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Satunnaismuuttujien yhteisjakauma

Yhteisjakauma

Olkoon p(x, y) satunnaismuuttujien X ja Y yhteinen jakauma ja
f(X,Y) jokin satunnasmuuttujien X ja Y funktio. Talldin

E(f(X,Y)) = Zfoy)pxy
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Satunnaismuuttujien yhteisjakauma

Yhteisjakauma

Olkoon p(x, y) satunnaismuuttujien X ja Y yhteinen jakauma ja
f(X,Y) jokin satunnasmuuttujien X ja Y funktio. Talldin

E(f(X,Y)) = Zfoy)pxy

Riippumattomuus

Satunnaismuuttujat X ja Y ovat riippumattomat, jos
p(x,y) = px(x)py(y) ja lisdksi samoin jakautuneet, jos px = py.
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Satunnaismuuttujien yhteisjakauma

Yhteisjakauma

Olkoon p(x, y) satunnaismuuttujien X ja Y yhteinen jakauma ja
f(X,Y) jokin satunnasmuuttujien X ja Y funktio. Talldin

E(f(X,Y)) = Zfoy)pxy

Riippumattomuus

Satunnaismuuttujat X ja Y ovat riippumattomat, jos

p(x,y) = px(x)py(y) ja lisdksi samoin jakautuneet, jos px = py.
Jos satunnaismuuttujat ovat riippumattomat, on

o E(aX + bY) = aE(X) + bE(Y)
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Satunnaismuuttujien yhteisjakauma

Yhteisjakauma

Olkoon p(x, y) satunnaismuuttujien X ja Y yhteinen jakauma ja
f(X,Y) jokin satunnasmuuttujien X ja Y funktio. Talldin

E(f(X,Y)) = Zfoy)pxy

Riippumattomuus
Satunnaismuuttujat X ja Y ovat riippumattomat, jos
p(x,y) = px(x)py(y) ja lisdksi samoin jakautuneet, jos px = py.
Jos satunnaismuuttujat ovat riippumattomat, on
e E(aX + bY) = aE(X) + bE(Y)
e E(XY) =E(X)E(Y)
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Satunnaismuuttujien yhteisjakauma

Yhteisjakauma

Olkoon p(x, y) satunnaismuuttujien X ja Y yhteinen jakauma ja
f(X,Y) jokin satunnasmuuttujien X ja Y funktio. Talldin

E(f(X,Y)) = Zfoy)pxy

Riippumattomuus

Satunnaismuuttujat X ja Y ovat riippumattomat, jos
p(x,y) = px(x)py(y) ja lisdksi samoin jakautuneet, jos px = py.
Jos satunnaismuuttujat ovat riippumattomat, on

o E(aX + bY) = aE(X) + bE(Y)
o E(XY) =E(X)E(Y)
e Var(aX + bY) = a?Var(X) + b? Var(Y).
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Satunnaismuuttujien summat

Otoskeskiarvo, sen varianssi

Jos X1, ..., X, ovat samoin jakautuneita ((i,02)), riippumattomia
satunnaismuuttujia ja

1
X,,:;(X1+...+X,,)

ndiden aritmeettinen keskiarvo (ns. otoskeskiarvo), on
o E(X,) =n-iE(Xy) = p.
o Var((( X1 +...+ Xp))=n- Lo =2
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Satunnaismuuttujien summat

Markovin epayhtalo

Jos P(X <0)=0jaa>0,on

P(X > a) < E(aX).

Mika Hirvensalo mikhirve@utu.fi Luentoruudut 7 4 of 28



Satunnaismuuttujien summat

Markovin epayhtalo

Jos P(X <0)=0jaa>0,on

E(X)

P(X > a) < 5

Chebyschevin epayhtalo

Var(X)

P(X ~E(X)| > 2) < =2
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Satunnaismuuttujien summat

Lause (Suurten lukujen laki)

Jos X1, ..., X, ovat samoin jakautuneita ((u,0?)), riippumattomia
satunnaismuuttujia ja

= 1
X,,:;(X1+...+X,,)

ndiden aritmeettinen keskiarvo (ns. otoskeskiarvo), on jokaista

€ > 0 kohti
2

— (o
P(|Xn—p| 2 €) < —
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Satunnaismuuttujien summat

Lause (Suurten lukujen laki)

Jos X1, ..., X, ovat samoin jakautuneita ((u,0?)), riippumattomia
satunnaismuuttujia ja

= 1
X,,:;(X1+...+X,,)

ndiden aritmeettinen keskiarvo (ns. otoskeskiarvo), on jokaista

€ > 0 kohti ,
P(|X, — | > €) < 25 2250,
ne
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Satunnaismuuttujien summat

Heitetaan noppaa n kertaa ja olkoon X; heitolla i saatu silmaluku.

.
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Satunnaismuuttujien summat

Heitetaan noppaa n kertaa ja olkoon X; heitolla i saatu silmaluku.
Merkitaan

— 1
X,,:;(Xl—i-Xg-f—...—l-Xn).

Kuinka suuri pitaa heittojen maaran n olla, etta varmasti

P(|Xn — | >0,1) < 0,017

.
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Satunnaismuuttujien summat

Keskeinen raja-arvolause

Olkoot X; ja X, kuten edellisessa lauseessa. Suurilla n:n arvoilla

X jakautuu likimain normaalijakauman N(y, %2) mukaisesti.
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Satunnaismuuttujien summat

Keskeinen raja-arvolause

Olkoot X; ja X, kuten edellisessa lauseessa. Suurilla n:n arvoilla

Xp jakautuu likimain normaalijakauman N(u, Z-) mukaisesti.
Toisin sanoen,

P(X, < x) ~ cb(;(/_\/%)

kun n on suuri.
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Satunnaismuuttujien summat
Keskeinen raja-arvolause

Olkoot X; ja X, kuten edellisessa lauseessa. Suurilla n:n arvoilla

Xp jakautuu likimain normaalijakauman N(u, Z-) mukaisesti.
Toisin sanoen,

P(X, < x) ~ cb(;(/_\/%)

kun n on suuri. )
Tietyin ehdoin (Lindbergin ehto) vaittama patee, vaikka
satunnaismuuttujilla ei olisikaan samanlainen jakauma. Tulos

voidaan muotoilla myos summan S, = X3 + X5 + ...+ X, avulla
seuraavasti:

X — np

ov/n

P(S, < x) ~ & )
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Keskeinen raja-arvolause

Alueelle suunnitellaan asuntoja tuhannelle perheelle. Perheissa on
0, 1, 2 tai 3 lasta todennakoisyyksilla 0.35, 0.45, 0.15 ja 0.05.

Mika on todennakoisyys sille, etta 1000 koulupaikkaa ei riita alueen
lapsille?
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Keskeinen raja-arvolause

Alueelle suunnitellaan asuntoja tuhannelle perheelle. Perheissa on
0, 1, 2 tai 3 lasta todennakoisyyksilla 0.35, 0.45, 0.15 ja 0.05.
Mika on todennakoisyys sille, etta 1000 koulupaikkaa ei riita alueen
lapsille?

Olkoon X; lapsiluku perheessa i.
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Keskeinen raja-arvolause

Alueelle suunnitellaan asuntoja tuhannelle perheelle. Perheissa on
0, 1, 2 tai 3 lasta todennakoisyyksilla 0.35, 0.45, 0.15 ja 0.05.
Mika on todennakoisyys sille, etta 1000 koulupaikkaa ei riita alueen
lapsille?

Olkoon X; lapsiluku perheessa i. Talloin E(X;) = 0.9 (laske) ja
Var(X;) = 0.69 (laske).
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Keskeinen raja-arvolause

Alueelle suunnitellaan asuntoja tuhannelle perheelle. Perheissa on
0, 1, 2 tai 3 lasta todennakoisyyksilla 0.35, 0.45, 0.15 ja 0.05.
Mika on todennakoisyys sille, etta 1000 koulupaikkaa ei riita alueen
lapsille?

Olkoon X; lapsiluku perheessa i. Talloin E(X;) = 0.9 (laske) ja
Var(X;) = 0.69 (laske). Jos merkitddn L = Xj + ...+ Xio00, on L
(kokonaislapsiluku) satunnaismuuttuja, jonka odotusarvo on

0,9 - 1000 = 900 ja varianssi 690.
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Keskeinen raja-arvolause

Alueelle suunnitellaan asuntoja tuhannelle perheelle. Perheissa on
0, 1, 2 tai 3 lasta todennakoisyyksilla 0.35, 0.45, 0.15 ja 0.05.
Mika on todennakoisyys sille, etta 1000 koulupaikkaa ei riita alueen
lapsille?

Olkoon X; lapsiluku perheessa i. Talloin E(X;) = 0.9 (laske) ja
Var(X;) = 0.69 (laske). Jos merkitddn L = Xj + ...+ Xio00, on L
(kokonaislapsiluku) satunnaismuuttuja, jonka odotusarvo on

0,9 - 1000 = 900 ja varianssi 690. Tillsin o = /690 ~ 26.3.
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Keskeinen raja-arvolause

Alueelle suunnitellaan asuntoja tuhannelle perheelle. Perheissa on
0, 1, 2 tai 3 lasta todennakoisyyksilla 0.35, 0.45, 0.15 ja 0.05.
Mika on todennakoisyys sille, etta 1000 koulupaikkaa ei riita alueen
lapsille?

Olkoon X; lapsiluku perheessa i. Talloin E(X;) = 0.9 (laske) ja
Var(X;) = 0.69 (laske). Jos merkitddn L = Xj + ...+ Xio00, on L
(kokonaislapsiluku) satunnaismuuttuja, jonka odotusarvo on

0,9 - 1000 = 900 ja varianssi 690. Tillsin o = /690 ~ 26.3.

Nain ollen

1000 — 900

P(L >1000) = 1—P(L<1000)~ 1 — &( N

)

= 0,0000703499. ..
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Keskeinen raja-arvolause

Eraassa kaupungissa huomattiin etta 344 kaikista 747:sta
kuolemantapauksesta oli sattunut korkeintaan 3 kk syntymapaivan
jalkeen.
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Keskeinen raja-arvolause

Eraassa kaupungissa huomattiin etta 344 kaikista 747:sta
kuolemantapauksesta oli sattunut korkeintaan 3 kk syntymapaivan
jalkeen. Mika on tallaisen todennakoisyys jos kuolemantapaukset
jakautuvat tasaisesti?
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Keskeinen raja-arvolause

Eraassa kaupungissa huomattiin etta 344 kaikista 747:sta
kuolemantapauksesta oli sattunut korkeintaan 3 kk syntymapaivan
jalkeen. Mika on tallaisen todennakoisyys jos kuolemantapaukset
jakautuvat tasaisesti?

Jos kuolemat jakautuisivat tasaisesti, pitaisi naita olla 3 kk
syntymapaivan jalkeen noin 747 - 1 = 186, 75.
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Keskeinen raja-arvolause

Eraassa kaupungissa huomattiin etta 344 kaikista 747:sta
kuolemantapauksesta oli sattunut korkeintaan 3 kk syntymapaivan
jalkeen. Mika on tallaisen todennakoisyys jos kuolemantapaukset
jakautuvat tasaisesti?

Jos kuolemat jakautuisivat tasaisesti, pitaisi naita olla 3 kk
syntymapaivan jalkeen noin 747 - % = 186, 75. 344 on kuitenkin
noin 1, 8-kertainen tahan nahden.
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Keskeinen raja-arvolause

Eraassa kaupungissa huomattiin etta 344 kaikista 747:sta
kuolemantapauksesta oli sattunut korkeintaan 3 kk syntymapaivan
jalkeen. Mika on tallaisen todennakoisyys jos kuolemantapaukset
jakautuvat tasaisesti?

Jos kuolemat jakautuisivat tasaisesti, pitaisi naita olla 3 kk
syntymapaivan jalkeen noin 747 - % = 186, 75. 344 on kuitenkin
noin 1, 8-kertainen tahan nahden.

Maaritetaan todennakaisyys P(X > 344) silld otaksumalla, ettd

p = 0,25 on todennakoisyys kuolla mina hyvansa 3 kuukauden
ajanjaksona.
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Keskeinen raja-arvolause

Binomijakauma

Binomijakauman perustella voidaan laskea

AT 747
P(X > 344) = Z < . >o,25k-0,75747—’<.
k=344

=
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Keskeinen raja-arvolause

Binomijakauma

Binomijakauman perustella voidaan laskea

AT 747
P(X > 344) = Z < . >o,25k-0,75747—’<.
k=344

Suorassa laskussa voi tulla paljon pyoristysvirheita.

= =
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Keskeinen raja-arvolause

Binomijakauma

Binomijakauman perustella voidaan laskea

AT 747
P(X > 344) = Z < . >o,25k-0,75747—’<.
k=344

Suorassa laskussa voi tulla paljon pyoristysvirheita. Varianssi
np(1 — p) = 747 -0.25 - 0.75 = 140, 06,

= =
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Keskeinen raja-arvolause

Binomijakauma

Binomijakauman perustella voidaan laskea

747 747
P(X > 344) = Z < . >o,25k-0,75747—’<.
k=344

Suorassa laskussa voi tulla paljon pyoristysvirheita. Varianssi

np(l — p) = 747 -0.25 - 0.75 = 140, 06, joten keskeinen
raja-arvolause antaa

P(X >344) = 1-P(0< X < 343)
343,5 — 186,75 —0,5— 186,75
~ 1 (o(== ) (2
( ( /140, 06 ) — o /140,06 ))
— 1,09491 - 10% = 0,00000000. .. 000109491 . . .

= =

Mika Hirvensalo mikhirve@utu.fi Luentoruudut 7 10 of 28



Keskeinen raja-arvolause

Binomijakauma

Binomijakauman perustella voidaan laskea

747 747
MX2M®:§:<k>Q%KQmW4.
k=344

Suorassa laskussa voi tulla paljon pyoristysvirheita. Varianssi

np(l — p) = 747 -0.25 - 0.75 = 140, 06, joten keskeinen
raja-arvolause antaa

P(X >344) = 1-P(0< X < 343)
343,5 — 186,75 —0,5— 186,75
~ 1 (o(== ) (2
( ( /140, 06 ) — o /140,06 ))
— 1,09491 - 10% = 0,00000000. .. 000109491 . . .

Vrt. Suoraan binomijakauman perusteella laskettu arvo on
1,19478 - 10735,

™ =
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Kertausta

Otoskeskiarvo, sen varianssi

Jos X1, ..., X, ovat samoin jakautuneita (1, 02)), riippumattomia
satunnaismuuttujia ja X, = %(Xl + ...+ X,) ndiden aritmeettinen
keskiarvo (ns. otoskeskiarvo) sekd summa S, = X1 + ...+ X,, on
o E(X,)=n- %E(Xl) = /.
2

o Var(((Xy +...+ X,))=n- 502 =2
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Kertausta

Otoskeskiarvo, sen varianssi

Jos X1, ..., X, ovat samoin jakautuneita (1, 02)), riippumattomia
satunnaismuuttujia ja X, = %(Xl + ...+ X,) ndiden aritmeettinen
keskiarvo (ns. otoskeskiarvo) sekd summa S, = X1 + ...+ X,, on

o E(X,)=n- %E(Xl) = /.

o Var(Xi+ ...+ Xp)) =n- Lo =2,
e E(S,) = n-E(X1) = np.

e Var(S,) = no?
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Satunnaismuuttujien summat

Keskeinen raja-arvolause

Suurilla n:n arvoilla X, jakautuu likimain normaalijakauman
2
o o

N(p, %) mukaisesti.
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Satunnaismuuttujien summat

Keskeinen raja-arvolause

Suurilla n:n arvoilla X, jakautuu likimain normaalijakauman
2
o o .

N(p, %) mukaisesti. Toisin sanoen,

kun n on suuri.
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Satunnaismuuttujien summat

Keskeinen raja-arvolause

Suurilla n:n arvoilla X, jakautuu likimain normaalijakauman
2
o o .

N(p, %) mukaisesti. Toisin sanoen,

kun n on suuri.

Toinen formulointi

X — ny

oy/n

P(S, < x) ~ &(
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Satunnaismuuttujien summat

Keskeinen raja-arvolause

Suurilla n:n arvoilla X, jakautuu likimain normaalijakauman
2
o o .

N(p, %) mukaisesti. Toisin sanoen,

kun n on suuri.

Toinen formulointi

X — ny

av/n

Jatkuvan jakauman diskretisointi
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Estimointi

Lahtokohdat

@ Havainnot xi1, ... x, jostakin ilmiosta.
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Estimointi

Lahtokohdat

@ Havainnot xi1, ... x, jostakin ilmiosta.

o Tyypillisesti ei tiedeta miten havainnoitava ilmio on
jakautunut.
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Estimointi

Lahtokohdat

@ Havainnot xi1, ... x, jostakin ilmiosta.

o Tyypillisesti ei tiedeta miten havainnoitava ilmio on
jakautunut.

@ i:s havainto x; on satunnaismuuttujan X; arvo.
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Estimointi

Lahtokohdat

@ Havainnot xi1, ... x, jostakin ilmiosta.

o Tyypillisesti ei tiedeta miten havainnoitava ilmio on
jakautunut.

@ i:s havainto x; on satunnaismuuttujan X; arvo.

@ Satunnaismuuttujat X; riippumattomat.
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Estimointi

Lahtokohdat

@ Havainnot xi1, ... x, jostakin ilmiosta.

o Tyypillisesti ei tiedeta miten havainnoitava ilmio on
jakautunut.

@ i:s havainto x; on satunnaismuuttujan X; arvo.
@ Satunnaismuuttujat X; riippumattomat.

@ Satunnaisotos: Xi, Xo, ..., X,.
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Estimointi

Lahtokohdat

@ Havainnot xi1, ... x, jostakin ilmiosta.

o Tyypillisesti ei tiedeta miten havainnoitava ilmio on
jakautunut.

i:s havainto x; on satunnaismuuttujan X; arvo.
Satunnaismuuttujat X; riippumattomat.
Satunnaisotos: X1, Xo, ..., X,.

Pyrkimys: Hyvat arviot ainakin odotusarvolle E(X;) = p ja

varianssille Var(X;) = o2,
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Estimointi

Otoskeskiarvo

missd E(X;) = i ja Var(X;) = 2.

.
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Estimointi

Otoskeskiarvo

missd E(X;) = i ja Var(X;) = 2.

o E(X,)=p

.
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Estimointi

Otoskeskiarvo
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n

= 1
Xn = Xi7
missd E(X;) = i ja Var(X;) = 2.
o E(X,)=pu
e Var(X,) = "—nz !
Var(X,) = zn:(x- X
n n — ! n d
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Estimointi

Odotusarvo

Otoskeskiarvo ]
X, = ;(X1+...+X,,).
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Estimointi

Odotusarvo

Otoskeskiarvo ]
X, = ;(X1+...+X,,).
Talloin .
]E(XT,) = (E(X1) + ...+ E(Xn)) = u.
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Estimointi

Odotusarvo

Otoskeskiarvo ]
X, = ;(X1+...+X,,).
Talloin .
]E(XT,) = (E(X1) + ...+ E(Xn)) = u.

Tata ominaisuutta sanotaan harhattomuudeksi
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Estimointi

— 1 1
Var(X,) = Var(;Xl)—i-...—FVar( Xn)

n

Mika Hirvensalo mikhirve@utu.fi Luentoruudut 7 16 of 28



Estimointi

— 1 1
Var(X,) = Var(;Xl)—i-...—FVar( Xn)

n

1 1
= Var(Xy) +...+ = Var(X,)
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Estimointi

— 1 1
Var(X,) = Var(;Xl) +...+ Var(EX,,)

1 1
= Var(Xy) +...+ = Var(X,)

o
:n—202 —
n

S
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Estimointi

1 1
Var(X,) = Var(;Xl)—i-...—FVar( Xn)

n

1 1
= Var(Xy) +...+ = Var(X,)

1 2 02 n—o0
= n-—o2=— "%,
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Estimointi

1 1
Var(X,) = Var(;Xl)—i-...—FVar( Xn)

n

1 1
= Var(Xy) +...+ = Var(X,)

T3lléin sanotaan, ettd X, on tarkentuva estimaattori.
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Estimointi

Koska
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Estimointi

Koska
02 = Var(X;) = E(X?) — E(X))2 = E(X?) — 12,
on
E(X?) = 02 +
Samoin
0,72 = Var(Xy) = E(X,) — E(%)2 = E(X,") — 412,
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Estimointi

Koska
o2 = Var(X;) = E(X?) — E(X;)? = E(X?) — 12,
on
E(X?) = 02 + 12
Samoin
2
T —Var(Xy) = E(X,) — E(Xy)? = E(X,2) — 12,
josta
2
E(X,) = = + 12
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Estimointi
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Estimointi

n

E(Y (Xk = Xa)?) = (n—1)0”.

k=1
Taman vuoksi maaritellaan otosvarianssi
2 1 ¢ v \2
Sn = n_lz(xk*Xn) ;
k=1
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Estimointi

n

E(Y (Xk = Xa)?) = (n—1)0”.

k=1
Taman vuoksi maaritellaan otosvarianssi

I —
S2 = o D (X — Xa)?,
k=1

jolloin
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Estimointi

n

E(Y (Xk = Xa)?) = (n—1)0”.

k=1
Taman vuoksi maaritellaan otosvarianssi
2 1 ¢ v \2
Sn = n_lz(xk*Xn) ;
k=1

jolloin
E(S2) = 2.

S2 on siis harhaton.
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Estimointi

n

E(Y (Xk = Xa)?) = (n—1)0”.

k=1
Taman vuoksi maaritellaan otosvarianssi

n

1 _
S2 = o D (X — Xa)?,
k=1
jolloin
E(S2) = 2.

S2 on siis harhaton. Myds tarkentuva: Var(S2) = £ + n(3n__”1)04.
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Odotusarvo

Jos satunnaismuuttujat Xi, ..
mukaisesti, on

., X, ovat jakautuneet N(u,o?)
Xn —
Sn /f

jakautunut jakauman t(n—1) (Student’s t-distribution) mukaisesti.

T —

V
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Jos satunnaismuuttujat Xi,

..., Xp ovat jakautuneet N(u,o?)
mukaisesti, on

Xn —
Sn/v/n

jakautunut jakauman t(n—1) (Student’s t-distribution) mukaisesti.

T =

Olkoon a € (0,1) ja a sellainen, ettd P(—a< T <a)=1-—«.
Talloin

— Sn — Sn
P(X,—a—= < u<X, —)=1-—aq.
( = H= +aﬁ) @

Jos esim. a = 0,05, on kyseessa 95% luottamusvili.
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Jos satunnaismuuttujat Xi, ..

., X, ovat jakautuneet N(u,o?)
mukaisesti, on

Xn —
5/f

jakautunut jakauman t(n—1) (Student’s t-distribution) mukaisesti.

T —

Olkoon a € (0,1) ja a sellainen, ettd P(—a< T <a)=1-—«.
Talloin
P(X, aS"< <X +as") 1
—a— —)=1-q.
" =T

Jos esim. a = 0,05, on kyseessa 95% luottamusvéli. Huom.
Tyypillisesti merkitaan a = t,_1.,/2-
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Odotusarvon testaus

Lahtokohta

@ Havainnot Xi, ..., X,.
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Odotusarvon testaus

Lahtokohta

@ Havainnot Xi, ..., X,.
e Oletus: X; ~ N(u,0?).
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Odotusarvon testaus

Lahtokohta

@ Havainnot Xi, ..., X,.
e Oletus: X; ~ N(u,0?).

@ X, ja S, havainnoista.
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Odotusarvon testaus

Lahtokohta

@ Havainnot Xi, ..., X,.
e Oletus: X; ~ N(u,0?).

@ X, ja S, havainnoista.

@ Onko p = g (nollahypoteesi) vai p # po (vastahypoteesi)?
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Odotusarvon testaus

Lahtokohta

@ Havainnot Xi, ..., X,.
e Oletus: X; ~ N(u,0?).

@ X, ja S, havainnoista.

@ Onko p = g (nollahypoteesi) vai p # po (vastahypoteesi)?

@ Varmuutta ei voi yleensa saavuttaa: p-arvo
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Odotusarvon testaus

Lahtokohta

@ Havainnot Xi, ..., X,.
Oletus: X; ~ N(u,d?).

Xy ja S, havainnoista.

Onko p = ugp (nollahypoteesi) vai p # po (vastahypoteesi)?

Varmuutta ei voi yleensa saavuttaa: p-arvo

p-arvo: Todennakoisyys sille, etta nollahypoteesi pitaa
paikkansa.
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Varianssi

Jos satunnaismuuttujat Xg, ..., X, ovat jakautuneet N(u,o?)
mukaisesti, on

n—1)S2
W:(o—z)wx2(n—1)

jakautunut jakauman x?(n — 1) mukaisesti.

A
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Entropia

Maaritelma

Lahtokohtana on diskreetti satunnaismuuttuja X, joka voi saada n
arvoa xi, ..., X, todennakoisyyksilla p1, ..., pp.
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Entropia

Maaritelma

Lahtokohtana on diskreetti satunnaismuuttuja X, joka voi saada n
arvoa xi, ..., X, todennakoisyyksilla p1, ..., pp.

