Seminar on automata 1996.

S. Eilenberg: Automata, Languages and Machines. Vol A, Academic Press, New York 1974.

1. Preliminaries

Let us first recall some terminology: A semiring K is equipped with two binary operations which are referred as addition and multiplication. It is required that K forms an additive commutative monoid and a monoid with respect to multiplication. Neutral elements are denoted by 0 and 1 respectively. Furthermore, it is required that the additive and multiplitive structures obey natural distribution laws.

Let X be any set, and assume that K is a semiring. K is supposed to be commutative unless stated otherwise. A K -subset A of X is then defined to be a function $A: X \to K$. This is an obvious generalisation of the consept of an ordinary subset, which can be defined to be mappings from X to a binary semiring. If $x \in X$, then the image of x, xA in K is called the multiplicity with which x belongs to A. We denote the set of all K-subsets of X by K^X . The K-subset A of X is said to be *unambigious*, is xA can take only values 0 and 1 in K.

Examples of unambigious K -subsets can be given, like

$$
X: X \to K, \quad aX = 1 \text{ for all } a \in X,
$$

$$
\emptyset: X \to K, \quad a\emptyset = 0 \text{ for all } a \in X,
$$

$$
x: X \to K, \quad ax = \begin{cases} 1, & \text{if } a = x \\ 0, & \text{if } a \neq x \end{cases}.
$$

The sets in the last example are called *singletons*.

We can now define operations as the *union* of K-subsets. Let $\{A_i, i \in I\}$ be an indexed family of K-subsets of X. Then we define their union (or sum) to be a K-subset by

$$
x\left(\bigcup_{i\in I}A_i\right) = \sum_{i\in I}xA_i.
$$

This definition requires some comments, if K is not a *complete semiring*, i.e a semiring for which the sum above always exists and is well-defind. Then we must require the family A_i to be *locally finite*, i.e for each $x \in X$ $xA_i = 0$ holds for all but a finite number of i :s.

The *intersection* $A \cap B$ of two K-subsets A and B is defined to be

$$
x(A \cap B) = (xA)(xB),
$$

and by multiplication of a K-subset A by an element of $k \in K$ we mean

$$
x(kA) = k(xA).
$$

It is now obvious that for each K -subset A we have the following expansion in terms of singletons:

$$
A = \sum_{x \in X} (xA)x.
$$

Family $(xA)x$ is locally finite because

$$
y((xA)x) = \begin{cases} xA, & \text{if } y = x \\ 0, & \text{if } y \neq x \end{cases}
$$

By a *product* of two K -subsets A and B we understand

$$
z(AB) = \sum_{xy=z} (xA)(yB),
$$

where sum runs over all decompositions of z. If there exists only a finite number of them, then the right hand side is well-defined

Let Σ be a finite alphabet and K a commutative semiring. A $K - \Sigma$ -automaton $\mathcal{A} = (Q, I, T)$ is given by finite set Q of states with K-subsets I of *initial states* and T of terminal states, and by a K-subset E of the cartesian product $Q \times \Sigma \times Q$, whose elements are called *transitions*. E can be extended to be a $Q \times \Sigma^* \times Q$ -subset by setting $(p, s, q)E = 0$, if $s \notin \Sigma$. If the image $k = (p, \sigma, q)E$ is not the zero element, we say that the edge

$$
p \xrightarrow{k\sigma} q
$$

is in A. Mapping $k\sigma$ is called the *label* of the edge. A path in A is a sequence of consequtive edges, for instance, let a path c be given by

$$
p \xrightarrow{k_1 \sigma_1} q_1 \xrightarrow{k_2 \sigma_2} \dots \xrightarrow{k_{n-1} \sigma_{n-1}} q_{n-1} \xrightarrow{k_n \sigma_n} q.
$$

If we denote $k = k_1 \ldots k_n$ and $s = \sigma_1 \ldots \sigma_n$, we say that the *label* of the path is $|c| = ks$ and the *length* of c is $||c|| = n = |s|$.

The *behaviour* of A is the K-subset of Σ^* defined to be

$$
|\mathcal{A}| = \sum_{p,q \in Q} \sum_{c} (pI) |c| (qT),
$$

where c runs over all paths from p to q. For each $s \in \Sigma^*$ there exists only a finite number of paths from p to q labelled as $ks, k \in K$, and the summation is therefore finite. Now

$$
s|\mathcal{A}| = \sum_{p,q \in Q} \sum_{\substack{c:p \to q \\ |c|=ks}} (pI)k(qT).
$$

Consider now the K-subset E. It is a mapping $Q \times \Sigma \times Q \rightarrow K$, and therefore E_{pq} defined by

$$
\sigma E_{pq} = (p, \sigma, q)E
$$

is a mapping from Σ to K, i.e a K-subset of Σ (or a K-subset of Σ^* as well, when E is extended). Hence E can be understood as a matrix

$$
E: Q \times Q \to K^{\Sigma},
$$

and it is called *transition matrix*. As well we can understand E as a matrix with entries

$$
E_{pq}: \Sigma^* \to K,
$$

where $sE_{pq} = 0$ if $s \notin \Sigma$. K^{Σ^*} forms now a semiring where addition and product are defined by

$$
s(D+E)_{pq} = sD_{pq} + sE_{pq} \quad \text{and} \quad s(DE)_{pq} = s\sum_{r \in Q} (D_{pr})(E_{rq}).
$$

The zero element in this semiring is given by $s\mathbf{0}_{pq} = 0$ always and unit element is given by $\mathbf{1}_{pq} = 0$ if $p \neq q$ and

$$
s\mathbf{1}_{pp} = \begin{cases} 0, & \text{if } s \neq 1 \\ 1, & \text{if } s = 1 \end{cases}.
$$

We can also define $E^0 = 1$, $E^1 = E$, and $E^{n+1} = E^n E$. We can compute that

$$
sE_{pq}^n = \sum_{\substack{c:p\to q\\|c|=ks}} k
$$

and see that

$$
E_{pq}^n = \sum_{\substack{c:p\to q\\||c||=n}} |c|.
$$

Further, we can define

$$
E_{pq}^* = \sum_{n=0}^{\infty} E_{pq}^n.
$$

Then we have $E_{pq}^* = \sum$ $c: p \rightarrow q$ $|c|$, and the behaviour of an automaton can be represented as a matrix product

$$
|\mathcal{A}| = \sum_{p,q \in Q} (pI) E_{pq}^*(qT) = IE^*T,
$$

Where I is understood as a row vector with entries $I_{1p} = pI \in K$ and T as a column vector with $T_{p1} = pT \in K$. In general, each K-subset of Q can be regarded as a row vector of elementes of K. Furthermore, for each $s \in \Sigma^*$ the matrix sE^* is a $Q \times Q$ -matrix of elementes of K. Let us denote

$$
Xs = X(sE^*).
$$

Then Xs is a row vector with $(Xs)_{1q} = \sum_{p \in Q} X_p(sE^*)_{pq}$. On the other hand, if we regard X to be a column vector, we may denote

$$
sX = (sE^*)X,
$$

and observe that $(sX)_{p1} = \sum_{q \in Q} (sE^*)_{pq} X_q$. It is straightforward to verify that the assosiation laws as $X(st) = (Xs)t, (kX)s = k(Xs)$ hold. Espcesially, for each $s \in \Sigma^*$ we have

$$
s |\mathcal{A}| = s(IE^*T) = I(sE^*)T = (Is)T = I(sT).
$$

Let Σ be a finite alphabet. A K-subset A of Σ^* is said to be *recognizable*, if there exists a K- Σ -automaton A recognizing A, i.e. an automaton such that $|\mathcal{A}| = A$.

Proposition 1.1. The class of recognizable K-subsets of Σ^* is closed under finite union, intersection, and revesal.

By a reversal A^{ρ} of a K-subset A of Σ^* we understand the composite mapping

$$
\Sigma^* \xrightarrow{\rho} \Sigma^* \xrightarrow{A} K.
$$

Proposition 1.2. If $f : \Gamma^* \to \Sigma^*$ is a fine morphism and A is a recognizable K-subset of Σ^* , then there exists a K- Γ -automaton recognizing Af^{-1} .

Proposition 1.3. Let $f : \Gamma^* \to \Sigma^*$ be a morphism satisfying $1 = 1f^{-1}$, and A a recognizable K-subset of Γ^* . Then Af if a recognizable K-subset of Σ^* .

All the proof of propositions 1.1-1.3 are analogues of propositions referring to Σ-automata.

Proposition 1.4. Let A be a recognizable K-subset of Σ^* . Then kA is a recognizable K-subset of Σ^* .

Proof. Let $A = (Q, I, T)$ be a K- Σ -automaton recognizing A. Then kA is recognized by

$$
k\mathcal{A} = (Q, kI, T)
$$

with transition matrix unchanged, since

$$
|k\mathcal{A}| = (kI)E^*T = k(IE^*T) = k|\mathcal{A}| = kA.
$$

A K- Σ -automaton is said to be *normalized*, if $I = i$ and $T = t$ are distinct singletons and if there are no edges of forms

$$
q \xrightarrow{k\sigma} i, \qquad t \xrightarrow{k\sigma} q
$$

for non-zero k. For normalized automaton A obviously holds $|\mathcal{A}| \subset \Sigma^+$.

Proposition 1.5. Any K- Σ -automaton A can be converted into a normalized automaton A' which satisfies

$$
|\mathcal{A}'|=|\mathcal{A}|\cap \Sigma^+.
$$

Proof. Let $\mathcal{A} = (Q, I, T)$ be a K- Σ -automaton. Define Q' to be $Q' = Q \cup i \cup t$, where $i \neq t$ are new states. Furthermore, define a transition matrix E' by

$$
E'_{pq} = E_{pq}
$$

\n
$$
E'_{iq} = (IE)_{1q} = \sum_{p \in Q} I_p E_{pq}
$$

\n
$$
E'_{pt} = (ET)_{p1} = \sum_{q \in Q} E_{pq} T_q
$$

\n
$$
E'_{it} = (IET)_{11} = \sum_{p,q \in Q} I_p E_{pq} T_q
$$

\n
$$
E'_{tt} = E'_{ii} = E'_{pi} = E_{ti} = E_{tq} = 0
$$

It can now be computed that $E_{it}^* = IE^+T$, where $E^+ = EE^*$. Now \mathcal{A}' is normalized, and

 $|\mathcal{A}'| = iE'^*t = E'^*_{it} = IE^+T = IE^*T \cap \Sigma^+ = |\mathcal{A}| \cap \Sigma^+.$

Theorem 1.6 (Schüzenberger). A K-subset A of Σ^+ is recognizable if and only if there is an integer $n > 1$ and an $n \times n$ -matrix E of K-subsets of Σ such that $A = E_{1r}^{+}$ $\frac{+}{1n}$.

Proof. Assume first that A is recognizable. By proposition 1.5 there exists a normalized K-Σ-automaton $A = (Q, i, t)$ with transition matrix E recognizing A. By renaming the states we can assume that $\mathcal{A} = (\{1, \ldots, n\}, 1, n)$. Because $\mathcal A$ is normalized, we have $n > 1$, and finally $A = |\mathcal{A}| = 1 E^* n = E_{1n}^* = E_{1n}^+$ $\frac{1}{1n}$.

Assume conversely that $A = E_{1n}^+$ where E in an $n \times n$ -matrix of K-subsets of Σ and $n > 1$. Let $\mathcal{A} = (\{1, \ldots, n\}, 1, n)$ be a $K \Sigma$ automaton with transition matrix E. Then $|\mathcal{A}| = E_{1n}^+ = A$. \Box

Corollary 1.7. Let E be an $n \times n$ -matrix of K-subsets of Σ . Then for any indicies $i, j \in \{1, \ldots n\}$ the K-subsets E_{ij}^+ and E_{ij}^* of Σ^+ and Σ^* are recognizable.

2. The equality theorem

Now we assume that K is a subsemiring of a field F which is assumed to be commutative.

Lemma 2.1. Let $\mathcal{A} = (Q, I, T)$ be a K- Σ -automaton. If $s |\mathcal{A}| = 0$ for all $s \in \Sigma^*$ satisfying $|s| <$ Card $Q \neq 0$, then $s |\mathcal{A}| = 0$ for all $s \in \Sigma^*$.

Proof. By assumption K is a subsemiring of a field F. Therefore we can regard $\mathcal A$ as an F- Σ -automaton as well; if $|\mathcal{A}|$ is a zero mapping as a F-subset, then it is a zero mapping as a K-subset. Therefore we can assume that K is a field. Now K^Q , all the K-subsets of Q can be given a structure of a vector space over K .

The addition in the K -vector space is given by the sum of K -subsets and the scalar multiplication is the usual multiplication of a K-subset by an element of K. Let us, for example, show how the distribution law is verified. Let X_1 and X_2 be K-subsets of Q and k an element in K. Then for any $q \in Q$ we have

$$
q(k(X_1 + X_2)) = k(q(X_1 + X_1)) = k(qX_1 + qX_2) = k(qX_1) + k(qX_2)
$$

= $q(kX_1) + q(kX_2) = q(kX_1 + kX_2).$

Therefore $k(X_1 + X_2) = kX_1 + kX_2$. It is obvious that K^Q is generated by the singleton K -subsets of Q . Furthermore, the singleton mappings are linearly independent, since if we have an expression

$$
k_1q_1 + k_2q_2 + \ldots + k_nq_n = 0,
$$

taking the image of q_i we get

$$
0 = q_i(k_1q_1 + \ldots + k_nq_n) = q_i(k_1q_1) + \ldots + q_i(k_mq_n)
$$

= $k_1(q_iq_1) + \ldots + k_n(q_iq_n) = k_i(q_iq_1) = k_i.$

Now we obtain that the dimension of K^Q is $n = \text{Card } Q$. The claim becomes now: If $(Is)T = 0$, for $|s|$ satisfying $|s| < n = \text{Card } Q$, then $(Is)T = 0$ for all $s \in \Sigma^*$.

We define W to be the set of those row vectors X_p which are orthogonal to T, namely

$$
W = \{ X \mid X \in K^Q, XT = 0 \}.
$$

If dim $W = n$ then $W = K^Q$ and there is nothing left to prove. Therefore we can assume that dim $W \leq n-1$, and furthermore, we can assume that $I, T \neq 0$. Define also V_k to be a subspace of K^Q generated by vectors Is with $|s| \leq k$

$$
V_k = \langle \{ Is \mid |s| \le k \}
$$

Then $V_0 = \langle I \rangle$ and obviously we have

$$
V_0 \subset \ldots \subset V_{n-1} \subset W.
$$

Counting the dimensions in both sides we obtain that $V_k = V_{k+1}$ for some $0 \leq k$ n−1. The subspace V_{k+2} is generated by all the vectors Is, where $|s| \leq k+2$, that is, by all vectors X and $X\sigma$, where X is in $V_{k+1} = V_k$. Therefore $V_{k+1} = V_{k+2}$ and by induction, $V_k = V_{k+p}$ for all positive p. Thus, for any $s \in \Sigma^*$ we have $Is \in W$, so $(I_s)T=0$ \Box

7

Lemma 2.2. Let $\mathcal{A} = (Q, I_i, T)$ i $\in \{1, 2\}$ be K-∑-automata that differ only in their initial subsets. Then $|\mathcal{A}_1| = |\mathcal{A}_2|$ if and only if

$$
s\left|\mathcal{A}_{1}\right|=s\left|\mathcal{A}_{2}\right|
$$

For all those $s \in \Sigma^*$ satisfying $|s| < \text{Card } Q$.

Proof. One direction is trivial. Therefore, assume that $s \in \Sigma^*$ with $|s| <$ Card Q satisfy $s \, |A_1| = s \, |A_2|$. Consider the K- Σ -automaton $A = (Q, I, T)$ with $I = I_1 - I_2$. Because K can be assumed to be a field, the map $I_1 - I_2$ can always be defined in an obvious way. It is now straightforward to compute

$$
s |\mathcal{A}| = (Is)T = ((I_1 - I_2)s)T = (I_1s)T - (I_2s)T = s |\mathcal{A}_1| - s |\mathcal{A}_2|.
$$

The claim follows now directly for the previous lemma. \Box

Theorem 2.3 (The equality theorem). Let A_1 and A_2 be recognizable Ksubsets of Σ^* and $\mathcal{A}_i = (Q_i, I_i, T_i)$ i $\in \{1, 2\}$ two K-automata recognizing them respectively. Suppose that $sA_1 = sA_2$ for all $s \in \Sigma^*$ satisfying $|s| < \text{Card } Q_1 +$ Card Q_2 . Then $A_1 = A_2$.

Proof. Without loss of generality, the sets Q_1 and Q_2 can be assumed to be disjoint. Define a K - Σ -automaton

$$
\mathcal{A}_1\cup\mathcal{A}_2=(Q_1\cup Q_2,I_1\cup I_2,T_1\cup T_2)
$$

with transition matrix

$$
E = \begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix}
$$

Then modify this automaton to obtain automata

$$
\mathcal{B}_i = (Q_1 \cup Q_2, I_i, T_1 \cup T_2), \quad i \in \{1, 2\}
$$

with transition matrix unchanged. We see that $|\mathcal{B}_i| = |\mathcal{A}_i|$ for $i \in \{1, 2\}$, for instance,

$$
|\mathcal{B}_1| = (I_1 \quad 0) \begin{pmatrix} E_1^* & 0 \\ 0 & E_2^* \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} = I_1 E_1^* T_1 = |\mathcal{A}_1|.
$$

The claim follows now from lemma 2.2. \Box

Now we can state a decidability result:

Theorem 2.4. Given any two K- Σ -automata \mathcal{A}_1 and \mathcal{A}_2 , it is decidable whether $|\mathcal{A}_1| = |\mathcal{A}_2|.$

It is here silently assumed that the semiring K is known well enough to carry out all computations for $|s| <$ Card Q_1 + Card Q_2 .

3. The undecidability of inclusion

Since now we assume that our semiring is \mathbb{N}_0 , the set of all nonnegative integers equipped with the natural multiplication and addition. By notation \bf{k} we understand the set $\{0, \ldots, k-1\}$. The source of the result to be stated is well-known

Post correspondence problem. A finite alphabet Σ and two morphisms q, h: $\Sigma^* \to 2^*$ are given. Decide whether there exist $s \in \Sigma^+$ such that $sg = sh$.

We denote $\Sigma = {\sigma_1, \ldots, \sigma_n}$, and $x_i = \sigma_i g$, $y_i = \sigma_i h$, where $x_1, y_i \in 2^*$. If $s \in \Sigma^+$ is given by $s = \sigma_{i_1} \dots \sigma_{i_k}$, then $sg = sh$ if and only if

$$
x_{i_1}\ldots x_{i_k}=y_{i_1}\ldots y_{i_k}.
$$

The problem can then be introduced as follows: given a finite set $\{X_1, \ldots X_n\}$ of 2×1 column vectors of binary sequencies,

$$
X_i = \left(\begin{array}{c} x_i \\ y_i \end{array}\right).
$$

Decide wheter there exists a sequence of indicies i_1, \ldots, i_k such that the upper entry equals to lower one, when the matricies are catenated componentwise.

Proposition 3.1. Post correspondence problem is undecidable.

Let A and B be N₀-subsets. If $sB \leq sA$ for all $s \in \Sigma^*$, we write $B \leq A$. If $B \leq A$, we define the *difference* $A - B$ to be a \mathbb{N}_0 -subset to be

$$
s(A - B) = sA - sB.
$$

More generally, we define $A - B$ to be a \mathbb{N}_0 -subset by

$$
s(A \dot{-} B) = \begin{cases} sA - sB, & \text{if } sA \le sB \\ 0 & \text{otherwise.} \end{cases}
$$

Lemma 3.2. Let λ be a mapping from \mathbf{k}^* to $\mathbb{N}_0^{2 \times 2}$ defined by

$$
s\lambda = \begin{pmatrix} k^{|s_1|} & 0 \\ \langle s_1 \rangle & 1 \end{pmatrix},
$$

where $\langle s \rangle = \sigma_0 k^n + \sigma_1 k^{n-1} + \dots + \sigma_n$ is the k-adic representation of $s = s_0 s_1 \dots s_n$. Then λ is an injective morphism.

