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1. PRELIMINARIES

Let us first recall some terminology: A semiring K is equipped with two binary
operations which are referred as addition and multiplication. It is required that K
forms an additive commutative monoid and a monoid with respect to multiplication.
Neutral elements are denoted by 0 and 1 respectively. Furthermore, it is required
that the additive and multiplitive structures obey natural distribution laws.

Let X be any set, and assume that K is a semiring. K is supposed to be
commutative unless stated otherwise. A K-subset A of X is then defined to be
a function A : X — K. This is an obvious generalisation of the consept of an
ordinary subset, which can be defined to be mappings from X to a binary semiring.
If z € X, then the image of x, xA in K is called the multiplicity with which x
belongs to A. We denote the set of all K-subsets of X by KX. The K-subset A of
X is said to be unambigious, is A can take only values 0 and 1 in K.

Examples of unambigious K-subsets can be given, like

X: X —K, aX =1 forall a € X,
0: X —-K, ad=0 forall acX,
1, ifa==x

rx: X —K, ax:{ .
0, ifa#x

The sets in the last example are called singletons.

We can now define operations as the union of K-subsets. Let {A;,7 € I} be an
indexed family of K-subsets of X. Then we define their union (or sum) to be a

K-subset by
T <l~J14i> = 2{::ﬁf4@

el i€l
This definition requires some comments, if K is not a complete semiring, i.e a
semiring for which the sum above always exists and is well-defind. Then we must

require the family A; to be locally finite, i.e for each x € X xA; = 0 holds for all
but a finite number of i:s.

The intersection AN B of two K-subsets A and B is defined to be
(AN B) = (zA)(zB),
and by multiplication of a K-subset A by an element of k € K we mean

x(kA) = k(zA).
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It is now obvious that for each K-subset A we have the following expansion in terms

of singletons:
A= (zA)z.
reX

Family (xA)z is locally finite because

A, ify==x

wwa) ={ o4 L

By a product of two K-subsets A and B we understand

AAB) =) (zA)(yB),

TY==2

where sum runs over all decompositions of z. If there exists only a finite number
of them, then the right hand side is well-defined

Let X be a finite alphabet and K a commutative semiring. A K — Y-automaton
A= (Q,I,T) is given by finite set Q) of states with K-subsets I of initial states and
T of terminal states, and by a K-subset E of the cartesian product () x 3 x @), whose
elements are called transitions. E can be extended to be a @) x ¥* x @Q-subset by
setting (p, s,q)E =0, if s ¢ 3. If the image k = (p, 0, q)F is not the zero element,
we say that the edge

ko
pP—4q

is in A. Mapping ko is called the label of the edge. A path in A is a sequence of
consequtive edges, for instance, let a path ¢ be given by

kio1 kao2 kn—10n—1 knon
p—my — ... — 7 Qqn-1—4¢q-.

If we denote k = ky...k, and s = 01 ...0,, we say that the label of the path is
lc| = ks and the length of ¢ is ||c|| =n = |s|.
The behaviour of A is the K-subset of 3* defined to be
A= > (D) |e| (¢T),
P,geQ ¢

where ¢ runs over all paths from p to ¢q. For each s € ¥* there exists only a finite
number of paths from p to ¢ labelled as ks, k € K, and the summation is therefore

finite. Now
slAl= )" > (pD)k(qT).

PaEQ P

Consider now the K-subset E. It is a mapping @@ x ¥ x Q — K, and therefore
E,, defined by
0By = (p,0,Q)E

is a mapping from ¥ to K, i.e a K-subset of ¥ (or a K-subset of ¥* as well, when
E is extended). Hence E can be understood as a matrix

E:QxQ— K=,
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and it is called transition matriz. As well we can understand E as a matrix with
entries

E

pq -

¥ — K,

where sE,;, =0if s ¢ ¥. K =" forms now a semiring where addition and product
are defined by

$(D+ E)pg = 8Dpg + sEpg and  $(DE)yg =5 (Dypr)(Erg).
req

The zero element in this semiring is given by s0,, = 0 always and unit element is
given by 1,, = 0 if p # ¢ and

0, ifs#1
s1,, = . .
1, ifs=1
We can also define E° =1, E' = E, and E"*! = E"E. We can compute that

sEp, = Z k

c:p—q
le|=ks

B = Z lc] .

c:p—q
[lell=n

and see that

Further, we can define
oo
* n
qu o Z qu‘
n=0

Then we have E;, = Z lc|, and the behaviour of an automaton can be repre-
c:p—q
sented as a matrix product
Al = Y (pD)E;(¢T) = IE'T,
p,q€Q
Where I is understood as a row vector with entries Iy, = pI € K and T' as a column
vector with T),; = pT' € K. In general, each K-subset of () can be regarded as a

row vector of elementes of K. Furthermore, for each s € ¥* the matrix sE* is a
@ X Q-matrix of elementes of K. Let us denote

Xs=X(sE").

