
Seminar on automata, fall 1996

Quantum computation

Part 2.

IV. Notations and basic concepts.

Here |Σ| will denote the cardinality of a set Σ. Notation Σ∗ will stand for the
set of all finite sequences of the members of Σ. The elements of Σ∗ are called the
words over alphabet Σ. If x = σi1σi2 . . . σin is a word, then |x| means the length of
x which, in this example, is n. The length of the empty word ε is defined to be 0.
A set L ⊆ Σ∗ is called a formal language over Σ.

A classical Turing machine consists of a finite alphabet, states, (potentially in-
finite) tape and of transition rules. More precisely,

M = (Q,Σ, δ, q0, F).

Here Q is a finite set of the states, Σ is the finite alphabet that is expected to
contain a special blank symbol ∗, δ : Q× Σ → Q× Σ × {L, 0, R} is the transition
function, q0 is the initial state and F is the set of the final states. Sets Q and Σ are
assumed to be disjoint. Here we want the transition function δ to be completely
defined.

The tape T is the set of all mappings T : Z → Σ ∪ Q such that T (i) 6= ∗ only
for finitely many i ∈ Z and that T (k) ∈ Q for exactly one k ∈ Z. Symbol Tt(k) is
called the contents of the k:th cell at time t. If T (k) ∈ Q, then T (k + 1) is called
the currently scanned symbol.

Intuitively the tape represents a countable sequence of memory cells that con-
tinues infinitely in both directions. The unique symbol from Q on the tape works
as the state marker and the read-write head position marker at the same time. The
precise definition of the tape becomes convinient since each cell has an index to
refer with.

The configuration of a Turing machine is a mapping in T . It is clear that there
are only contably many configurations. A configuration T is a final configuration
if T (k) ∈ F for some k.

The computation of a classical Turing machine is a countable sequence of con-
figurations. Each computation is completely determined by the first member T0

which is called initial configuration. The initial configuration depends on the input

word. Let x = σi1σi2 . . . σin be an input word. Then it is required that T0(0) = q0,
T0(j) = σij when j ∈ {1, . . . , n} and T (k) = ∗ for all other values of k. So the
letters of the input word are initially stored in cells 1, 2, . . . , n and the state of the
machine is q0 in the beginning.

When i ≥ 1, member Ti is obtained from Ti−1 by the transition rules. We say
that configuration Ti−1 yields Ti in one step and denote Ti−1 ` Ti. Relations `k

“yields in k steps” and `∗ “yields” are defined in the obvious way. In this formalism
1

2

the computation of a Turing machine does not stop, but reaching a final state is
thought to be a sign of complete computation and the result can be read on the
tape. We say that the Turing machine halts if a final configuration is reached.
Otherwise the machine diverges.

Assume now temporarily that there are two final states: yes and no, and that
the machine M always halts. The machine defines then a formal language over Σ,
namely

L(M) = {x | machine M halts in yes-state with input x}.

We say that L(M) is the language decided by M. If a formal language is of form
L = L(M) for some Turing machine M, it means that there is an algorithm which
decides whether a given word x belongs to that language or not. The languages
that are not of form L(M) are called undecidable.

If the machine always either halts in yes-state or diverges, a formal language is
again defined:

L(M) = {x | machine M halts with input x}.

Language L(M) is called the language accpeted by machine M.

If a language L is decided by a Turing machine M then there clearly exists
a Turing machine M′ that accepts L. The family of formal languages that are
accepted by Turing machines is called recursively enumerable languages and denoted
by RE. Languages accepted by Turing machines are called recursive languages.
The set of recursive languages is denoted by R. A cardinality argument shows that
the major part of formal languages are not even recursively enumerable. Turing
machines can also be considered as function calculators: input x yields some output
word or the machine diverges. Thus a Turing machine specifies a partially defined
function Σ∗ → Σ∗. A function that is defined by always halting Turing machine is
called recursive function.

A nondeterministic Turing machine, NTM, is defined in the same way as the
classical one, but instead of transition function there is a transition relation

δ ⊆ Q× Σ ×Q× Σ × {L, 0, R}

for which we assume that for each pair (q, σ) ∈ Q× Σ there is at least one triplet
(q1, σ1, d) ∈ Q× Σ × {L, 0, R} such that (q, σ, q1, σ1, d) ∈ δ.

The computation tree or shortly the computation of a NTM is a labelled tree with
the initial configuration as a root entry and the descendant of each vertex defined
by the transition relation in the obvious way. The computation of a NTM halts if
there is a path from the root entry to a vertex labelled with a final configuration.
A nondeterministic Turing machine accepts an input word, if there is at least one
accepting path in the computation tree, otherwise NTM rejects the input word.

A probabilistic Turing machine is also defined as the classical one, but the tran-
sition function is replaced with the transition probability function

δ : Q× Σ ×Q× Σ × {L, 0, R} → [0, 1]

3

that satisfies
∑

(q,σ,d)
∈Q×Σ×{L,0,R}

δ(q1, σ1, q, σ, d) = 1

for any choise of q1 and σ1. If the current state is q1 and symbol σ1 is being scanned,
the value δ(q1, σ1, q, σ, d) gives the probability to enter state q, overwrite σ1 with σ
and to move to direction d.

The computation tree of a probabilistic Turing machine is a tree having vertices
labelled with configuration and edges labelled with probabilities. The structure of
the tree is determined as an obvious analogue to the nondeterministic case. The
level of a vertex is the number of edges in the path from the root to the vertex.
The probability of a vertex is the product of the probabilities on the path from the
root to the vertex. A probabilistic Turing machine halts, if there is a vertex having
non-zero probability labelled with a final configuration.

V. Quantum Turing machine.

Let C be the linear span of all configurations over the field of complex num-
bers. Clearly C is an infinite-dimensional complex vector space with basis T . Each
element in C can be represented as a finite sum

c = α1T1 + α2T2 + . . .+ αnTn,

where Ti ∈ T . We will define an inner product in C by

〈Ti | Tj〉 =

{

1, if i = j

0 otherwise,

and extending this in the only possible way. The vector space C is called the
configuration space and the unit-length elements in C are called superpositions.

A Quantum Turing machine is defined as the earlier ones, but here

δ : Q× Σ ×Q× Σ × {L, 0, R} → C

is the transition amplitude function. It is required that δ satisfies the following
conditions:

1) For all (q1, σ1) ∈ Q × Σ the sum of squared absolute values of the amplitudes
leaving the current configuration equals to one:

∑

(q,σ,d)
∈Q×Σ×{L,0,R}

|δ(q1, σ1, q, σ, d)|
2

= 1.

2) For all different pairs (q1, σ1) 6= (q2, σ2) ∈ Q×Σ the corresponding sequences of
the amplitudes are orthogonal:

∑

(q,σ,d)
∈Q×Σ×{L,0,R}

δ(q1, σ1, q, σ, d)δ(q2, σ2, q, σ, d) = 0.

4

3) Fixed any (q1, σ1, σ
′
1), (q2, σ2, σ

′
2) ∈ Q× Σ × Σ and d1 6= d2 ∈ {L, 0, R}, then

∑

q∈Q

δ(q1, σ1, q, σ
′
1, d1)δ(q2, σ2, q, σ

′
2, d2) = 0,

so the sequences of the amplitudes of reaching a state q from different directions
must also be orthogonal.

The computation tree of a quantum Turing machine is a tree having vertices
labelled with configurations and edges labelled with transition amplitudes. The
root is labelled with the initial configuration. The amplitude of a vertex is the
product of the amplitudes on the path from the root to the vertex. The entries of
the vertices at level k always determine a superposition

α1Ti1 + α2Ti1 + . . .+ αnTin , (5-1)

Where Tij are the entries at level k and αj are the amplitudes of the corresponding
vertices. By the requirement 1) (5-1) is of unit length. Thus the computation tree
always induces a sequence of superpositions where the first member is the initial
configuration and ci is determined by ci−1 and by the transition amplitude function
when i ≥ 1.

Let T1, T2, T3, . . . be an enumeration of all configurations. We define mapping
U : C → C by

U(T) =

k
∑

i=1

αiTji ,

where Tji are configurations that can be obtained from T in one step with amplitude
αi. Mapping U is then extended into a linear mapping in the only possible way
and U is called the time evolution of the quantum Turing machine.

Lemma V.1. Let U∗ be the adjoint mapping of U . Then U ∗U = I, so U is

injective.

The outline of the proof. To find U ∗ we write

U(Ti) =
∞
∑

l=1

αliTl.

Recall that αli is the amplitude of reaching Tl from Ti in one step and that the sum
above is actually finite. One checks that

U∗(Ti) =

α
∑

l=1

αilTl

really is the adjoint mapping of U . Here also the sum is finite. It is easy to check
that

U∗(U(Ti)) =
∞
∑

l=1

(

∞
∑

k=1

αkiαkl

)

Tl.

5

It follows from the requirement 1) that

∞
∑

k=1

|αki|
2

= 1,

and it remains to check that
∞
∑

k=1

αkiαkl = 0

whenever l 6= i. This follows from conditions 2) and 3). �

Theorem V.2. Mapping U is unitary.

Proof. It remains to show that U is surjective, since then U has an inverse mapping,
which, by the previous lemma, has to be U ∗. It also suffices to show that each basis
vector Ti is in the image of U . Suppose, for the contradiction that U(c) 6= TN for
any c. Then all the configurations locally looking like TN also are out of the range.

Let n ≥ 4 and establish K = n |Q| |Σ|
n

configurations Ti1 , . . . , TiK having
cells other than {0, 1, . . . , n} blank and cell n not scanned. These configurations
generate a K-dimensional subspace V ⊂ C. Also dimU(V) = K, because U is
injective.

On the other hand, in one step from any Tik one can go into another Til or exit
the chosen n cells (there are at most 2 |Q| |Σ|

n
configurations to exit into), so we

can go into at most K+2 |Q| |Σ|
n

configurations. But at least (n− 2) |Σ|
n−3

of Tik
locally look like TN , so they cannot be reached from anywhere. Consequently, all
images of Ti1 , . . . , TiK can be represented as

U(Tik) =
∑

l∈J

αlTjl

where |J | ≤ K + |Q| |Σ|
n
− (n− 2) |Σ|

n−3
. Therefore

K = dimU(V) ≤ K + |Q| |Σ|
n
− (n− 2) |Σ|

n−3
,

which is equivalent to n ≤ |Q| |Σ|
3
+2. But n can be chosen arbitrarily large, which

rises a contradiction. �

Corollary. The computation of a quantum Turing machine is reversible.

The unitarity of the time evolution mapping of a quantum Turing machine is
in some sense paradoxical: That the future computation is determined when the
initial configuration is known is easy to handle, but here also the past computation

is known, so we can in principle determine the superposition before the inital one!
However, the determinism is violated by the observation.

VI. A finite-dimensional model

6

We fix two natural numbers M ≤ N and assume that a quantum Turing machine
never scanns cells other than {−N+1, . . . , N} in forward of backward computation
if the length of the input is at most M .

Let S be the set of those superpositions that will occur when the length of the
input is at most M , more presicely, let

I = {c ∈ T | c is a configuration of form

. . . ∗ ∗ ∗ q0x1 . . . xm ∗ ∗ ∗ . . . with q0 in cell 0 and m ≤M},

and
S =

⋃

c∈I

{Uk(c) | k ∈ Z}.

Clearly |S| ≤ 2N |Q| |Σ|
2N

by the assumption. Next we consider the finite-dimensi-
onal subspace C′ generated by S. the following statement is obvious:

Lemma VI.1. The restriction of U on C ′ is a unitary mapping dom(U) → C ′.

Let d = |Q| + |Σ|. Next we will consider a d-dimensional Hilbert space H that
has orthonormal basis

B = {|q0〉, |q1〉, . . . , |qf 〉, |σ1〉, |σ2〉, . . . , |σn〉},

where Q = {q1, . . . , qf} and Σ = {σ1, . . . , σn}. Let Ĥ be a 2N + 1-fold tensor
product

Ĥ =
N

⊗

i=−N

H

and e : C′ → Ĥ be the embedding defined in the obvious way. Then a unitary
mapping Û whose domain is the image of S in C ′ can be defined by Û(e(x)) =

e(U(x)) and extended into a unitary mapping Ũ : Ĥ → Ĥ. Space Ĥ = ĤN is called
a finite model of a quantum Turing machine.

Let

c =

m
∑

i=1

αiTji ∈ C′ (5-2)

be a superposition and c′ = e(c). If c′ can be represented as a tensor product of
2N + 1 vectors in H, we say that the superposition is decomposable. Otherwise the
superposition is entangled.

The observation of the superposition (5-2) yields configuration Tji with proba-

bility |αi|
2
. The superposition after the observation is Tji , so all other branches of

the computation tree are destroyed.

The observation described above corresponds to a measurement of an observable
of form λ1P [ϕ1] + . . . λmP [ϕm], where λ1 < λ2 < . . . λm and for each ϕi are the

basis vectors (configurations) of Ĥ. Measured value λi indicates that the basis
vector ϕi was observed.

Example (degenerate observables): Let {ϕ1, ϕ2} be an orthonormal basis of H2

and A = 1·P [ϕ1]+2·P [ϕ2] an observable. Recall that P [ϕ] is the projection onto the

7

one-dimensional subspace spanned by a uniti-length vector ϕ. If ψ = c1ϕ1 + c2ϕ2

is a state vector of system to be observed, then value 1 will be obtained with

probability |c1|
2

and value 2 with probability |c2|
2
. The post-observation state

vectors are ϕ1 and ϕ2 respectively. Consider then the compound system H2 ⊗H2

with orthonormal basis

{ϕ1 ⊗ ϕ1, ϕ1 ⊗ ϕ2, ϕ2 ⊗ ϕ1, ϕ2 ⊗ ϕ2, }

and an observable

B = A⊗ I = 1 · P [ϕ1 ⊗ ϕ1] + 1 · P [ϕ1 ⊗ ϕ2] + 2 · P [ϕ2 ⊗ ϕ1] + 2 · P [ϕ2 ⊗ ϕ2].

Observable B is now degenerate, i.e. it has multiple eigenvalues. The spectral
projections are now given by

EB({1}) = P [ϕ1 ⊗ ϕ1] + P [ϕ1 ⊗ ϕ2]

and
EB({2}) = P [ϕ2 ⊗ ϕ1] + P [ϕ2 ⊗ ϕ2].

In a state determined by a unit-lenght vector

ψ = c1ϕ1 ⊗ ϕ1 + c2ϕ1 ⊗ ϕ2 + c3ϕ2 ⊗ ϕ1 + c4ϕ2 ⊗ ϕ2

we have
EBP [ψ]({1}) = |c1|

2
+ |c2|

2

and
EBP [ψ]({2}) = |c3|

2
+ |c4|

2
.

The post-measurement state vector will be

1
√

|c1|
2
+ |c2|

2

(

c1ϕ1 ⊗ ϕ1 + c2ϕ1 ⊗ ϕ2

)

or
1

√

|c3|
2
+ |c4|

2

(

c3ϕ2 ⊗ ϕ1 + c4ϕ2 ⊗ ϕ2

)

depending on which value was observed. So, essentially observable B corresponds
to an observation on the first component, but the second component remains in
superposition.

For the general observation of cells indexed with set I ⊆ {−N, . . . , N} of super-
position (5-2) we define an equivalence relation ∼I⊆ T × T by

Ti ∼I Tj ⇐⇒ Ti(k) = Tj(k) for all k ∈ I.

and divide configurations in (5-2) into equivalence classes. The probability of an
equivalence class [Tjk] is defined by

P ([Tjk]) =
∑

Tij
∈[Tjk

]

|αj|
2
.

8

The observation of cells I yields equivalence class [Tjk] with probability P ([Tjk]).
The post-observation superposition is

1
√

∑

Tj∈[Tjk
] |aj |

2

∑

Tj∈[Tjk
]

αjTj

provided the class [Tjk] was observed.