Jakauman py, ..., pn, Shannon-entropia on

H(p1, ..., pn) = —K(p1Inpr + ...+ pslnpp),

missa K > 0 on vakio.
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Entropia

Maaritelma

Lahtokohtana on diskreetti satunnaismuuttuja X, joka voi saada n
arvoa xi, ..., X, todennakoisyyksilla p1, ..., pp.
Jakauman py, ..., pn, Shannon-entropia on

H(p1, ..., pn) = —K(p1Inpr + ...+ pslnpp),

missa K > 0 on vakio. Jos K = ﬁ sanotaan entropiaa
binaariseksi.
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Entropia

Maaritelma

Lahtokohtana on diskreetti satunnaismuuttuja X, joka voi saada n
arvoa xi, ..., X, todennakoisyyksilla p1, ..., pp.
Jakauman py, ..., pn, Shannon-entropia on

H(p1, ..., pn) = —K(p1Inpr + ...+ pslnpp),

missa K > 0 on vakio. Jos K = ﬁ sanotaan entropiaa

In p;

binaariseksi. Talloin {5 = log, p;.
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Entropia

Maaritelma

Lahtokohtana on diskreetti satunnaismuuttuja X, joka voi saada n
arvoa xi, ..., X, todennakoisyyksilla p1, ..., pp.

Jakauman py, ..., pn, Shannon-entropia on

H(p1, ..., pn) = —K(p1Inpr + ...+ pslnpp),

missa K > 0 on vakio. Jos K = ﬁ sanotaan entropiaa

binaariseksi. Talloin II':]’;" = log, p;. Maaritellaan lisaksi 0-In0 = 0.
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Entropia

Maaritelma

Lahtokohtana on diskreetti satunnaismuuttuja X, joka voi saada n
arvoa xi, ..., X, todennakoisyyksilla p1, ..., pp.

Jakauman py, ..., pn, Shannon-entropia on

H(p1, ..., pn) = —K(p1Inpr + ...+ pslnpp),

missa K > 0 on vakio. Jos K = ﬁ sanotaan entropiaa
binaariseksi. Talloin 'I’:]’;" = log, p;. Maaritellaan lisaksi 0-In0 = 0.
Jos diskreetilla satunnaismuuttujalla X on jakauma py, ..., pp,

merkitaan yllaolevaa entropiaa myos H(X):I13.
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Entropia

Jos kaikki arvot x; ilmaantuvat samalla todennakoisyydella % on

H

1) (1| 1+ +1| 1) |
—Y.e..,— )= —\— 10O — — 10 —) =10 n.
n7 7n n g2n n g2n g2
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Entropia

Jos kaikki arvot x; ilmaantuvat samalla todennakoisyydella % on

1 1 1 1 1 1
H(—,...,—)=—(—log, — +...+ —log, —) = log, n.
(o 2) = —( logy — _log; ) = log,
Tama merkitsee sita, etta satunnaismuuttujan X esittaman viestin
valittamiseen tarvitaan keskimaarin log, n bittia.
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Jos kaikki arvot x; ilmaantuvat samalla todennakoisyydella % on

1

1 1 1 1 1
H(=,....2)=—(=logy = +...+=log, =) = | .
(=, ,n) (n ogy  + +nogzn) ogyn

n
Tama merkitsee sita, etta satunnaismuuttujan X esittaman viestin
valittamiseen tarvitaan keskimaarin log, n bittia.

Jos satunnaismuuttuja X saa arvon x; todennakoisyydella 1 ja
muut arvot xp, ..., X, todennakoisyydella 0, on

H(X)=—(1-logy1+0-log,0+...40-log,0) =0
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Satunnaismuuttuja X saa kaksi arvoa xp ja x;, molemmat
todennakoisyydella %
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Satunnaismuuttuja X saa kaksi arvoa xp ja x;, molemmat
todennakoisyydella % Talloin

1

1 1 1
H(X) = —(5 log, 515 log, 5) =1
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Satunnaismuuttuja X saa kaksi arvoa xp ja x;, molemmat

todennakoisyydella % Talloin

1

2 v
Satunnaismuuttuja X saa arvon xp todennakoisyydella % ja arvon
x1 todennakoisyydella %.

1 1 1
H(X) = —(5 logs 5 + 5 log, 5) =1
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Satunnaismuuttuja X saa kaksi arvoa xp ja x;, molemmat
todennakoisyydella % Talloin

1

2 v
Satunnaismuuttuja X saa arvon xp todennakoisyydella % ja arvon
x1 todennakaisyydellsd 3. Tallin

1 1 1
H(X) = —(5 logs 5 + 5 log, 5) =1

1 1 3 3
H(X) = —(1 logz  + 7 logz Z) =0,811278...
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Entropia

Oletetaan etta reaaliarvoinen funktio H(p1, ..., py) toteuttaa
seuraavat ehdot:

e H(pi,...,pn) on symmetrinen ja jatkuva
o H(%,...,1) on ei-negatiivinen, aidosti kasvava

° Todennak0|snyJakaum|I|e (p1s---,pn)ja (g1,---,9m) on
voimassa

H(p17 .. ‘7pn) + an(q17‘ ) Qm)
- H(P17-~-7Pn—1;PnQI7-~-aPan)-
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Entropia

Oletetaan etta reaaliarvoinen funktio H(p1, ..., py) toteuttaa
seuraavat ehdot:
e H(pi,...,pn) on symmetrinen ja jatkuva

o H(%,...,1) on ei-negatiivinen, aidosti kasvava
° Todennak0|snyJakaum|I|e (p1s---,pn)ja (g1,---,9m) on
voimassa
H(p1, ..., pn) + PaH(q1, ..., qm)
- H(P17-~-7Pn—1aPnQI7-~-aPan)-
Talloin

H(pi,....pn) = —K(prInp1+ ...+ pnlnpy),

missa K > 0 on vakio.
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Yhdistetty entropia

H(X,Y) == p(x,y)log, p(x,y)
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Yhdistetty entropia

H(X,Y) == p(x,y)log, p(x,y)

Ehdollinen entropia

HX yj) ==Y p(x | y)logy p(x | ;)
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Yhdistetty entropia

H(X,Y) == p(x,y)log, p(x,y)

Ehdollinen entropia

HX yj) ==Y p(x | y)logy p(x | ;)

HIX|Y) = pyj)H(X | y))
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Yhdistetty entropia

H(X,Y) == p(x,y)log, p(x,y)

Ehdollinen entropia

HX yj) ==Y p(x | y)logy p(x | ;)

HIX|Y) = pyj)H(X | y))

Informaatio

I(X | Y) = H(X)— H(X | Y)
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Maaritelma
Mikali n-pituinen jono satunnaismuuttujan X arvoista muodostuvia
viesteja voidaan koodata m = | rn]-pituisilla bittijonoilla, sanotaan,
etta koodaus onnistuu tahdilla (rate) r.
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Maaritelma

Mikali n-pituinen jono satunnaismuuttujan X arvoista muodostuvia
viesteja voidaan koodata m = | rn]-pituisilla bittijonoilla, sanotaan,
etta koodaus onnistuu tahdilla (rate) r.

Shannonin lause

Jos r > H(X), on mahdollista koodata X:n arvot binaariseen
aakkostoon tahdilla r siten etta dekoodausvirheen todennakoisyys
|ahenee nollaa.
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Maaritelma

Mikali n-pituinen jono satunnaismuuttujan X arvoista muodostuvia
viesteja voidaan koodata m = | rn]-pituisilla bittijonoilla, sanotaan,
etta koodaus onnistuu tahdilla (rate) r.

Shannonin lause

Jos r > H(X), on mahdollista koodata X:n arvot binaariseen
aakkostoon tahdilla r siten etta dekoodausvirheen todennakoisyys
|ahenee nollaa.

Jos r < H(X), edellamainittu koodaus ei ole mahdollista, vaan
dekoodausvirheen todennakoisyys lahenee ykkosta.
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Shannonin lause

Maaritelma

Binaarisen symmetrisen kanavan kapasiteetti on

C(p) =1 — Ha(p),

missa p on kanavan virhetodennakoisyys.

.
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Shannonin lause

Maaritelma

Binaarisen symmetrisen kanavan kapasiteetti on

C(p) =1 — Ha(p),

missa p on kanavan virhetodennakoisyys.

Koodin C, informaatiosuhde on

_ log, |Cn‘

R(Cp) p

.
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Shannonin lause

Binaarisen symmetrisen kanavan kapasiteetti on

C(p) =1 - Ha(p),
missa p on kanavan virhetodennakoisyys.
Koodin C, informaatiosuhde on

_ log, |Cn‘
=,

Shannonin lause 2

Jos p < %ja R < C(p) ja € > 0, niin on sellainen rajaluku
N = N(p, R,€), ettd aina kun n > N, niin on olemassa n-pituinen
binaarikoodi C, jolle R(C,) > R ja P, (Cp) < e.

R(Cr)
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