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1. Preliminaries

Let us first recall some terminology: A semiring K is equipped with two binary
operations which are referred as addition and multiplication. It is required that K
forms an additive commutative monoid and a monoid with respect to multiplication.
Neutral elements are denoted by 0 and 1 respectively. Furthermore, it is required
that the additive and multiplitive structures obey natural distribution laws.

Let X be any set, and assume that K is a semiring. K is supposed to be
commutative unless stated otherwise. A K-subset A of X is then defined to be
a function A : X → K. This is an obvious generalisation of the consept of an
ordinary subset, which can be defined to be mappings from X to a binary semiring.
If x ∈ X, then the image of x, xA in K is called the multiplicity with which x
belongs to A. We denote the set of all K-subsets of X by KX . The K-subset A of
X is said to be unambigious, is xA can take only values 0 and 1 in K.

Examples of unambigious K-subsets can be given, like

X : X →K, aX =1 for all a ∈ X,

∅ : X →K, a∅ =0 for all a ∈ X,

x : X →K, ax =

{

1, if a = x

0, if a 6= x
.

The sets in the last example are called singletons.

We can now define operations as the union of K-subsets. Let {Ai, i ∈ I} be an
indexed family of K-subsets of X. Then we define their union (or sum) to be a
K-subset by

x

(

⋃

i∈I

Ai

)

=
∑

i∈I

xAi.

This definition requires some comments, if K is not a complete semiring, i.e a
semiring for which the sum above always exists and is well-defind. Then we must
require the family Ai to be locally finite, i.e for each x ∈ X xAi = 0 holds for all
but a finite number of i:s.

The intersection A ∩ B of two K-subsets A and B is defined to be

x(A ∩ B) = (xA)(xB),

and by multiplication of a K-subset A by an element of k ∈ K we mean

x(kA) = k(xA).
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It is now obvious that for each K-subset A we have the following expansion in terms

of singletons:

A =
∑

x∈X

(xA)x.

Family (xA)x is locally finite because

y((xA)x) =

{

xA, if y = x

0, if y 6= x

By a product of two K-subsets A and B we understand

z(AB) =
∑

xy=z

(xA)(yB),

where sum runs over all decompositions of z. If there exists only a finite number
of them, then the right hand side is well-defined

Let Σ be a finite alphabet and K a commutative semiring. A K −Σ-automaton

A = (Q, I, T ) is given by finite set Q of states with K-subsets I of initial states and
T of terminal states, and by a K-subset E of the cartesian product Q×Σ×Q, whose
elements are called transitions. E can be extended to be a Q × Σ∗ × Q-subset by
setting (p, s, q)E = 0, if s /∈ Σ. If the image k = (p, σ, q)E is not the zero element,
we say that the edge

p
kσ
−→ q

is in A. Mapping kσ is called the label of the edge. A path in A is a sequence of
consequtive edges, for instance, let a path c be given by

p
k1σ1−−−→ q1

k2σ2−−−→ . . .
kn−1σn−1

−−−−−−→ qn−1

knσn−−−→ q.

If we denote k = k1 . . . kn and s = σ1 . . . σn, we say that the label of the path is
|c| = ks and the length of c is ||c|| = n = |s|.

The behaviour of A is the K-subset of Σ∗ defined to be

|A| =
∑

p,q∈Q

∑

c

(pI) |c| (qT ),

where c runs over all paths from p to q. For each s ∈ Σ∗ there exists only a finite
number of paths from p to q labelled as ks, k ∈ K, and the summation is therefore
finite. Now

s |A| =
∑

p,q∈Q

∑

c:p→q

|c|=ks

(pI)k(qT ).

Consider now the K-subset E. It is a mapping Q × Σ × Q → K, and therefore
Epq defined by

σEpq = (p, σ, q)E

is a mapping from Σ to K, i.e a K-subset of Σ (or a K-subset of Σ∗ as well, when
E is extended). Hence E can be understood as a matrix

E : Q × Q → KΣ,
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and it is called transition matrix. As well we can understand E as a matrix with
entries

Epq : Σ∗ → K,

where sEpq = 0 if s /∈ Σ. KΣ
∗

forms now a semiring where addition and product
are defined by

s(D + E)pq = sDpq + sEpq and s(DE)pq = s
∑

r∈Q

(Dpr)(Erq).

The zero element in this semiring is given by s0pq = 0 always and unit element is
given by 1pq = 0 if p 6= q and

s1pp =

{

0, if s 6= 1

1, if s = 1
.

We can also define E0 = 1, E1 = E, and En+1 = EnE. We can compute that

sEn
pq =

∑

c:p→q

|c|=ks

k

and see that
En

pq =
∑

c:p→q

||c||=n

|c| .

Further, we can define

E∗
pq =

∞
∑

n=0

En
pq.

Then we have E∗
pq =

∑

c:p→q

|c|, and the behaviour of an automaton can be repre-

sented as a matrix product

|A| =
∑

p,q∈Q

(pI)E∗
pq(qT ) = IE∗T,

Where I is understood as a row vector with entries I1p = pI ∈ K and T as a column
vector with Tp1 = pT ∈ K. In general, each K-subset of Q can be regarded as a
row vector of elementes of K. Furthermore, for each s ∈ Σ∗ the matrix sE∗ is a
Q × Q-matrix of elementes of K. Let us denote

Xs = X(sE∗).

Then Xs is a row vector with (Xs)1q =
∑

p∈Q Xp(sE
∗)pq. On the other hand, if

we regard X to be a column vector, we may denote

sX = (sE∗)X,

and observe that (sX)p1 =
∑

q∈Q(sE∗)pqXq. It is straightforward to verify that

the assosiation laws as X(st) = (Xs)t, (kX)s = k(Xs) hold. Espcesially, for each
s ∈ Σ∗ we have

s |A| = s(IE∗T ) = I(sE∗)T = (Is)T = I(sT ).

Let Σ be a finite alphabet. A K-subset A of Σ∗ is said to be recognizable, if there
exists a K-Σ-automaton A recognizing A, i.e. an automaton such that |A| = A.
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Proposition 1.1. The class of recognizable K-subsets of Σ∗ is closed under finite

union, intersection, and revesal.

By a reversal Aρ of a K-subset A of Σ∗ we understand the composite mapping

Σ∗ ρ
−→ Σ∗ A

−→ K.

Proposition 1.2. If f : Γ∗ → Σ∗ is a fine morphism and A is a recognizable

K-subset of Σ∗, then there exists a K-Γ-automaton recognizing Af−1.

Proposition 1.3. Let f : Γ∗ → Σ∗ be a morphism satisfying 1 = 1f−1, and A a

recognizable K-subset of Γ∗. Then Af if a recognizable K-subset of Σ∗.

All the proof of propositions 1.1-1.3 are analogues of propositions referring to
Σ-automata.

Proposition 1.4. Let A be a recognizable K-subset of Σ∗. Then kA is a recogniz-

able K-subset of Σ∗.

Proof. Let A = (Q, I, T ) be a K-Σ-automaton recognizing A. Then kA is recog-
nized by

kA = (Q, kI, T )

with transition matrix unchanged, since

|kA| = (kI)E∗T = k(IE∗T ) = k |A| = kA.

A K-Σ-automaton is said to be normalized, if I = i and T = t are distinct
singletons and if there are no edges of forms

q
kσ
−→ i, t

kσ
−→ q

for non-zero k. For normalized automaton A obviously holds |A| ⊂ Σ+.

Proposition 1.5. Any K-Σ-automaton A can be converted into a normalized au-

tomaton A′ which satisfies

|A′| = |A| ∩ Σ+.

Proof. Let A = (Q, I, T ) be a K-Σ-automaton. Define Q′ to be Q′ = Q ∪ i ∪ t,
where i 6= t are new states. Furthermore, define a transition matrix E ′ by

E′
pq = Epq

E′
iq = (IE)1q =

∑

p∈Q

IpEpq

E′
pt = (ET )p1 =

∑

q∈Q

EpqTq

E′
it = (IET )11 =

∑

p,q∈Q

IpEpqTq

E′
tt = E′

ii = E′
pi = Eti = Etq = 0

It can now be computed that E ′∗
it = IE+T , where E+ = EE∗. Now A′ is normal-

ized, and
|A′| = iE′∗t = E′∗

it = IE+T = IE∗T ∩ Σ+ = |A| ∩ Σ+.

�
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Theorem 1.6 (Schüzenberger). A K-subset A of Σ+ is recognizable if and only

if there is an integer n > 1 and an n × n-matrix E of K-subsets of Σ such that

A = E+

1n.

Proof. Assume first that A is recognizable. By proposition 1.5 there exists a nor-
malized K-Σ-automaton A = (Q, i, t) with transition matrix E recognizing A. By
renaming the states we can assume that A = ({1, . . . , n}, 1, n). Because A is nor-
malized, we have n > 1, and finally A = |A| = 1E∗n = E∗

1n = E+
1n.

Assume conversely that A = E+

1n where E in an n× n-matrix of K-subsets of Σ
and n > 1. Let A = ({1, . . . , n}, 1, n) be a K-Σ automaton with transition matrix
E. Then |A| = E+

1n = A. �

Corollary 1.7. Let E be an n×n-matrix of K-subsets of Σ. Then for any indicies

i, j ∈ {1, . . . n} the K-subsets E+

ij and E∗
ij of Σ+ and Σ∗ are recognizable.
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2. The equality theorem

Now we assume that K is a subsemiring of a field F which is assumed to be
commutative.

Lemma 2.1. Let A = (Q, I, T ) be a K-Σ-automaton. If s |A| = 0 for all s ∈ Σ∗

satisfying |s| < Card Q 6= 0, then s |A| = 0 for all s ∈ Σ∗.

Proof. By assumption K is a subsemiring of a field F . Therefore we can regard A
as an F -Σ-automaton as well; if |A| is a zero mapping as a F -subset, then it is a
zero mapping as a K-subset. Therefore we can assume that K is a field. Now KQ,
all the K-subsets of Q can be given a structure of a vector space over K.

The addition in the K-vector space is given by the sum of K-subsets and the
scalar multiplication is the usual multiplication of a K-subset by an element of K.
Let us, for example, show how the distribution law is verified. Let X1 and X2 be
K-subsets of Q and k an element in K. Then for any q ∈ Q we have

q(k(X1 + X2)) = k(q(X1 + X1)) = k(qX1 + qX2) = k(qX1) + k(qX2)

= q(kX1) + q(kX2) = q(kX1 + kX2).

Therefore k(X1 + X2) = kX1 + kX2. It is obvious that KQ is generated by the
singleton K-subsets of Q. Furthermore, the singleton mappings are linearly inde-
pendent, since if we have an expression

k1q1 + k2q2 + . . . + knqn = 0,

taking the image of qi we get

0 = qi(k1q1 + . . . + knqn) = qi(k1q1) + . . . + qi(kmqn)

= k1(qiq1) + . . . + kn(qiqn) = ki(qiq1) = ki.

Now we obtain that the dimension of KQ is n = Card Q. The claim becomes now:
If (Is)T = 0, for |s| satisfying |s| < n = Card Q, then (Is)T = 0 for all s ∈ Σ∗.

We define W to be the set of those row vectors Xp which are orthogonal to T ,
namely

W = {X | X ∈ KQ, XT = 0}.

If dimW = n then W = KQ and there is nothing left to prove. Therefore we can
assume that dim W ≤ n−1, and furthermore, we can assume that I, T 6= 0. Define
also Vk to be a subspace of KQ generated by vectors Is with |s| ≤ k

Vk = 〈{Is | |s| ≤ k}

Then V0 = 〈I〉 and obviously we have

V0 ⊂ . . . ⊂ Vn−1 ⊂ W.

Counting the dimensions in both sides we obtain that Vk = Vk+1 for some 0 ≤ k <
n− 1. The subspace Vk+2 is generated by all the vectors Is, where |s| ≤ k +2, that
is, by all vectors X and Xσ, where X is in Vk+1 = Vk. Therefore Vk+1 = Vk+2 and
by induction, Vk = Vk+p for all positive p. Thus, for any s ∈ Σ∗ we have Is ∈ W ,
so (Is)T = 0 �
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Lemma 2.2. Let A = (Q, Ii, T ) i ∈ {1, 2} be K-Σ−automata that differ only in

their initial subsets. Then |A1| = |A2| if and only if

s |A1| = s |A2|

For all those s ∈ Σ∗ satisfying |s| < Card Q.

Proof. One direction is trivial. Therefore, assume that s ∈ Σ∗ with |s| < Card Q
satisfy s |A1| = s |A2|. Consider the K-Σ-automaton A = (Q, I, T ) with I = I1−I2.
Because K can be assumed to be a field, the map I1 − I2 can always be defined in
an obvious way. It is now straightforward to compute

s |A| = (Is)T = ((I1 − I2)s)T = (I1s)T − (I2s)T = s |A1| − s |A2| .

The claim follows now directly for the previous lemma. �

Theorem 2.3 (The equality theorem). Let A1 and A2 be recognizable K-

subsets of Σ∗ and Ai = (Qi, Ii, Ti) i ∈ {1, 2} two K-automata recognizing them

respectively. Suppose that sA1 = sA2 for all s ∈ Σ∗ satisfying |s| < CardQ1 +
Card Q2. Then A1 = A2.

Proof. Without loss of generality, the sets Q1 and Q2 can be assumed to be disjoint.
Define a K-Σ-automaton

A1 ∪ A2 = (Q1 ∪ Q2, I1 ∪ I2, T1 ∪ T2)

with transition matrix

E =

(

E1 0
0 E2

)

Then modify this automaton to obtain automata

Bi = (Q1 ∪ Q2, Ii, T1 ∪ T2), i ∈ {1, 2}

with transition matrix unchanged. We see that |Bi| = |Ai| for i ∈ {1, 2}, for
instance,

|B1| = ( I1 0 )

(

E∗
1 0

0 E∗
2

)(

T1

T2

)

= I1E
∗
1T1 = |A1| .

The claim follows now from lemma 2.2. �

Now we can state a decidability result:

Theorem 2.4. Given any two K-Σ-automata A1 and A2, it is decidable whether

|A1| = |A2|.

It is here silently assumed that the semiring K is known well enough to carry
out all computations for |s| < Card Q1 + Card Q2.



8

3. The undecidability of inclusion

Since now we assume that our semiring is N0, the set of all nonnegative integers
equipped with the natural multiplication and addition. By notation k we under-
stand the set {0, . . . , k − 1}. The source of the result to be stated is well-known

Post correspondence problem. A finite alphabet Σ and two morphisms g, h :
Σ∗ → 2∗ are given. Decide whether there exist s ∈ Σ+ such that sg = sh.

We denote Σ = {σ1, . . . , σn}, and xi = σig, yi = σih, where x1, yi ∈ 2∗. If
s ∈ Σ+ is given by s = σi1 . . . σik

, then sg = sh if and only if

xi1 . . . xik
= yi1 . . . yik

.

The problem can then be introduced as follows: given a finite set {X1, . . .Xn} of
2 × 1 column vectors of binary sequencies,

Xi =

(

xi

yi

)

.

Decide wheter there exists a sequence of indicies i1, . . . , ik such that the upper
entry equals to lower one, when the matricies are catenated componentwise.

Proposition 3.1. Post correspondence problem is undecidable.

Let A and B be N0-subsets. If sB ≤ sA for all s ∈ Σ∗, we write B ≤ A. If
B ≤ A, we define the difference A − B to be a N0-subset to be

s(A − B) = sA − sB.