Then Xs is a row vector with (Xs)1g = > co Xp(8E™)pg. On the other hand, if

we regard X to be a column vector, we may denote
sX = (sE")X,
and observe that (sX)p1 = > co(sE)pe Xy It is straightforward to verify that

the assosiation laws as X (st) = (Xs)t, (kX )s = k(X s) hold. Espcesially, for each
s € ¥* we have

s|A| = s(IE*T) = I(sE*)T = (Is)T = I(sT).

Let X be a finite alphabet. A K-subset A of ¥* is said to be recognizable, if there
exists a K-3-automaton A recognizing A, i.e. an automaton such that |A| = A.



Proposition 1.1. The class of recognizable K -subsets of 3 s closed under finite
union, intersection, and revesal.

By a reversal A” of a K-subset A of ¥X* we understand the composite mapping
o Lsr A K

Proposition 1.2. If f : I'" — X* is a fine morphism and A is a recognizable
K -subset of %, then there erists a K-T'-automaton recognizing Af~*.

Proposition 1.3. Let f : I'* — X* be a morphism satisfying 1 = 1f~1, and A a
recognizable K -subset of I'*. Then Af if a recognizable K-subset of ¥*.

All the proof of propositions 1.1-1.3 are analogues of propositions referring to
d-automata.

Proposition 1.4. Let A be a recognizable K -subset of ¥*. Then kA is a recogniz-
able K-subset of >*.

Proof. Let A = (Q,I,T) be a K-Y-automaton recognizing A. Then kA is recog-
nized by
kA= (Q,kI,T)

with transition matrix unchanged, since

kA| = (KI)E*T = k(IE*T) = k| A| = kA.

A K-Y-automaton is said to be normalized, if I = i and T = t are distinct
singletons and if there are no edges of forms

ko . ko
q—1, t—q

for non-zero k. For normalized automaton A obviously holds |A| C X7.

Proposition 1.5. Any K-X-automaton A can be converted into a normalized au-
tomaton A’ which satisfies

A = |A| N s

Proof. Let A = (Q,I,T) be a K-Y-automaton. Define Q" to be Q' = Q Ui U,
where i # t are new states. Furthermore, define a transition matrix E’ by

By = Epg
qu = (IE)lq = Z Iy Epq
PeEQ
;/)t = (ET)pl = Z Ep Ty
q€@
Ez{t = ([ET)11 = Z IpEpgTy
P,q€Q

Eét:Eéz:E]/)'L:Et’L:Etc]:O

It can now be computed that E’;, = IETT, where E* = EE*. Now A’ is normal-
ized, and
A'| =iE"t=F', =IE*T =IE*TnYt = |A|nxt.
0
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Theorem 1.6 (Schiizenberger). A K-subset A of ¥ is recognizable if and only
if there is an integer n > 1 and an n X n-matriz E of K-subsets of ¥ such that
A=Ef.

Proof. Assume first that A is recognizable. By proposition 1.5 there exists a nor-
malized K-Y-automaton A = (Q,1,t) with transition matrix F recognizing A. By
renaming the states we can assume that A = ({1,...,n},1,n). Because A is nor-
malized, we have n > 1, and finally A = |A| = 1E*n = E}, = E}" .

Assume conversely that A = E;f where E in an n x n-matrix of K-subsets of ¥
and n > 1. Let A= ({1,...,n},1,n) be a K- automaton with transition matrix
E. Then |A| = E} = A. O

Corollary 1.7. Let E be an n X n-matrixz of K-subsets of 2. Then for any indicies
i,j €{1,...n} the K-subsets E- and Ef; of ¥ and X* are recognizable.

)



2. THE EQUALITY THEOREM

Now we assume that K is a subsemiring of a field F' which is assumed to be
commutative.

Lemma 2.1. Let A= (Q,I,T) be a K-X-automaton. If s|A| =0 for all s € ¥*
satisfying |s| < Card @ # 0, then s|A| =0 for all s € *.

Proof. By assumption K is a subsemiring of a field F'. Therefore we can regard A
as an F-Y-automaton as well; if |A] is a zero mapping as a F-subset, then it is a
zero mapping as a K -subset. Therefore we can assume that K is a field. Now K@,
all the K-subsets of () can be given a structure of a vector space over K.

The addition in the K-vector space is given by the sum of K-subsets and the
scalar multiplication is the usual multiplication of a K-subset by an element of K.
Let us, for example, show how the distribution law is verified. Let X; and X5 be
K-subsets of @ and k an element in K. Then for any ¢ € ) we have

q(k(X1 + X2)) = k(q(X1 + X1)) = k(gX1 + ¢X2) = k(g X1) + k(g X2)
= q(kX1) + q(kX2) = q(kX1 + kX2).
Therefore k(X; + X2) = kX + kXo. It is obvious that K is generated by the

singleton K-subsets of (). Furthermore, the singleton mappings are linearly inde-
pendent, since if we have an expression

kigr + kaqa + ... + kngn =0,
taking the image of ¢; we get
0=qi(kiqi + ...+ kngn) = qi(k1q1) + - .. + Gi(knan)
= k1(giq1) + - + kn(gian) = kilaiq) = ki
Now we obtain that the dimension of K? is n = Card Q. The claim becomes now:
If (Is)T =0, for |s| satisfying |s| < n = Card @, then (Is)T =0 for all s € X*.

We define W to be the set of those row vectors X, which are orthogonal to T,
namely

W={X|XecKYXT=0}.

If dim W = n then W = K@ and there is nothing left to prove. Therefore we can
assume that dim W < n —1, and furthermore, we can assume that I,T" # 0. Define
also Vj, to be a subspace of K@ generated by vectors Is with |s| < k

Vi = ({Is | [s| < k}
Then Vp = (I) and obviously we have
VooC...C V1 CW.

Counting the dimensions in both sides we obtain that Vi = Vi1 for some 0 < k <
n—1. The subspace Vjo is generated by all the vectors I's, where |s| < k+ 2, that
is, by all vectors X and Xo, where X is in V41 = Vi. Therefore V11 = V19 and
by induction, Vi, = Vi, for all positive p. Thus, for any s € X* we have Is € W,
so (Is)I'=0 O
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Lemma 2.2. Let A = (Q,1;,T) i € {1,2} be K-Y—automata that differ only in
their initial subsets. Then |Ai| = | Az| if and only if

s | A1 = s|Ay]
For all those s € ¥* satisfying |s| < Card Q.

Proof. One direction is trivial. Therefore, assume that s € ¥* with |s| < Card Q
satisfy s |A;| = s|Az|. Consider the K-3-automaton A = (Q, I, T) with I = I, —1I5.
Because K can be assumed to be a field, the map I; — I5 can always be defined in
an obvious way. It is now straightforward to compute

S ‘A| = (IS)T = ((Il — IQ)S)T = (IlS)T — (IQS)T =S ’Al‘ — S ‘A2| .

The claim follows now directly for the previous lemma. [J

Theorem 2.3 (The equality theorem). Let A; and As be recognizable K-
subsets of ¥* and A; = (Q;, I;,T;) i € {1,2} two K-automata recognizing them
respectively. Suppose that sA; = sAy for all s € ¥* satisfying |s| < Card Q1 +
Card Qs. Then A1 = As.

Proof. Without loss of generality, the sets ()1 and ()2 can be assumed to be disjoint.
Define a K-¥-automaton

AT UA; = (Q1UQ2, [1 UL, Ty UTh)

_(E, 0
(0 5

Then modify this automaton to obtain automata

with transition matrix

B, = (Ql U QQ,Ii,Tl UTQ), 1€ {1,2}

with transition matrix unchanged. We see that |B;| = |A;| for i € {1,2}, for

instance,
E;f 0 T %

The claim follows now from lemma 2.2. O

Now we can state a decidability result:
Theorem 2.4. Given any two K-X-automata A, and As, it is decidable whether
|A1] = [As].

It is here silently assumed that the semiring K is known well enough to carry
out all computations for |s| < Card @, + Card Q2.



3. THE UNDECIDABILITY OF INCLUSION

Since now we assume that our semiring is Ny, the set of all nonnegative integers
equipped with the natural multiplication and addition. By notation k we under-
stand the set {0,...,k — 1}. The source of the result to be stated is well-known

Post correspondence problem. A finite alphabet ¥ and two morphisms g, h :
¥* — 2* are given. Decide whether there exist s € ¥ such that sg = sh.

We denote ¥ = {o1,...,0,}, and x; = 0,9, y; = o;h, where x1, y; € 2*. If
s € X1 is given by s = 0y, ...0y,, then sg = sh if and only if

The problem can then be introduced as follows: given a finite set {Xy,...X,} of
2 x 1 column vectors of binary sequencies,

X, = (‘”)
Yi

Decide wheter there exists a sequence of indicies i1, ..., ix such that the upper
entry equals to lower one, when the matricies are catenated componentwise.

Proposition 3.1. Post correspondence problem is undecidable.

Let A and B be Ny-subsets. If sB < sA for all s € ¥*, we write B < A. If
B < A, we define the difference A — B to be a Ny-subset to be

s(A—B) =sA—sB.
More generally, we define A — B to be a Ny-subset by
sA—sB, ifsA<sB

0 otherwise.

a5 ={

Lemma 3.2. Let A\ be a mapping from k* to NSXQ defined by

|s1]
SA = (k 0) ,
<81> 1
where (s) = ook™ + o1 k"1 + ... 0, is the k-adic representation of s = 8981 ...5p.
Then A is an injective morphism.

Proof. 1t is obvious that A is injective, since the k-adic representation is unique.
To prove that A is a morphism, we observe that (sisy) = kl%2/(s;) + (s5). Then it
is straightforward to compute

(i ) (e D)= (elidyfie )=l )

O



Theorem 3.3. Assume that B and C' are recognizable Ng-subsets such that B < C.
It is undecedable whether or not there exists s € X* satisfying sB = sC.

Proof. We will show that a decision procedure for the existence of such an element
s € ¥* mentioned above leads to a decision procedure for the Post correspondence
problem, which is known to be undecidable. Then we can conclude that the problem
3.3. is undecidable.

First we will define a morphism ~ : 2* — NSXQ by

2 0 2 0
n=(0 1) w0 1)
From lemma 3.2. it follows that -y is injective. In fact, the choise of v is unessential,

all we need to know is that 7 is injective. Suppose now that we are given two
morphisms g, h : ¥* — 2*. Consider now the compositions gv, hy : ¥* — NgXQ,

and denote
gy = Goo Gou hy = Hyo Hoy
Gio G111 )’ Hyy Hi

Here G;; and H;; are functions ¥* — Ny, which are entirely determined when g,
h, and v are given. But a function ¥* — Ny is a Nyp-subset of ¥*. These subsets
are recognizable by corollary 1.7. Define then Ny-subsets A, B, and C' to be

A= )" (Gi; — Hij)

i,j=1,2
B=2 Y  Gi;H
i,j=1,2
i,j=1,2

Here sum and multiplication is understood in the natural way, to be union and
intersection. Then we have A + B = C and B < C. Furthermore, B and C are
recognizable, since they are obtained from recognizable Ny-subsets by union and
intersection.

Choose now s € X*. We have

sB = sC
— sA=0
< s(Gyj — Hij)> =0
— sGi; = sH;;
= 59y = shy
— sg = sh,

since v is injective. Now we see that a decision procedure finding such an s leads
to a decision procedure for the Post correspondence problem. [J
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Theorem 3.4. Let B and C be recognizable Ny-subsets of ¥*. It is undecidable
whether or not B < C.

Proof. We take an arbitrary instance of problem in theorem 3.3, and show that if
there is a decision procedure for 3.4, then there is a decision procedure for 3.3, too.

Take any two recognizable Ny-susbets B’ and C’ such that B’ < C’. Define
B =B +%" and ' = C. Then B and C are recognizable Ny-subsets. Now the
inequality B < C holds if and only if sB’ < sC’ for all s € ¥, since sB’ = sB+sX™"
and sC’ = sC. If there is a decision procedure to decide whether B < C, it would
lead to a procedure to decide whether sB’ < sC’ for all s € ¥*. Because B’ < (',
we can conclude from this whether there exists s € ¥ such that sB’ = sC’. This
is however undecidable by theorem 3.3. [