Proof. It is obvious that λ is injective, since the k-adic representation is unique. To prove that λ is a morphism, we observe that $\langle s_1 s_2 \rangle = k^{|s_2|} \langle s_1 \rangle + \langle s_2 \rangle$. Then it is straightforward to compute

$$
\begin{pmatrix} k^{|s_1|} & 0 \ \langle s_1 \rangle & 1 \end{pmatrix} \begin{pmatrix} k^{|s_2|} & 0 \ \langle s_2 \rangle & 1 \end{pmatrix} = \begin{pmatrix} k^{|s_1|+|s_2|} & k^{|s_1|} \ \langle s_1 \rangle + \langle s_2 \rangle & 1 \end{pmatrix} = \begin{pmatrix} k^{|s_1s_2|} & k^{|s_1|} \ \langle s_1 s_2 \rangle & 1 \end{pmatrix}.
$$

Theorem 3.3. Assume that B and C are recognizable \mathbb{N}_0 -subsets such that $B \leq C$. It is undecedable whether or not there exists $s \in \Sigma^*$ satisfying $sB = sC$.

Proof. We will show that a decision procedure for the existence of such an element $s \in \Sigma^*$ mentioned above leads to a decision procedure for the Post correspondence problem, which is known to be undecidable. Then we can conclude that the problem 3.3. is undecidable.

First we will define a morphism $\gamma: \mathbf{2}^* \to \mathbb{N}_0^{2 \times 2}$ by

$$
0\gamma = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \quad 1\gamma = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}.
$$

From lemma 3.2. it follows that γ is injective. In fact, the choise of γ is unessential, all we need to know is that γ is injective. Suppose now that we are given two morphisms $g, h: \Sigma^* \to 2^*$. Consider now the compositions $g\gamma, h\gamma: \Sigma^* \to \mathbb{N}_0^{2 \times 2}$, and denote

$$
g\gamma = \begin{pmatrix} G_{00} & G_{01} \\ G_{10} & G_{11} \end{pmatrix}, \quad h\gamma = \begin{pmatrix} H_{00} & H_{01} \\ H_{10} & H_{11} \end{pmatrix}
$$

Here G_{ij} and H_{ij} are functions $\Sigma^* \to \mathbb{N}_0$, which are entirely determined when g, h, and γ are given. But a function $\Sigma^* \to \mathbb{N}_0$ is a \mathbb{N}_0 -subset of Σ^* . These subsets are recognizable by corollary 1.7. Define then \mathbb{N}_0 -subsets A, B, and C to be

$$
A = \sum_{i,j=1,2} (G_{ij} - H_{ij})^2
$$

\n
$$
B = 2 \sum_{i,j=1,2} G_{ij} H_{ij}
$$

\n
$$
C = \sum_{i,j=1,2} G_{ij}^2 + H_{ij}^2.
$$

Here sum and multiplication is understood in the natural way, to be union and intersection. Then we have $A + B = C$ and $B \leq C$. Furthermore, B and C are recognizable, since they are obtained from recognizable \mathbb{N}_0 -subsets by union and intersection.

Choose now $s \in \Sigma^*$. We have

$$
sB = sC
$$

\n
$$
\iff sA = 0
$$

\n
$$
\iff s(G_{ij} - H_{ij})^2 = 0
$$

\n
$$
\iff sG_{ij} = sH_{ij}
$$

\n
$$
\iff sg\gamma = sh,
$$

\n
$$
sg = sh,
$$

since γ is injective. Now we see that a decision procedure finding such an s leads to a decision procedure for the Post correspondence problem. \Box

Theorem 3.4. Let B and C be recognizable \mathbb{N}_0 -subsets of Σ^* . It is undecidable whether or not $B \leq C$.

Proof. We take an arbitrary instance of problem in theorem 3.3, and show that if there is a decision procedure for 3.4, then there is a decision procedure for 3.3, too.

Take any two recognizable \mathbb{N}_0 -susbets B' and C' such that $B' \leq C'$. Define $B = B' + \Sigma^+$ and $C' = C$. Then B and C are recognizable N₀-subsets. Now the inequality $B \leq C$ holds if and only if $sB' < sC'$ for all $s \in \Sigma^{+}$, since $sB' = sB + s\Sigma^{+}$ and $sC' = sC$. If there is a decision procedure to decide whether $B \leq C$, it would lead to a procedure to decide whether $sB' < sC'$ for all $s \in \Sigma^+$. Because $B' \leq C'$, we can conclude from this whether there exists $s \in \Sigma^+$ such that $sB' = sC'$. This is however undecidable by theorem 3.3. \Box