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1.  Introduction

Vortex pinning in high temperature superconductors, most 
often in YBa2Cu3O6+x (YBCO), has been under consider-
able research effort in the last ten years [1]. Applications of 
superconducting wires typically would need isotropic critical 
current density, Jc, which is as high as possible. The typical 
method of increasing Jc and decreasing the intrinsic anisotropy 
is using artificial pinning centers (APC) which are typically 
non-superconducting nanoscale inclusions within the matrix 
of the superconductor. Depending on the growth method, the 
APCs form columnar nanorods or roughly spherical nanopar-
ticles with diameter of a few nanometers.

The Jc of a superconductor in magnetic field is defined 
by its capability of pinning vortices as the movement of vor-
tices will cause energy dissipation and a voltage drop. At low 
magnetic fields, the vortices are widely separated and the 

main contribution to the total force experienced by the vortex 
comes from the individual pinning sites. The pinning forces 
of different kinds of pinning sites have been comprehensively 
derived by Blatter et al [2]. If the pinning sites are weak, col-
lective pinning by them determines the Jc at low fields [3]. 
Superconductors with only weak pinning sites are not inter-
esting from application point of view, so they will be left out 
of our study. The strongest pinning sites are columnar rods 
with diameter of the same order of magnitude as the vortices 
aligned along the external magnetic field. Large enough rods 
can also make the vortices align along the rods instead of the 
external magnetic field, leading to the well known c-axis peak 
observed in e.g. BaZrO3 doped YBCO made by pulsed laser 
deposition [4].

At higher magnetic fields, the vortices are closer to each 
other and the repulsive vortex-vortex interaction will effec-
tively reduce the pinning force of the pinning sites. This leads 
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to the reduction of Jc with increasing magnetic fields. If the 
pinning sites are very strong, they will break the triangular 
Abrikosov vortex lattice, which is formed with weak pinning 
sites, and each vortex is still individually pinned. In the other 
extreme, the pinning sites will not be able to break the lattice 
and the Jc will depend on the stiffness of the vortex lattice and 
the distribution of pinning sites [5].

In this paper, we present a molecular dynamics (MD) simu-
lation of vortices in pinning landscapes, which do not fulfil 
the requirements for analytical solutions. This also enables us 
to look at the angular dependence of Jc (Jc(θ)) with different 
types and orientations of pinning sites. Here θ is the angle 
between the external magnetic field and the c axis of YBCO. 
The angular dependence has been modelled using statistical 
approach on the paths of the vortices [6–8] assuming different 
orientations and distributions of pinning sites. Unfortunately, 
the statistical approach does not really give microscopic infor-
mation on the optimal pinning sites, even though it helps to 
understand the forms of the Jc(θ) curves.

In this paper we show that the MD simulation can repro-
duce the correct anisotropic behavior of Jc with isotropic pin-
ning sites. In addition, we show that the behavior of Jc(B) 
changes with the size of the pinning centers in accordance 
with experimental data and that the size of the pinning centers 
is also a determining factor in Jc(θ). The simple MD simula-
tions also reproduce results obtained earlier with Ginzburg–
Landau simulations and give insight to the vortex dynamics in 
the superconductors, which the GL-simulations do not give. 
With thorough understanding, real design-based superconduc-
tors can be made.

2.  Methods

2.1.  Molecular dynamics simulations

We simulate vortices using a simplified MD model, where 
each vortex is represented by a chain of particles. In addition 
to the vortices, pinning sites are also explicitly included in 
the simulation as particles, but the YBCO lattice itself is not. 
Pinning sites are immobile, and only the particles representing 
vortices are allowed to move during the simulation. Dynamics 
are implemented using the leapfrog version of the velocity-
Verlet algorithm.

The simulations are three-dimensional, but we split the 
simulation into layers perpendicular to the YBCO c axis to 
enhance computational efficiency. This means that the parti-
cles representing vortices are restricted to move only in these 
ab layers, and motion in the c direction is not allowed. A 
vortex is represented by a chain of particles so that each layer 
contains exactly one particle. Particles in adjacent layers are 
connected by a spring-like force representing the line tension 
of the vortex. Particles belonging to different vortices only 
interact if they are in the same layer. Similarly, vortex par-
ticles only interact with pinning sites which are in the same 
layer. The only interaction between layers is the line tension in 
a vortex. A schematic picture of the simulation configuration 
is shown in figure 1.