More generally, we define A −· B to be a N0-subset by

s(A −· B) =

{

sA − sB, if sA ≤ sB

0 otherwise.

Lemma 3.2. Let λ be a mapping from k∗ to N
2×2
0 defined by

sλ =

(

k|s1| 0
〈s1〉 1

)

,

where 〈s〉 = σ0k
n + σ1k

n−1 + . . . σn is the k-adic representation of s = s0s1 . . . sn.

Then λ is an injective morphism.

Proof. It is obvious that λ is injective, since the k-adic representation is unique.
To prove that λ is a morphism, we observe that 〈s1s2〉 = k|s2|〈s1〉 + 〈s2〉. Then it
is straightforward to compute

(

k|s1| 0
〈s1〉 1

)(

k|s2| 0
〈s2〉 1

)

=

(

k|s1|+|s2| k|s1|

k|s2|〈s1〉 + 〈s2〉 1

)

=

(

k|s1s2| k|s1|

〈s1s2〉 1

)

.

�
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Theorem 3.3. Assume that B and C are recognizable N0-subsets such that B ≤ C.

It is undecedable whether or not there exists s ∈ Σ∗ satisfying sB = sC.

Proof. We will show that a decision procedure for the existence of such an element
s ∈ Σ∗ mentioned above leads to a decision procedure for the Post correspondence
problem, which is known to be undecidable. Then we can conclude that the problem
3.3. is undecidable.

First we will define a morphism γ : 2∗ → N
2×2
0 by

0γ =

(

2 0
0 1

)

, 1γ =

(

2 0
1 1

)

.

From lemma 3.2. it follows that γ is injective. In fact, the choise of γ is unessential,
all we need to know is that γ is injective. Suppose now that we are given two
morphisms g, h : Σ∗ → 2∗. Consider now the compositions gγ, hγ : Σ∗ → N

2×2
0 ,

and denote

gγ =

(

G00 G01

G10 G11

)

, hγ =

(

H00 H01

H10 H11

)

Here Gij and Hij are functions Σ∗ → N0, which are entirely determined when g,
h, and γ are given. But a function Σ∗ → N0 is a N0-subset of Σ∗. These subsets
are recognizable by corollary 1.7. Define then N0-subsets A, B, and C to be

A =
∑

i,j=1,2

(Gij − Hij)
2

B =2
∑

i,j=1,2

GijHij

C =
∑

i,j=1,2

G2
ij + H2

ij .

Here sum and multiplication is understood in the natural way, to be union and
intersection. Then we have A + B = C and B ≤ C. Furthermore, B and C are
recognizable, since they are obtained from recognizable N0-subsets by union and
intersection.

Choose now s ∈ Σ∗. We have

sB = sC

⇐⇒ sA = 0

⇐⇒ s(Gij − Hij)
2 = 0

⇐⇒ sGij = sHij

⇐⇒ sgγ = shγ

⇐⇒ sg = sh,

since γ is injective. Now we see that a decision procedure finding such an s leads
to a decision procedure for the Post correspondence problem. �
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Theorem 3.4. Let B and C be recognizable N0-subsets of Σ∗. It is undecidable

whether or not B ≤ C.

Proof. We take an arbitrary instance of problem in theorem 3.3, and show that if
there is a decision procedure for 3.4, then there is a decision procedure for 3.3, too.

Take any two recognizable N0-susbets B′ and C ′ such that B′ ≤ C ′. Define
B = B′ + Σ+ and C ′ = C. Then B and C are recognizable N0-subsets. Now the
inequality B ≤ C holds if and only if sB′ < sC ′ for all s ∈ Σ+, since sB′ = sB+sΣ+

and sC ′ = sC. If there is a decision procedure to decide whether B ≤ C, it would
lead to a procedure to decide whether sB′ < sC ′ for all s ∈ Σ+. Because B′ ≤ C ′,
we can conclude from this whether there exists s ∈ Σ+ such that sB′ = sC ′. This
is however undecidable by theorem 3.3. �


