x〉〈x ||y i 〉〈y i | y i 〉 = |〈x | y i 〉|
2.

Mika Hirvensalo Selected topics on quantum information 33 of 43



The State Set Structure

If T1 and T2 are states, and λ ∈ (0, 1), then also
λT1 + (1− λ)T2 is. (convexity)

T is extremal if T = λT1 + (1− λ)T2 with λ ∈ (0, 1) implies
T1 = T2.

Extremals are called pure or vector states

Lemma

T is pure if and only if T =|x〉〈x | for some unit-length x .

For a pure state T =|x〉〈x | and observable
A =

∑n
i=1 µi |y i 〉〈y i |

P(µi ) = Tr(T |y i 〉〈y i |) = 〈y i ||x〉〈x ||y i 〉〈y i | y i 〉 = |〈x | y i 〉|
2.

Mika Hirvensalo Selected topics on quantum information 33 of 43



Pure states

Let T =|x〉〈x | be a pure state and

A = µ1 |y1〉〈y1 | + . . .+ µn |yn〉〈yn |

an observable. In representation

x = α1y1 + . . .+ αnyn

αi = 〈y i | x〉 (amplitude of y i ), so

P(µi ) = |αi |2 .

Corollary

For each pure state T there is a nontrivial observable A such that
P(µ1) = 1 for a potential value µ1 of A.
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Pure states

Remark

For a pure state T =|x〉〈x | the expected value of observable A is

ET (A) = Tr(TA) = Tr(|x〉〈x | A) = 〈x ||x〉〈x | Ax〉 = 〈x | Ax〉.

Remark

For any θ ∈ R,
|e iθx〉〈e iθx |=|x〉〈x |,

so pure state presentation as a unit-length vector is not unique.
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Example

Let |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
vector 1√

2
|0〉+ 1√

2
|1〉 corresponds to a state(
1√
2

1√
2

)
⊗ (

1√
2
,

1√
2

) =

(
1
2

1
2

1
2

1
2

)
,

and

P(1) = Tr

((
1
2

1
2

1
2

1
2

)(
1 0
0 0

))
= Tr

((
1
2 0
1
2 0

))
=

1

2
.

This could be read directly from the vector presentation.
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Example

Let y1 = 1√
2

(|0〉+ |1〉), y2 = 1√
2

(|0〉 − |1〉), and

A = 1 |y1〉〈y1 | −1· |y2〉〈y2 |=
(

1
2

1
2

1
2

1
2

)
−
(

1
2 −1

2
−1

2
1
2

)
=

(
0 1
1 0

)
Then for vector x = 1√

2
(|0〉+ |1〉)

P(−1) = Tr

((
1
2

1
2

1
2

1
2

)(
1
2 −1

2
−1

2
1
2

))
= Tr

((
0 0
0 0

))
= 0.

This could be directly read from

x = 1 · y1 + 0 · y2.
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Compound Systems

Down → Up:

Tensor product construction: T = T1 ⊗ T2, A = A1 ⊗ A2

Example

Pure state

1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉) =
1

2
(|00〉+ |01〉+ |10〉+ |11〉)

Or: (
1
2

1
2

1
2

1
2

)
⊗
(

1
2

1
2

1
2

1
2

)
=


1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4
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1
2

1
2

1
2
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1
2

1
2

1
2

1
2
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1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4
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Compound Systems

Up → Down:

By partial trace: T1 = Tr1(T )

Partial trace

T1 is chosen so that Tr(T (A1 ⊗ I )) = Tr(T1A1) for each
observable A1

Remark

Tr(T (A1 ⊗ I )) is the average value of observable A1 ⊗ I in state T .
As well, Tr(T1A1) is the average value of observable A1 in state T1.
T1 is unique and an explicit formula for Tr1(T ) exists.
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Example

A vector
1√
2
|00〉+

1√
2
|11〉

correspondes to a pure state

T =


1√
2

0
0
1√
2

⊗ (
1√
2
, 0, 0,

1√
2

) =


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2


Subsystem states:

T1 = T2 =

(
1
2 0
0 1

2

)
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Quantum Entropy

von Neumann Entropy

S = −KTr(T logT )

where f (T ) for

T = p1 |x1〉〈x1 | + . . .+ pn |xn〉〈xn |

is defined as

f (T ) = f (λ1 |x1〉〈x1 | + . . .+ λn |xn〉〈xn |)
= f (λ1) |x1〉〈x1 | + . . .+ f (λn) |xn〉〈xn | .

Hence

T logT = p1 log p1 |x1〉〈x1 | + . . .+ pn log pn |xn〉〈xn |

and

S(T ) = −KTr(T logT ) = −K (p1 log p1 + . . .+ pn log pn)
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Quantum Entropy

For a pure state T =|x〉〈x |
S(T ) = −1 · log 1 = 0

Example

Let A and B be qubits with joint state T =|x〉〈x |, where
x = 1√

2
|00〉+ 1√

2
|11〉.

S(T ) = 0, but for subsystem states S(T1) = S(T2) = 1.

Conditional entropy
S(T1 | T2) = S(T1,T2)− S(T2) = 0− 1 = −1

Mutual information:

I (T1 : T2) = S(T1)− S(T1 | T2) = 1− (−1) = 2
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Quantum Entropy

Theorem (Holevo Bound)

Let ρ1, . . ., ρn be states of n-level quantum system, produced with
probabilities p1, . . ., pn. Let also X be a random variable with
value i if ρi is produced, and Y any observable on Hn. Then

I (X : Y ) ≤ S(
n∑

i=1

piρi )−
n∑

i=1

piS(ρi )
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