Pinning sites have different interaction radii representing 
their pinning strength. Columnar pinning sites are constructed 
in a similar fashion as the vortices: a column is represented 
by a stack of particles where each layer holds exactly one 
particle.

We apply periodic boundary conditions in the simula-
tion layers, i.e. the YBCO ab plane. However, we have free 
boundaries in the c direction. This means that the simulation is 
periodically infinite in the ab plane but finite in the c direction. 
This models the thin film geometry generally used in YBCO 
superconductors.

We also include an external magnetic field in the simula-
tion, and the direction of the magnetic field with respect to the 
c axis is adjustable. Vortices tend to align themselves in the 
direction of the external magnetic field, and this introduces 
anisotropy in the simulation. The layered structure of the sim-
ulation assumes that the vortices run approximately in the c 
direction, and thus magnetic fields nearly perpendicular to the 
c axis are incompatible with the layered model. This limits the 
range of magnetic field angles we are able to study.

The total force acting on particle i (in layer i) of vortex n is

Ftot
(i,n) =

∑
m�=n

fvv
(i,n),(i,m) +

∑
k

fvp
(i,n),(i,k) +

∑
j=i±1

ftension
(i,n),( j,n)

+
∑

j=i±1

fmagnetic
(i,n),( j,n) + fLorentz

(i,n) + fdrag
(i,n).

�

(1)

Here fvv
(i,n),(i,m) is the force between the particles of vortices 

n and m in layer i. The force fvp
(i,n),(i,k) is due to the interac-

tion between the particle of vortex n in layer i and the pin-
ning site k in the same layer. Vortex line tension is represented 

by ftension
(i,n),( j,n), and this force acts between particles of the same 

vortex n which are in adjacent layers i and j. The tendency of 
the vortex to orient itself along magnetic field lines is driven 

by the force fmagnetic
(i,n),( j,n). This force depends on the orientation 

of the vortex, and thus it is a function of the positions of 

vortex particles in adjacent layers. Next, fLorentz
(i,n)  is the Lorentz 

force caused by the transport current and the magnetic field, 

and finally, fdrag
(i,n) is the drag force that vortices experience in 

superconductors.

Figure 1.  A schematic diagram of the used molecular dynamics 
model. Vortices are turquoise and pinning sites red. The particles of 
a vortex are connected with a spring-like force. For visualisation, 
only four layers are shown. Interactions are shown with arrows.
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The magnitude of the vortex–vortex force is [9, 10]

f vv =
ε0

λab
K1

(
r
λab

)
,� (2)

where ε0 is the characteristic vortex energy per length, λ is 
the magnetic penetration depth, r  =  r(i,n),(i,m) is the in-layer 
distance between two vortex particles, K1 is the Bessel func-
tion of first kind, first order. The characteristic energy is 
ε0 = φ2

0/(2πµ0λ
2) ≈ 2.76 · 1011 J m−1, where φ0 is the magn

etic flux quantum and µ0 the magnetic permeability of free 
space.

The force between a vortex and a pinning site is [2, 11]

f vp = ε0
rr2

0

(r2 + 2εϑξ2
ab)

2
,� (3)

where r  =  r(i,n),(i,k) is the in-layer distance between a pinning 
site and a vortex, r0 the radius of the pinning site and ξ the 
coherence length of YBCO and εϑ is the angle-dependent 
Blatter scaling parameter [2]

ε2
ϑ(θ) =

sin2 θ

γ2 + cos2 θ,� (4)

where θ is the angle between the external magnetic field and the 
axis along the c lattice parameter direction and γ is the aniso
tropy parameter of YBCO (≈5.0). The pinning site radius was 
varied in range 0.1–6 nm in the simulations. Although, equa-
tion (3) is strictly speaking valid only for pinning sites sizes 
smaller than r0 <

√
2ξ, the error done in comparison to the 

force obtained for large pinning sites [2] is small. At large dis-
tances the two equations give asymptotically the same force. 
The small pinning site force, equation (3), is also numerically 
stable unlike the large pinning site force, which diverges near 
the pinning site.

Vortex line tension energy is [2, 12]

etension = ε0εϑL ln
λ

εϑξ
,� (5)

where L is the length of a vortex. Taking the derivative of 
this energy with respect to the separation ∆r = r(i,n) − r( j,n) 
between adjacent vortex particles, one finds the line tension 
force. In our layered simulation, where the vortex particles 
are only allowed to move in the ab plane, we only need the 
component of this force in this plane. The magnitude of this 
component is

f tension = −ε0r(γ2 − 1 + lnκ)

dγ2
√

d2 + r2
,� (6)

where d = ∆rc = rc,(i,n) − rc,( j,n) is the distance between 
adjacent vortex particles in the c direction (i.e. the dis-
tance between adjacent layers in the simulation) and 
r = ∆rab = rab,(i,n) − rab,( j,n) is the distance between the par-
ticles in the ab plane. The constant κ is the Ginzburg–Landau 
parameter (100 for YBCO).

The energy of a vortex in an external magnetic field, Bext , 
tilted at an angle ϕ with respect to the field, is

emagnetic = −φ0µ0Bext cosϕ.� (7)

Differentiating this yields the force

f magnetic = φ0µ0Bext sinϕ
dϕ
dr

.� (8)

The Lorentz force is f Lorentz = φ0|B̂ext × Jc| = φ0Jc. The 
equality holds true because the current is always kept perpend
icular to the magnetic field.

The drag force resist vortex movement, and so it is always 
opposite to the velocity v of a vortex particle,

fdrag = −ηv.� (9)

The drag coefficient η is [13]

η =
φ0Bc2

ρn
,� (10)

where ρn is the normal state resistivity of YBCO [14], 
5.3 · 10−7 Ωm and the upper critical field [15], Bc2, is 27 T at 
77 K in the c direction.

The drag force is dissipative and its inclusion removes 
energy from the simulation. Therefore the drag force acts 
effectively like a Langevin thermostat set to 0 K. If the vor-
tices are pinned, the drag force will remove energy from the 
simulation until the vortices are completely stationary. If the 
vortices are not pinned, work done by the Lorentz force adds 
energy in the simulation, accelerating the motion of the vor-
tices. In this case, a steady state is eventually reached, where 
the work done by the Lorentz force is cancelled by the nega-
tive work done by the drag force and the vortices travel on 
average at constant velocity.

In our simulations, we are most interested in distinguishing 
between the state of pinned vortices and the state of trave-
ling vortices in order to estimate the critical current. The exact 
temperature of the system can affect the tendency of vortices 
to get pinned, but in our current simulation we merely assume 
that the temperature is low and do not apply a thermostat set 
to a finite temperature.

The MD model also requires that vortex particles have a 
mass and vortices with different masses can behave differ-
ently [16]. In this study, we have used a mass of 10−20 kg. 
This value is somewhat arbitrary, but according to our test 
calculations, our results do not depend on the precise value 
of this mass. This is because the timescale of the simulation 
is defined by how quickly the vortices reach the steady state 
where they travel at constant velocity. The characteristic 
time, τ, for this process is given by the ratio of the vortex 
mass and the drag coefficient, and since η ≈ 10−7 kg s−1,  
a mass of 10−20 kg gives τ = m/η ≈ 10−13 s. The distance 
between pinning sites is roughly 10−7 m and the terminal 
velocity of vortices, which depends on the Lorentz and 
drag forces but not the vortex mass, can go up to 103 m s−1.  
Therefore, vortex travel time from one pinning site to 
another is about 10−10 s. This is 1000 times longer than the 
characteristic time τ, which means that the vortices reach 
their terminal velocity very quickly and travel at constant 
speed. This result is true as long as τ is clearly smaller than 
the travel time between pinning sites, and as long as the mass 
is in this regime, vortex dynamics do not depend on the exact 
value of the mass.

J. Phys.: Condens. Matter 30 (2018) 315902
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2.2.  Simulated systems

The pinning landscapes (pinscapes) contained either nanorods 
or single nanodots of different sizes. The distribution of the 
nanorods in the simulations were randomly generated so that 
there is a minimum distance (≈20 nm) between the rods. This 
was to ensure that the pinscape was as close to the exper
imentally observed as possible (e.g. BZO rods in YBCO). The 
positions of the nanodots were randomly generated in each 
layer. In each simulation run several (4–15) pinscapes were 
used and the results averaged. The error bars represent the 
mean error as calculated from these simulations.

The number of vortices in the simulation was determined 
by the field strength according to equation  B = nφ0, where 
n is the vortex density. The size of the calculation area was 
varied from 200 × 200 nm2 to 400 × 400 nm2. The larger sys-
tems were used at low fields where vortex density is lower. 
The used magnetic field range was 0.1–2.0 T.

The critical current was iterated by the bisection method. 
The simulation was run with one current and the current in 
the following iteration was adjusted according to the stability 
of the system. The average of the vortex position was calcu-
lated over all the layers. Additionally, if this condition was 
not fulfilled, the average speed of the vortices was checked. A 
vortex was considered pinned if its current speed was below 
a defined limit. As the speed of a vortex is defined by the 
arbitrarily chosen vortex particle mass, the speed limit is also 
arbitrary. In low fields, a lower speed limit was used, since 
the force caused by the field is so small that the vortices were 
practically always stable. Both the position and speed stability 
were checked with regular intervals during the simulation.

3.  Simulation results and comparison  
to experimental data

3.1.  Anisotropy

The validity of the anisotropic corrections to the line tension 
force (equation (5)) and the vortex-pinning site force (equa-
tion (3)) was checked by running simulations with random 
isotropic spherical pinning sites and different anisotropy con-
stants γ. The results for γ = 1, 3 and 5 with theoretical curves 
(equation (4)) for each are shown in figure 2. It is clearly seen 
that at high angles the simulation does break up, but it repre-
sents reality fairly well up to 60 degrees with YBCO’s γ = 5. 
With lower anisotropy the simulation results start deviating 
from the theoretical curve at lower angles. The breaking of the 
model is due to the layered nature of the simulation, where at 
high angles the vortices lie almost along the ab-planes and still 
do not interact through the layers. Fixing this would require 
a real 3 dimensional simulation with interactions between all 
the vortices and pinning sites.

The insets of figure  2 show representative stable vortex 
configurations at external field angle of  −70 degrees. The dif-
ferent anisotropies of the superconductors are visible in the 
angles of the vortices seen in the images of the vortex con-
figurations: higher the anisotropy more slanted the vortex is. 
The angle of the vortex is defined by two competing forces. 

The external magnetic field tries to align the vortex with itself, 
whereas the line tension tends to shorten the vortex and thus 
turn it more along the thinnest direction of the superconductor. 
In high anisotropy superconductors the vortices are more flex-
ible along the planes, thus the vortices are more along the 
external field with γ = 5.

3.2.  Rod size dependence of Jc(B)

Curving of the Jc(B) dependence in log–log graphs [17] is a 
typical feature of YBCO thin films with APC’s. In pure YBCO 
films, Jc(B) is nicely described with B−α, where α is around 
0.5 at low temperatures. In APC films, on the other hand, a 
smooth curving of Jc(B) is observed and determination of 
α is fairly arbitrary, but generally in range 0.1–0.4 [18–20]. 
Instead of Jc(B), many authors have calculated the pinning 
force Fp = |Jc × B| = JcB in the maximum Lorentz force 
configuration, where Jc and B are always kept perpendicular. 
The shape of Fp has been derived by e.g. Dew-Hughes [21] 
and Kramer [22] to be

Fp(B) = Fp0

(
B

Bc2

) p (
1 − B

Bc2

)q

,� (11)

where Fp0 scales the pinning force at maximum, Bc2 is the 
upper critical field and p and q are exponents which depend 
on the type of pinning sites in the sample. In the model by 
Dew-Hughes for non-magnetic pinning sites, if the diameter 
d is much smaller than the coherence length ξ, p  =  0.5 and 
if d � ξ , p  =  1. In high-temperature superconductors Bc2 
has been replaced by Birr [23], as in them Birr marks the limit 
above which Jc is zero. We have recently suggested scaling 
the field with the magnetic field value at maximum force, Bmax 
to enable reliable fitting of equation (11) [17]. It is immedi-
ately seen that in the first order approximation α = 1 − p and 
the curvature at high field is mostly determined by q. The 
value of q can be derived from Ginzburg–Landau (GL) theory 

Figure 2.  Jc(θ) curves calculated for different anisotropy constants 
γ. The points are the simulation results and the curves show the 
theoretical dependences. The insets show examples of vortex 
configurations (blue rods) in the pinscape formed by isotropic 
pinning centers (red spheres) at magnetic field angle of −70◦ for 
the γ = 5 (top) and γ = 1 (bottom) points. The B arrow shows the 
direction of the external field.

J. Phys.: Condens. Matter 30 (2018) 315902
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to be q  =  1 [17], but if derived from the shear modulus c66 of 
the vortex lattice, value q  =  2 is often obtained [5, 24]. Also 
statistical variation of the pinning site sizes changes q [25].

To understand the change in the shape of Jc(B) , we sim-
ulate systems containing columnar rods of different radii as 
pinning sites. Figure  3 shows the dependence of the scaled 
pinning force Fp for a 4 wt% BZO- and BCO-doped YBCO 
films [26, 27], as well as simulations of 3 nm and 6 nm diam-
eter rods. The inset shows the measured and simulated Jc(B) 
dependences. The simulated values have been shifted to fit the 
experimental data at one field value, but the field dependence 
has not been changed. A clear difference is seen between the 
different sizes of pinning sites. On the right of the figure, the 
stable simulation states are shown for 6 nm and 3 nm rods at 
critical current in field of 0.75 T, which is below the accom-
modation field. Even so, only a few of the vortices are pinned 
into the small diameter rods, and the rest are stabilized by the 
vortex–vortex interaction to a lattice. This leads to fast deg-
radation of the critical current with field. When the pinning 
sites are large, each vortex is individually pinned, the lattice 
is destroyed and the decrease of the critical current is much 
slower. The difference of vortex dynamics for different pin-
ning site sizes is clearly visible in the videos available as sup-
plementary information (stacks.iop.org/JPhysCM/30/315902/
mmedia).

The Fp(B) fit was made for simulation results obtained for 
pinning site sizes varying from 0.5 nm to 14 nm, similarly as 
in figure 3. To ease the fitting, q was fixed to 1.1 [17] for all the 
sizes. First the scaling with Fp,max and Bmax was done and then 
p fitted. The fitted p values are shown in figure 4 together with 
experimental data on different kinds of YBCO films [17] and 
Ginzburg–Landau simulations [28]. It is clearly seen that the 
MD-simulations follow the same size dependence for p as the 
experimental data and the GL-simulations. When the pinning 
sites are small, such as dislocations, p  =  0.5 as expected from 
the Ginzburg–Landau theory. With small pinning sites, the 
vortex-vortex interactions are comparable to the vortex-pin-
ning site interactions, which leads to the vortex lattice staying 
in tact, as also seen in the supplementary videos. When the 

pinning sites are large (d � ξ), we get p ≈ 1, as also expected 
from the Ginzburg–Landau theory. In this case the pinning 
force from the pinning sites is so large that it breaks the vortex 
lattice.

Between the extremes of small pinning sites and large 
pinning sites, it is natural that p changes smoothly. In these 
cases the vortex lattice is still somewhat intact, but distorted. 
This range is difficult to reach analytically. It should be noted 
that the current MD-simulations also reproduce the much 
more complicated GL-simulations and that in addition e.g. 
the breaking of the vortex lattice is easily observed in the 
MD-simulation.

From these results, we can also conclude that the optimal 
diameter of pinning sites is actually quite close to 4ξ, where 
p reaches  ≈1 (around 10 nm at low temperature for YBCO). 
Above this size the field dependence does not change and in 
the GL-simulations multivortices are seen [28]. If the pin-
ning site diameter is further increased the superconducting 

Figure 3.  Scaled pinning forces for 4 wt% BZO- and BCO-films together with the simulated values for corresponding pinning site sizes 
(diameters 3 nm and 6 nm). The inset shows the measured Jc values as function of external magnetic field. The simulation Jc values have 
been shifted to fit the experimental data on the lowest field value. On the right are shown the stable states of the simulations at critical 
current at 0.75 T. The arrow shows the one pinned vortex in the vortex lattice.
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Figure 4.  The dependence of p on the size of the pinning site. 
BZO-% refers to samples with different BZO-doping [26], BZO-T 
to samples made at different temperatures [29] and BCO-% to 
samples with different BCO content [27]. The vertical line shows 
the limit above which multivortices were observed in the  
GL-simulations.
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cross section  of the sample decreases and thus the critical 
current density starts to decrease. It has also been observed 
that adding second phase pinning sites tends to decrease the 
zero or self field critical current density [14, 26, 30]. This can 
be understood as increase of the magnetic field penetration 
depths λ due to the decrease of the superconducting energy 
gap [31, 32]. The lattice distortions caused by the dopants 
diminish the energy gap. This is also seen as the general trend 
of decreasing Tc with increasing doping [14, 33]. Therefore 
limiting the doping to minimum is necessary. The optimal 
density of pinning sites depends on the magnetic field used in 
the intended application.

3.3.  Angular dependence of Jc in films with different  
rod sizes

In superconducting applications the goal is to have as high 
and isotropic Jc(θ) as possible. To that end nanorods have 
been introduced as pinning sites. These produce a wide peak 
in Jc(θ) in the direction of the rod. The actual shapes of Jc(θ) 
depend on e.g. diameter, length and orientation of the rods as 
well as on temperature and magnetic field. In addition, all real 
films contain dislocations and twin boundaries, which affect 
pinning, specially at low temperatures.

In order to study the effect of rod sizes to the angular 
dependence, simulations were run at 0.75 T for rods without 
any splay. Figure 5 shows the Jc(θ) results for nanorods with 
different diameters along with representative vortex configu-
rations in the simulation at 30◦ angle. It is clearly seen that as 
the nanorod diameter increases and the pinning force of the 
rod increases, the rod is capable of holding segments of vortex 
along it. When the magnetic field angle is too high compared 
to the pinning force of the rod, the rods act as point pinning 
sites and vortices follow the external field. The observed Jc 
is higher when larger segments of the vortex are pinned. The 

angle of change between these modes depends on the rod 
diameter and thus determines the width of the observed c-axis 
peak. The normal anisotropic curve is obtained when the pin-
ning sites are not strong enough to make the vortices follow 
them. Animations of the simulations are available as supple-
mentary material.

To compare the simulated Jc(θ) with experiments, we took 
previously published Jc(θ) data from three different kinds 
of samples. These were BaZrO3 doped film [34] with 10 nm 
rods, BaSnO3 doped film [35] with 7 nm rods and an YBCO 
film on Hastelloy substrate [36], which had low angle grain 
boundaries (∆φ = 3◦). The low angle grain boudaries are 
assumed to be distorted areas around dislocations and thus a 
few nanometer wide. All the data has been taken at 77 K and 
1 T, which are readily available in the literature. The field is 
close to the one used in the simulation and at this temperature 
the twins and normal dislocations are fairly ineffective thus 
the pinscape better corresponds to the simple one used in the 
simulation. The data are shown as lines in figure  5 and the 
qualitative agreement is good. The discrepancies at the widths 
of the c-axis peaks are explained by splay of the rods in the 
real samples, the other pinning sites in the samples and the 
small scale of the simulations.

4.  Conclusions

In this work we have made a molecular dynamics simulation 
to simulate the vortices in superconductors with artificial pin-
ning sites. We have shown that the simulation reproduces the 
correct anisotropic behavior in angular dependence of critical 
current. We also showed that the shape of the Jc(B) curve 
depends on the size of the pinning sites and the change from 
p  =  0.5 to p ≈ 1 is due to the breaking of the vortex lattice 
to individually acting vortices. The results beautifully corre-
spond to experimental data. Furthermore, we found that the 

Figure 5.  The simulation results for angle dependent Jc for samples with different diameter direct nanorods (10, 8, 5 and 3 nm). On the 
right are vortex configurations at the critical current with magnetic field angle of 30◦. The lines in the left panel are experimental data: BZO 
is from BaZrO3 doped YBCO films with nanorod diameter around 10 nm (Kang et al [34]), BSO from BaSnO3 doped YBCO films with 
nanorod diameter around 7 nm (Horide et al [35]) and GB from YBCO film on Hastelloy substrate with low angle grain boundaries (Wee 
et al [36]).
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size and shape of the c-axis peak observed with columnar pin-
ning sites in Jc(θ) also depends on the size of the rods, larger 
pinning sites leading to wider peaks. This is a consequence 
of the large pinning force of the large pinning sites, which 
can stretch the vortices from one pinning site to another. The 
results obtained from the MD-simulation are similar to those 
of the much more computationally intensive GL-simulations. 
Furthermore, the MD-simulations can provide insight to the 
vortex dynamics within the samples. Thus, we conclude that 
the very simple MD model can be used to understand and pre-
dict Jc(B) and Jc(θ) behavior of YBCO superconductors.

Obvious improvements to be done in the future are 
including temperatures higher than 0 K. The layered simula-
tion presented here is computationally efficient, but it cannot 
represent systems where the external magnetic field is ori-
ented close to the ab plane. Especially, we cannot simulate the 
experimentally observed ab peaks using this model. We plan 
to fix this shortcoming by extending the layered simulation to 
a full three-dimensional model.
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