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Abstract. We study algorithms for solving three problems on strings.
The first one is the Most Frequently String Search Problem. The problem
is the following. Assume that we have a sequence of n strings of length k.
The problem is finding the string that occurs in the sequence most often.
We propose a quantum algorithm that has a query complexity O(n\/ﬁ)
This algorithm shows speed-up comparing with the deterministic algo-
rithm that requires 2(nk) queries.

The second one is searching intersection of two sequences of strings. All
strings have the same length k. The size of the first set is n and the size of
the second set is m. We propose a quantum algorithm that has a query
complexity O((n + m)vk). This algorithm shows speed-up comparing
with the deterministic algorithm that requires 2((n 4+ m)k) queries.
The third problem is sorting of n strings of length k. On the one hand,
it is known that quantum algorithms cannot sort objects asymptotically
faster than classical ones. On the other hand, we focus on sorting strings
that are not arbitrary objects. We propose a quantum algorithm that
has a query complexity O(n(logn)?v'k). This algorithm shows speed-up
comparing with the deterministic algorithm (radix sort) that requires
2((n + d)k) queries, where d is a size of the alphabet.
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1 Introduction

Quantum computing [26,5] is one of the hot topics in computer science of last
decades. There are many problems where quantum algorithms outperform the
best known classical algorithms [12,17,19, 18].

One of these problems are problems for strings. Researchers show the power
of quantum algorithms for such problems in [25, 6, 29)].

In this paper, we consider three problems:

* the Most Frequently String Search problem;
* Strings sorting problem;
* Intersection of Two String Sequences problem.



Our algorithms use some quantum algorithms as a subroutine, and the rest
part is classical. We investigate the problems in terms of query complexity. The
query model is one of the most popular in the case of quantum algorithms. Such
algorithms can do a query to a black box that has access to the sequence of
strings. As a running time of an algorithm, we mean a number of queries to the
black box.

The first problem is the following. We have n strings of length k. We can
assume that symbols of strings are letters from any finite alphabet, for example,
binary, Latin alphabet or Unicode. The problem is finding the string that occurs
in the sequence most often. The best known deterministic algorithms require
£2(nk) queries because an algorithm should at least test all symbols of all strings.
The deterministic solution can use the Trie (prefix tree) [11,7,9,21] that allows
to achieve the required complexity.

We propose a quantum algorithm that uses a self-balancing binary search
tree for storing strings and a quantum algorithm for comparing strings. As a
self-balancing binary search tree we can use the AVL tree [2,10] or the Red-Black
tree [14,10]. As a string comparing algorithm, we propose an algorithm that is
based on the first one search problem algorithm from [22-24]. This algorithm
is a modification of Grover’s search algorithm [13,8]. Our algorithm for the
most frequently string search problem has query complexity O(n(logn)?-vk) =
O(TL\/E)7 where O does not consider a log factors. If logy n = o(k%2%), then our
algorithm is better than deterministic one. Note, that this setup makes sense in
practical cases.

The second problem is String sorting. Assume that we have n strings of
length k. It is known [15,16] that no quantum algorithm can sort arbitrary
comparable objects faster than O(nlogn). At the same time, several researchers
tried to improve the hidden constant [28,27]. Other researchers investigated
space bounded case [20]. We focus on sorting strings. In a classical case, we
can use an algorithm that is better than arbitrary comparable objects sorting
algorithms. It is radix sort that has O((n+d)k) query complexity [10], where d is
a size of the alphabet. Our quantum algorithm for the string sorting problem has
query complexity O(n(logn)? - Vk) = O(nvVk). It is based on standard sorting
algorithms like Merge sort [10] or Heapsort [30,10] and the quantum algorithm
for comparing strings.

The third problem is the Intersection of Two String Sequences problem.
Assume that we have two sequences of strings of length k. The size of the first
set is n and the size of the second one is m. The first sequence is given and
the second one is given in online fashion, one by one. After each requested
string from the second sequence, we want to check weather this string belongs to
the first sequence. We propose two quantum algorithms for the problem. Both
algorithms has query complexity O((n +m) - logn - log(n + m)Vk) = O(nVk).
The first algorithm uses a self-balancing binary search tree like the solution of
the first problem. The second algorithm uses a quantum algorithm for sorting
strings and has better big-O hidden constant. At the same time, the best known
deterministic algorithm requires O((n + m)k) queries.



The structure of the paper is the following. We present the quantum subrou-
tine that compares two strings in Section 2. Then we discussed three problems:
the Most Frequently String Search problem in Section 3, Strings Sorting problem
in Section 4 and Intersection of Two String Sequences problem in Section 5.

2 The Quantum Algorithm for Two Strings Comparing

Firstly, we discuss a quantum subroutine that compares two strings of length
k. Assume that this subroutine is COMPARE_STRINGS(s, ¢, k) and it compares s
and ¢ in lexicographical order. It returns:

* —1if s < t;
* 0if s =1t;
* 1if s >t

As a base for our algorithm, we will use the algorithm of finding the minimal
argument with 1-result of a Boolean-value function. Formally, we have:

Lemma 1. [22-24] Suppose, we have a function f : {1,...,N} — {0,1} for
some integer N . There is a quantum algorithm for finding jo = min{j € {1,...,N}:
f(j) = 1}. The algorithm finds jo with ezpected query complexity \/jo and error
probability that is at most %

Let us choose the function f(j) = (s; # t;). So, we search jy that is the index
of the first unequal symbol of the strings. Then, we can claim that s precedes ¢
in lexicographical order iff s;, precedes t;, in alphabet Y. If there are no unequal
symbols, then the strings are equal.

We use the standard technique of boosting success probability. So, we repeat
the algorithm 3log, n times and return the minimal answer, where n is a number
of strings in the sequence s. In that case, the error probability is O (ﬁ) =

1

5 ).
(n %et us present the algorithm. We use THE_FIRST_-ONE_SEARCH(f,k) as a
subroutine from Lemma 1, where f(j) = (s; # t;). Assume that this subroutine
returns k + 1 if it does not find any solution.

Let us discuss the property of the algorithm:

Lemma 2. Algorithm 1 compares two strings of length k in lexicographical order
with query complexity O(\/Elog n) and error probability O (n—lg)

3 The Most Frequently String Search Problem

Let us formally present the problem.

Problem. For some positive integers n and k, we have the sequence of strings
s = (s',...,s"). Each s' = (s¢,...,s%) € X* for some finite size alphabet X.
Let #(s) = |{i € {1,...,m} : s* = s}| be a number of occurrences of string s.
We search s = argmax g cg#(s).



Algorithm 1 COMPARE_STRINGS(s,t, k). The Quantum Algorithm for Two
Strings Comparing.
jo < THE_FIRST_ONE_SEARCH(f, k) > The initial value
for i € {1,...,3log,n} do
jo < min(jo, THE_FIRST_ONE_SEARCH(f, k))
end for
if jo=k+ 1 then
result < 0 > The strings are equal.
end if
if (jo # k + 1)&(sj, < tj,) then
result <+ —1 > s precedes t.
end if
if (jo # k + 1)&(sj, > tj,) then
result < 1 > s succeeds t.
end if
return result

3.1 The Quantum algorithm

Firstly, we present an idea of the algorithm.

We use the well-known data structure a self-balancing binary search tree. As
an implementation of the data structure, we can use the AVL tree [2,10] or the
Red-Black tree [14,10]. Both data structures allow as to find and add elements
in O(log N) running time, where N is a size of the tree.

The idea of the algorithm is the following. We store pairs (¢, ¢) in vertexes of
the tree, where 7 is an index of a string from s and ¢ is a number of occurrences
of the string s'. We assume that a pair (i,c) is less than a pair (i',¢’) iff s°
precedes st in the lexicographical order. So, we use COMPARE_STRINGS (s, si/, k)
subroutine as the compactor of the vertexes. The tree represents a set of unique
strings from (s!,...,s™) with a number of occurrences.

We consider all strings from s! to s and check the existence of a string in
our tree. If a string exists, then we increase the number of occurrences. If the
string does not exist in the tree, then we add it. At the same time, we store
(imazs Cmaz) = argmaz; o in the treeC and recalculate it in each step.

Let us present the algorithm formally. Let BST be a self-balancing binary
search tree such that:

x FIND(BST, s%) finds vertex (i,c) or returns NULL if such vertex does not
exist;

x ADD(BST, s') adds vertex (i, 0) to the tree and returns the vertex as a result;

* INIT(BST) initializes an empty tree;

Let us discuss the property of the algorithm.

Theorem 1. Algorithm 2 finds the most frequently string from s = (s*,...,s")
with query complezity O(n(logn)? - Vk) and error probability O (4).



Algorithm 2 The Quantum Algorithm for Most Frequently String Problem.

INIT(BST) > The initialization of the tree.
Crmaz < 1 > The maximal number of occurrences.
imaz < 1 > The index of most requently string.
for i € {1,...,n} do
v = (i,¢) + FIND(BST, s") b Searching s’ in the tree.
if v = NULL then
v = (i,¢) < ADD(BST, s%) > If there is no s, then we add it.
end if
c+—c+1 > Updating the vertex by increasing the number of occurrences.
if ¢ > ¢nae then > Updating the maximal value.
Cmaz < C
tmaz 1
end if
end for

return s'me®

Proof. The correctness of the algorithm follows from the description. Let us dis-
cuss the query complexity. Each operation FIND(BST),s’) and ADD(BST, s)
requires O(logn) comparing operations COMPARE_STRINGS(s‘, s* | k). These op-
erations are invoked n times. Therefore we have O(nlogn) comparing operations.
Due to Lemma 2, each comparing operation requires O(\/Elog n) queries. The
total query complexity is O(nvk(logn)?).

Let us discuss the error probability. Events of error in the algorithm are
independent. So, all events should be correct. Due to Lemma 2, the probability

of correctness of one event is 1 — (1 — n—lg) Hence, the probability of correctness

of all O(nlogn) events is at least 1 — (1 - %)a'nlogn for some constant «.
Note that 1
1 \yanlogn
i 1= (1= 57) <1
n—00 1/7’l ’

Hence, the total error probability is at most O (%)
O

The data structure that we used can be considered as a separated data struc-
ture. We call it “Multi-set of strings with quantum comparator”. Using this data
structure, we can implement

* “Set of strings with quantum comparator” if always ¢ = 1 in pair (i,¢) of a
vertex;

* “Map with string key and quantum comparator” if we replace ¢ by any data
r € I for any set I'. In that case the data structure implements mapping
Xk,

All of these data structures has O((log n)2v/k) complexity of basic operations
(FIND, ADD, DELETE).



3.2 On the Classical Complexity of the Problem

The best known classical algorithm stores string to Trie (prefix tree) [11, 7], [9,
21] and do the similar operations. The running time of such algorithm is O(nk).
At the same time, we can show that if the algorithm tested o(nk) variables, then
it can return a wrong answer.

Theorem 2. Any deterministic algorithm for the Most Frequently String Search
problem has 2(nk) query complexity.

Proof. Suppose, we have a deterministic algorithm A for the Most Frequently
String Search problem that uses o(nk) queries.

Let us consider an adversary that suggest an input. The adversary wants to
construct an input such that the algorithm A obtains a wrong answer.

Without loss of generality, we can say that n is even. Suppose, a and b are
different symbols from an input alphabet. If the algorithm requests an variable
53' for i < n/2, then the adversary returns a. If the algorithm requests an variable
sé— for ¢ > n/2, then the adversary returns b.

Because of the algorithm A uses o(nk) queries, there are at least one sj/l and

one sj,l,/ that are not requested, where 2’ <n/2, z"” > n/2 and j/, " € {1,...,k}.

Let " be a string such that s’ = a for all j € {1,...,k}. Let s” be a string
such that s = b for all j € {1,...,k}.

Assume that A returns s’. Then, the adversary assigns sjz// = b and assigns
si = bforeach i >n/2,j € {1,...,k}. Therefore, the right answer should be s".

Assume that A returns a string s # s’. Then, the adversary assigns sj:: =a
and assigns s; =a for each i <n/2,j € {1,...,k}. Therefore, the right answer
should be s'.

So, the adversary can construct the input such that A obtains a wrong an-
Swer. O

4 Strings Sorting Problem

Let us consider the following problem.

Problem. For some positive integers n and k, we have the sequence of strings
s = (s',...,s"). Each s' = (si,...,s}) € X* for some finite size alphabet X.
We search order ORDER = (i1, ...,14,) such that for any j € {1,...,n— 1} we
have s% < s%+! in lexicographical order.

We use Heap sort algorithm [30,10] as a base and Quantum algorithm for
comparing string from Section 2. We can replace Heap sort algorithm by any
other sorting algorithm, for example, Merge sort [10]. In a case of Merge sort, the
big-O hidden constant in query complexity will be smaller. At the same time,
we need more additional memory.

Let us present Heap sort for completeness of the explanation. We can use
Binary Heap [30]. We store indexes of strings in vertexes. As in the previous



section, if we compare vertexes v and v’ with corresponding indexes 7 and ¢/, then

. 1 AN . . . .,
v>v iff s > s* in lexicographical order. We use COMPARE_STRINGS(s', s* , k)
for comparing strings. Binary Heap BH has three operations:

x GET_MIN_AND_DELETE(BH) returns minimal s* and removes it from the
data structure.

x ADD(BH, s') adds vertex with value i to the heap;

* INIT(BH) initializes an empty heap;

The operations GET_MIN_AND_DELETE and ADD invoke COMPARE_STRINGS
subroutine log, t times, where ¢ is the size of the heap.
The algorithm is the following.

Algorithm 3 The Quantum Algorithm for Sorting Problem.

INniT(BH) > The initialization of the heap.
for i € {1,...,n} do

ADD(BH, s*) > Adding s* to the heap.
end for

for i€ {1,...,n} do

ORDER <+ ORDERU GET_MIN_AND_DELETE(BH) > Getting minimal string.
end for
return ORDER

If we implement the sequence s as an array, then we can store the heap in
the same array. In this case, we do not need additional memory.

We have the following property of the algorithm that can be proven by the
same way as Theorem 1.

Theorem 3. Algorithm /4 sortss = (s,...,s™) with query complexity O(n(logn)?-
.7 1
VE) and error probability O (TL)
The lower bound for deterministic complexity can be proven by the same
way as in Theorem 2.

Theorem 4. Any deterministic algorithm for Sorting problem has 2(nk) query
complexity.

The Radix sort [10] algorithm almost reaches this bound and has O((n + | X|)k)
complexity.

5 Intersection of Two Sequences of Strings Problem

Let us consider the following problem.

Problem. For some positive integers n,m and k, we have the sequence of
strings s = (s!,...,s™). Each s' = (si,...,st) € X* for some finite size alphabet
Y. Then, we get m requests t = (t1...t™), where t' = (t!,...,ti) € X*. The



answer to a request t* is 1 iff there is j € {1,...,n} such that ¢* = s/. We should
answer 0 or 1 to each of m requests.

We have two algorithms. The first one is based on “Set of strings with quan-
tum comparator” data structure from Section 3. We store all strings from s to
a self-balancing binary search tree BST. Then, we answer each request using
FIND(BST, s') operation. Let us present the Algorithm 4.

Algorithm 4 The Quantum Algorithm for Intersection of Two Sequences of
Strings Problem using “Set of strings with quantum comparator” .

INIT(BST) > The initialization of the tree.
for i € {1,...,n} do
ADD(BST, s%) > We add s to the set.
end for
for i € {1,...,m} do
v + FIND(BST, ) > We search t in the set.
if v= NULL then
return 0
end if
if v# NULL then
return 1
end if
end for

The second algorithm is based on Sorting algorithm from Section 4. We sort
strings from s. Then, we answer to each request using binary search in the sorted
sequence of strings [10] and COMPARE_STRINGS subroutine for comparing strings
during the binary search. Let us present the Algorithm 5. Assume that the sort-
ing Algorithm 4 is the subroutine SORT_STRINGS(s) and it returns the order
ORDER = (i1,...,in). The binary search algorithm with COMPARE_STRINGS
subroutine as comparator is subroutine BINARY_SEARCH_FOR_STRINGS(¢, s, OREDER)
and it searches t in the ordered sequence (s%,...,s'). Suppose that the sub-
routine BINARY_SEARCH_FOR_STRINGS returns 1 if it finds ¢ and 0 otherwise.

Algorithm 5 The Quantum Algorithm for Intersection of Two Sequences of
Strings Problem using sorting algorithm .

ORDER < SORT_STRINGS(s) > We sort s = (s',...,s™).
for i € {1,...,m} do _
ans < BINARY_SEARCH_FOR_STRINGS(t, s, OREDER) > We search t* in the

ordered sequence.
return ans
end for

The algorithms have the following query complexity.



Theorem 5. Algorithm 4 and Algorithm 5 solve Intersection of Two Sequences
of Strings Problem with query complexity O((n 4+ m)Vk -logn -log(n +m)) and

1
n+m

error probability O (

Proof. The correctness of the algorithms follows from the description. Let us
discuss the query complexity of the first algorithm. As in the proof of Theorem
1, we can show that constructing of the search tree requires O(nlogn) comparing
operations. Then, the searching of all strings ¢ requires O(mlogn) comparing
operations. The total number of comparing operations is O((m + n)logn). We
will use little bit modified version of the Algorithm 1 where we run it 3(log(n +
m)) times. We can prove that comparing operation requires O(v/k log(n + m))
queries. The proof is similar to the proof of corresponding claim from the proof
of Lemma 2. So, the total complexity is O((n + m)vk - logn - log(n + m)).

The second algorithm also has the same complexity because it uses O(nlogn)
comparing operations for sorting and O(mlogn) comparing operations for all
invocations of the binary search algorithm.

Let us discuss the error probability. Events of error in the algorithm are
independent. So, all events should be correct. We can prove that the error prob-
ability for comparing operation is O(1/(n + m)?3). The proof is like the proof of

Lemma 2. So, the probability of correctness of one event is 1 — (1 — m)

Hence, the probability of correctness of all O((n + m)logn) events is at least

a-(n+m)logn
1-— (1 — m) for some constant o.
Note that
1 (1 1 )a-(n+m) logn
- ~ (n+m)3
lim (ntm) <1

Hence, the total error probability is at most O ( L )

n+m

O

Note that Algorithm 5 has a better big-O hidden constant than Algorithm 4,
because the Red-Black tree or AVL tree has a height that greats log, n constant
times. So, adding elements to the tree and checking existence has bigger big-O
hidden constant than sorting and binary search algorithms.

The lower bound for deterministic complexity can be proven by the same
way as in Theorem 2.

Theorem 6. Any deterministic algorithm for Intersection of Two Sequences of
Strings Problem has 2((n + m)k) query complezity.

This complexity can be reached if we implement the set of strings s using
Trie (prefix tree) [11,7,9,21].

Note, that we can use the quantum algorithm for element distinctness [4],[3]
for this problem. The algorithm solves a problem of finding two identical elements
in the sequence. The query complexity of the algorithm is O(D?/3), where D is



a number of elements in the sequence. The complexity is tight because of [1].
The algorithm can be the following. On j-th request, we can add the string #/ to
the sequence s',...,s™ and invoke the element distinctness algorithm that finds
a collision of #/ with other strings. Such approach requires 2(n?/3) query for
each request and 2(mn?/ 3) for processing all requests. Note, that the streaming
nature of requests does not allow us to access to all t',...,t™ by Oracle. So,
each request should be processed separately.

6 Conclusion

In the paper we propose a quantum algorithm for comparing strings. Using this
algorithm we discussed four data structures: “Multi-set of strings with quan-
tum comparator”, “Set of strings with quantum comparator”, “Map with a string
key and quantum comparator” and “Binary Heap of strings with quantum com-
parator”. We show that the first two data structures work faster than the im-
plementation of similar data structures using Trie (prefix tree) in a case of
logon = o(k%2). The trie implementation is the best known classical imple-
mentation in terms of complexity of simple operations (add, delete or find).
Additionally, we constructed a quantum strings sort algorithm that works faster
than the radix sort algorithm that is the best known deterministic algorithm for
sorting a sequence of strings.

Using these two groups of results, we propose quantum algorithms for two
problems: the Most Frequently String Search and Intersection of Two String
Sets. These quantum algorithms are more efficient than deterministic ones.
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