VII. The reversibility of the computation.

A quantum Turing machine is always reversible, but the classical ones are not,
in general. In order to conclude that everything we can do with a TM can also be
done with a quantum Turing machine, we have to show that the computation can
be forced to be reversibe. The device introduced by Bennet [Part 1] is modified
here.

A two-tape Turing machine consists of two tapes T (1), T (2) and of a sixtuple

(Q,Σ,Γ, δ, q0, F),

where Q is the set of states, Σ and Γ are the alphabets of the first and the second
tape respectively. It is required that the unique symbol from Q on both tapes equal
at each step. The function

δ : Q× Σ × Γ → Q× Σ × Γ × {L, 0, R}2

is again called the transition function. The action of the two-tape Turing machine
is defined in the obvious way. The configuration of a two-tape Turing machine
is now and ordered pair (T (1), T (2)) ∈ T (1) × T (2) such that if T (1)(k1) ∈ Q and
T (2)(k2) ∈ Q, then T (1)(k1) = T (2)(k2). Again there is only countably many
configurations.

Definition VII.1. A Turing machine M is (logically) reversible, if each configu-
ration uniquely determines the previous one.

Theorem VII.1. For each one-tape Turing machine there exists a reversible two-

tape Turing machine that simulates the original one on the first tape.

The outline of the proof. Let M = (Q,Σ, δ, q0, F) be a one-tape machine. We will
describe a two-tape machine

M ′ = (Q′,Σ, (Q× Σ × {L, 0, R})∪ {∗}, δ′, q0, F),

where Q′ = Q ∪ Qw ∪ Qr, Qw = {qw | q ∈ Q} and Qr = {qr | q ∈ Q}. Sets Q,
Qw and Qr are assumed to be pairwise disjoint. Transition rules are given in five
groups: For each pair (q, σ) ∈ Q× Σ we define

1◦ δ′(q, σ,x) = (qw, σ,x, 0, R) for any x ∈ Q× Σ × {L, 0, R} ∪ {∗}.

2◦ δ′(qw, σ, ∗) = (q1, σ1, (q, σ, d1), d1, 0), where q1, σ1 and d1 are determined by
δ(q, σ) = (q1, σ1, d1).

9

3◦ δ′(qw, σ, (p, η, d)) = (qr, σ, (p, η, d), 0, L) for each (p, η, d) ∈ Q× Σ × {L, 0, R}.

4◦

δ′(qr, σ, (p, η, d)) =

{

(p, η, ∗, 0, L) if δ(p, n) = (q, σ, d)

(q, σ, (p, η, d), d, 0) otherwise

5◦ δ′(qr, σ, ∗) = (q, σ, ∗, 0, 0).

It is a tedious but straightforward task to check that the machineM ′ is reversible:
If the machine is in a state q ∈ Q, there are two possibilities for the previous state,
case 2◦ (Qw) or cases 4◦ and 5◦ (Qr). If x = ∗, then we have 5◦, and the previous
configuration is easy to determine (uniquely). If x 6= ∗, we have to distinguish
between 2◦ and 4◦. But this is easy: Let x = (p, η, d) and σ′ the next symbol on
the first tape to direction −d from the head. Then chech whether δ(p, η) = (q, σ′, d).
If so, the current configuration was obtained via 2◦, otherwise via 4◦. The previous
configuration in again unique.

In state qw ∈ Qw the only possibility is 1◦, and the previous configuration is
clearly unique.

In a state qr ∈ Qr we must consider 3◦ and 4◦. To separate these we look at
the symbol on the right hand side of the head on the second tape. If the symbol
was ∗, 4◦ has occured, otherwise 3◦. In the case 3◦ the previous configuration is
easy to tell, so consider 4◦. To reconstruct the previous configuration we find out
δ(q, σ) = (q′, σ′, d), move the head of the second tape to the right and print (q, σ, d)
there. Then we print σ′ on the first tape and set the machine in the state q′r.

The simulation of the original machine is easy: The input word is written on the
first tape and the second tape is assumed to be empty. With this assumption case
3◦ never occurs and the machine works in time 2f(n) if the original one worked in
time f(n). �

