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Satunnaismuuttujien yhteisjakauma

Yhteisjakauma

Olkoon p(x , y) satunnaismuuttujien X ja Y yhteinen jakauma ja
f (X ,Y ) jokin satunnasmuuttujien X ja Y funktio. Tällöin

E(f (X ,Y )) =
∑
x

∑
y

f (x , y)p(x , y).

Riippumattomuus

Satunnaismuuttujat X ja Y ovat riippumattomat, jos
p(x , y) = px(x)py (y) ja lisäksi samoin jakautuneet, jos px = py .
Jos satunnaismuuttujat ovat riippumattomat, on

E(aX + bY ) = aE(X ) + bE(Y )

E(XY ) = E(X )E(Y )

Var(aX + bY ) = a2 Var(X ) + b2 Var(Y ).
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Satunnaismuuttujien summat

Otoskeskiarvo, sen varianssi

Jos X1, . . ., Xn ovat samoin jakautuneita ((µ, σ2)), riippumattomia
satunnaismuuttujia ja

X n =
1

n
(X1 + . . .+ Xn)

näiden aritmeettinen keskiarvo (ns. otoskeskiarvo), on

E(X n) = n · 1
nE(X1) = µ.

Var( 1n (X1 + . . .+ Xn)) = n · 1
n2
σ2 = σ2

n .
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Satunnaismuuttujien summat

Markovin epäyhtälö

Jos P(X < 0) = 0 ja a > 0, on

P(X > a) ≤ E(X )

a
.

Chebyschevin epäyhtälö

P(|X − E(X )| > a) ≤ Var(X )

a2

Mika Hirvensalo mikhirve@utu.fi Luentoruudut 7 4 of 28



Satunnaismuuttujien summat

Markovin epäyhtälö
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Satunnaismuuttujien summat

Lause (Suurten lukujen laki)

Jos X1, . . ., Xn ovat samoin jakautuneita ((µ, σ2)), riippumattomia
satunnaismuuttujia ja

X n =
1

n
(X1 + . . .+ Xn)

näiden aritmeettinen keskiarvo (ns. otoskeskiarvo), on jokaista
ϵ > 0 kohti

P(
∣∣X n − µ

∣∣ ≥ ϵ) ≤ σ2

nϵ2

n→∞−−−→ 0.
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Satunnaismuuttujien summat

Esimerkki

Heitetään noppaa n kertaa ja olkoon Xi heitolla i saatu silmäluku.

Merkitään

X n =
1

n
(X1 + X2 + . . .+ Xn).

Kuinka suuri pitää heittojen määrän n olla, että varmasti

P(
∣∣X n − µ

∣∣ > 0, 1) ≤ 0, 01?
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Satunnaismuuttujien summat

Keskeinen raja-arvolause

Olkoot Xi ja X n kuten edellisessä lauseessa. Suurilla n:n arvoilla
X n jakautuu likimain normaalijakauman N(µ, σ

2

n ) mukaisesti.

Toisin sanoen,

P(X n ≤ x) ≈ Φ(
x − µ

σ/
√
n
)

kun n on suuri.

Huomautus

Tietyin ehdoin (Lindbergin ehto) väittämä pätee, vaikka
satunnaismuuttujilla ei olisikaan samanlainen jakauma. Tulos
voidaan muotoilla myös summan Sn = X1 + X2 + . . .+ Xn avulla
seuraavasti:

P(Sn ≤ x) ≈ Φ(
x − nµ

σ
√
n

)
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Olkoot Xi ja X n kuten edellisessä lauseessa. Suurilla n:n arvoilla
X n jakautuu likimain normaalijakauman N(µ, σ

2

n ) mukaisesti.
Toisin sanoen,

P(X n ≤ x) ≈ Φ(
x − µ

σ/
√
n
)

kun n on suuri.

Huomautus

Tietyin ehdoin (Lindbergin ehto) väittämä pätee, vaikka
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Keskeinen raja-arvolause

Esimerkki

Alueelle suunnitellaan asuntoja tuhannelle perheelle. Perheissä on
0, 1, 2 tai 3 lasta todennäköisyyksillä 0.35, 0.45, 0.15 ja 0.05.
Mikä on todennäköisyys sille, että 1000 koulupaikkaa ei riitä alueen
lapsille?

Olkoon Xi lapsiluku perheessä i . Tällöin E(Xi ) = 0.9 (laske) ja
Var(Xi ) = 0.69 (laske). Jos merkitään L = X1 + . . .+ X1000, on L
(kokonaislapsiluku) satunnaismuuttuja, jonka odotusarvo on
0, 9 · 1000 = 900 ja varianssi 690. Tällöin σ =

√
690 ≈ 26.3.

Näin ollen

P(L > 1000) = 1− P(L ≤ 1000) ≈ 1− Φ(
1000− 900√

690
)

= 0, 0000703499 . . .
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Keskeinen raja-arvolause

Esimerkki

Eräässä kaupungissa huomattiin että 344 kaikista 747:stä
kuolemantapauksesta oli sattunut korkeintaan 3 kk syntymäpäivän
jälkeen.

Mikä on tällaisen todennäköisyys jos kuolemantapaukset
jakautuvat tasaisesti?
Jos kuolemat jakautuisivat tasaisesti, pitäisi näitä olla 3 kk
syntymäpäivän jälkeen noin 747 · 1

4 = 186, 75. 344 on kuitenkin
noin 1, 8-kertainen tähän nähden.
Määritetään todennäköisyys P(X ≥ 344) sillä otaksumalla, että
p = 0, 25 on todennäköisyys kuolla minä hyvänsä 3 kuukauden
ajanjaksona.
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syntymäpäivän jälkeen noin 747 · 1

4 = 186, 75. 344 on kuitenkin
noin 1, 8-kertainen tähän nähden.
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Keskeinen raja-arvolause
Binomijakauma

Binomijakauman perustella voidaan laskea

P(X ≥ 344) =
747∑

k=344

(
747

k

)
0, 25k · 0, 75747−k .

Suorassa laskussa voi tulla paljon pyöristysvirheitä. Varianssi
np(1− p) = 747 · 0.25 · 0.75 = 140, 06, joten keskeinen
raja-arvolause antaa

P(X ≥ 344) = 1− P(0 ≤ X ≤ 343)

≈ 1−
(
Φ
(343, 5− 186, 75√

140, 06

)
− Φ

(−0, 5− 186, 75√
140, 06

))
= 1, 09491 · 10−56 = 0, 00000000 . . . 000109491 . . .

Vrt. Suoraan binomijakauman perusteella laskettu arvo on
1, 19478 · 10−35.
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Suorassa laskussa voi tulla paljon pyöristysvirheitä. Varianssi
np(1− p) = 747 · 0.25 · 0.75 = 140, 06, joten keskeinen
raja-arvolause antaa

P(X ≥ 344) = 1− P(0 ≤ X ≤ 343)

≈ 1−
(
Φ
(343, 5− 186, 75√

140, 06

)
− Φ

(−0, 5− 186, 75√
140, 06

))
= 1, 09491 · 10−56 = 0, 00000000 . . . 000109491 . . .

Vrt. Suoraan binomijakauman perusteella laskettu arvo on
1, 19478 · 10−35.
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Kertausta

Otoskeskiarvo, sen varianssi

Jos X1, . . ., Xn ovat samoin jakautuneita ((µ, σ2)), riippumattomia
satunnaismuuttujia ja X n = 1

n (X1 + . . .+ Xn) näiden aritmeettinen
keskiarvo (ns. otoskeskiarvo) sekä summa Sn = X1 + . . .+ Xn, on

E(X n) = n · 1
nE(X1) = µ.

Var( 1n (X1 + . . .+ Xn)) = n · 1
n2
σ2 = σ2

n .

E(Sn) = n · E(X1) = nµ.

Var(Sn) = nσ2
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Satunnaismuuttujien summat

Keskeinen raja-arvolause

Suurilla n:n arvoilla X n jakautuu likimain normaalijakauman
N(µ, σ

2

n ) mukaisesti.

Toisin sanoen,

P(X n ≤ x) ≈ Φ(
x − µ

σ/
√
n
)

kun n on suuri.

Toinen formulointi

P(Sn ≤ x) ≈ Φ(
x − nµ

σ
√
n

)

Huomautus

Jatkuvan jakauman diskretisointi
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Estimointi

Lähtökohdat

Havainnot x1, . . . xn jostakin ilmiöstä.

Tyypillisesti ei tiedetä miten havainnoitava ilmiö on
jakautunut.

i :s havainto xi on satunnaismuuttujan Xi arvo.

Satunnaismuuttujat Xi riippumattomat.

Satunnaisotos: X1, X2, . . ., Xn.

Pyrkimys: Hyvät arviot ainakin odotusarvolle E(Xi ) = µ ja
varianssille Var(Xi ) = σ2.
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Estimointi

Otoskeskiarvo

X n =
1

n

n∑
n=1

Xi ,

missä E(Xi ) = µ ja Var(Xi ) = σ2.

E(X n) = µ

Var(X n) =
σ2

n
n→∞−−−→ 0.

Otosvarianssi

Var(X n) =
1

n

n∑
i=1

(Xi − X n)
2 ?
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missä E(Xi ) = µ ja Var(Xi ) = σ2.

E(X n) = µ

Var(X n) =
σ2

n
n→∞−−−→ 0.

Otosvarianssi

Var(X n) =
1

n

n∑
i=1

(Xi − X n)
2 ?

Mika Hirvensalo mikhirve@utu.fi Luentoruudut 7 14 of 28



Estimointi

Odotusarvo

Otoskeskiarvo

Xn =
1

n
(X1 + . . .+ Xn).

Tällöin

E(Xn) =
1

n
· (E(X1) + . . .+ E(Xn)) = µ.

Tätä ominaisuutta sanotaan harhattomuudeksi
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Estimointi

Tarkentuvuus

Var(Xn) = Var(
1

n
X1) + . . .+ Var(

1

n
Xn)

=
1

n2
Var(X1) + . . .+

1

n2
Var(Xn)

= n · 1

n2
σ2 =

σ2

n
n→∞−−−→ 0.

Tällöin sanotaan, että Xn on tarkentuva estimaattori.
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Estimointi

Varianssi

Koska

σ2 = Var(Xi ) = E(X 2
i )− E(Xi )

2 = E(X 2
i )− µ2,

on
E(X 2

i ) = σ2 + µ2

Samoin

σ2

n
= Var(Xn) = E(Xn

2
)− E(Xn)

2 = E(Xn
2
)− µ2,

josta

E(Xn
2
) =

σ2

n
+ µ2.
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Estimointi

Varianssi

E(
n∑

k=1

(Xk − Xn)
2) = (n − 1)σ2.

Tämän vuoksi määritellään otosvarianssi

S2
n =

1

n − 1

n∑
k=1

(Xk − Xn)
2,

jolloin
E(S2

n ) = σ2.

S2
n on siis harhaton. Myös tarkentuva: Var(S2

n ) =
µ4
n + 3−n

n(n−1)σ
4.
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Tämän vuoksi määritellään otosvarianssi

S2
n =

1

n − 1

n∑
k=1

(Xk − Xn)
2,

jolloin
E(S2

n ) = σ2.

S2
n on siis harhaton. Myös tarkentuva: Var(S2

n ) =
µ4
n + 3−n

n(n−1)σ
4.

Mika Hirvensalo mikhirve@utu.fi Luentoruudut 7 18 of 28



Estimointi

Varianssi

E(
n∑

k=1

(Xk − Xn)
2) = (n − 1)σ2.
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Odotusarvo

Lause

Jos satunnaismuuttujat X1, . . ., Xn ovat jakautuneet N(µ, σ2)
mukaisesti, on

T =
Xn − µ

Sn/
√
n

jakautunut jakauman t(n−1) (Student’s t-distribution) mukaisesti.

Seuraus

Olkoon α ∈ (0, 1) ja a sellainen, että P(−a < T < a) = 1− α.
Tällöin

P(Xn − a
Sn√
n
≤ µ ≤ Xn + a

Sn√
n
) = 1− α.

Jos esim. α = 0, 05, on kyseessä 95% luottamusväli. Huom.
Tyypillisesti merkitään a = tn−1;α/2.
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Odotusarvon testaus

Lähtökohta

Havainnot X1, . . ., Xn.

Oletus: Xi ∼ N(µ, σ2).

Xn ja Sn havainnoista.

Onko µ = µ0 (nollahypoteesi) vai µ ̸= µ0 (vastahypoteesi)?

Varmuutta ei voi yleensä saavuttaa: p-arvo

p-arvo: Todennäköisyys sille, että nollahypoteesi pitää
paikkansa.
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paikkansa.

Mika Hirvensalo mikhirve@utu.fi Luentoruudut 7 20 of 28



Odotusarvon testaus
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Varianssi

Lause

Jos satunnaismuuttujat X1, . . ., Xn ovat jakautuneet N(µ, σ2)
mukaisesti, on

W =
(n − 1)S2

n

σ2
∼ χ2(n − 1)

jakautunut jakauman χ2(n − 1) mukaisesti.
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Entropia

Määritelmä

Lähtökohtana on diskreetti satunnaismuuttuja X , joka voi saada n
arvoa x1, . . ., xn todennäköisyyksillä p1, . . ., pn.

Jakauman p1, . . ., pn Shannon-entropia on

H(p1, . . . , pn) = −K (p1 ln p1 + . . .+ pn ln pn),

missä K > 0 on vakio. Jos K = 1
ln 2 , sanotaan entropiaa

binääriseksi. Tällöin ln pi
ln 2 = log2 pi . Määritellään lisäksi 0 · ln 0 = 0.

Jos diskreetillä satunnaismuuttujalla X on jakauma p1, . . ., pn,
merkitään ylläolevaa entropiaa myös H(X ):llä.
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binääriseksi. Tällöin ln pi
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Entropia

Esimerkki

Jos kaikki arvot xi ilmaantuvat samalla todennäköisyydellä 1
n , on

H(
1

n
, . . . ,

1

n
) = −(

1

n
log2

1

n
+ . . .+

1

n
log2

1

n
) = log2 n.

Tämä merkitsee sitä, että satunnaismuuttujan X esittämän viestin
välittämiseen tarvitaan keskimäärin log2 n bittiä.

Esimerkki

Jos satunnaismuuttuja X saa arvon x1 todennäköisyydellä 1 ja
muut arvot x2, . . . , xn todennäköisyydellä 0, on

H(X ) = −(1 · log2 1 + 0 · log2 0 + . . .+ 0 · log2 0) = 0
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n , on

H(
1

n
, . . . ,

1

n
) = −(

1

n
log2

1

n
+ . . .+

1

n
log2

1

n
) = log2 n.
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Entropia

Esimerkki

Satunnaismuuttuja X saa kaksi arvoa x0 ja x1, molemmat
todennäköisyydellä 1

2 .

Tällöin

H(X ) = −(
1

2
log2

1

2
+

1

2
log2

1

2
) = 1.

Esimerkki

Satunnaismuuttuja X saa arvon x0 todennäköisyydellä 1
4 ja arvon

x1 todennäköisyydellä 3
4 . Tällöin

H(X ) = −(
1

4
log2

1

4
+

3

4
log2

3

4
) = 0, 811278 . . .
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todennäköisyydellä 1
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Entropia

Lause

Oletetaan että reaaliarvoinen funktio H(p1, . . . , pn) toteuttaa
seuraavat ehdot:

H(p1, . . . , pn) on symmetrinen ja jatkuva

H( 1n , . . . ,
1
n ) on ei-negatiivinen, aidosti kasvava

Todennäköisyysjakaumille (p1, . . . , pn) ja (q1, . . . , qm) on
voimassa

H(p1, . . . , pn) + pnH(q1, . . . , qm)

= H(p1, . . . , pn−1, pnq1, . . . , pnqm).

Tällöin

H(p1, . . . , pn) = −K (p1 ln p1 + . . .+ pn ln pn),

missä K > 0 on vakio.
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Entropia

Yhdistetty entropia

H(X ,Y ) = −
∑

p(x , y) log2 p(x , y)

Ehdollinen entropia

H(X | yj) = −
∑

p(x | yj) log2 p(x | yj)

H(X | Y ) =
∑

p(yj)H(X | yj)

Informaatio

I (X | Y ) = H(X )− H(X | Y )
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Entropia

Määritelmä

Mikäli n-pituinen jono satunnaismuuttujan X arvoista muodostuvia
viestejä voidaan koodata m = ⌊rn⌋-pituisilla bittijonoilla, sanotaan,
että koodaus onnistuu tahdilla (rate) r .

Shannonin lause

Jos r > H(X ), on mahdollista koodata X :n arvot binääriseen
aakkostoon tahdilla r siten että dekoodausvirheen todennäköisyys
lähenee nollaa.
Jos r < H(X ), edellämainittu koodaus ei ole mahdollista, vaan
dekoodausvirheen todennäköisyys lähenee ykköstä.
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Shannonin lause

Määritelmä

Binäärisen symmetrisen kanavan kapasiteetti on

C (p) = 1− H2(p),

missä p on kanavan virhetodennäköisyys.

Koodin Cn informaatiosuhde on

R(Cn) =
log2 |Cn|

n
.

Shannonin lause 2

Jos p < 1
2 ja R < C (p) ja ϵ > 0, niin on sellainen rajaluku

N = N(p,R, ϵ), että aina kun n ≥ N, niin on olemassa n-pituinen
binäärikoodi Cn jolle R(Cn) ≥ R ja Per (Cn) < ϵ.
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