MD-simulation of vortex motion in anisotropic superconductors with artificial pinning sites

P. Paturi, M. Malmivirta, E. Rivasto, T. Hynninen and H. Huhtinen

petriina.paturi@utu.fi

Problem & solution

- Understanding $J_{\rm c}(\theta)$ and $J_{\rm c}(B)$ with different pinscapes
- Modelling would enable real design-based pinscapes
- Ginzburg-Landau models require large scale computations
- Forces between different actors (vortices, pinning sites) in a superconductor are known
- The interplay of several pinning sites and vortices cannot be done analytically
- Molecular dynamics simulations require less computational power than GL
- Anisotropy can also be included

MD-simulation

$$\mathbf{F}_{(i,n)}^{\text{tot}} = \sum_{m \neq n} \mathbf{f}_{(i,n),(i,m)}^{\text{vv}} + \sum_{k} \mathbf{f}_{(i,n),(i,k)}^{\text{vp}} + \sum_{j=i\pm 1} \mathbf{f}_{(i,n),(j,n)}^{\text{tension}} + \sum_{j=i\pm 1} \mathbf{f}_{(i,n),(j,n)}^{\text{magnetic}} + \mathbf{f}_{(i,n)}^{\text{Lorentz}} + \mathbf{f}_{(i,n)}^{\text{drag}}$$

Anisotropy

- Anisotropy of the superconductor can be chosen
- 2.5 D structure limits the usable range to $\pm 60^{\circ}$

Pinning force vs size

Pinning force can quite generally be described with

$$\frac{F_{p}(B)}{F_{p,\text{max}}} = \left(\frac{p}{q}\right)^{q} \left(\frac{B}{B_{\text{max}}}\right)^{p} \left(\frac{p+q}{p} - \frac{B}{B_{\text{max}}}\right)^{q}$$

• $p \approx 0.5$ when lattice stays in tact, $p \approx 1$ when the lattice breaks

$J_{\mathrm{c}}(\theta)$ vs size

- Width of c-axis peak depends on the size of the pinning site
- At peak the vortices are deformed by the pinning sites
- Outside the peaks the vortices pin as with spherical pinning sites
- The peak widths correspond well with experimental data

$J_{\rm c}(\theta)$ vs density

- Rod density does not affect the c-peak width
- ullet It affects the $J_{
 m c}$ of the sample
- Experimentally BSO rods are straight and correspond well to the simulated data
- \bullet BHO doped films have much wider peak \rightarrow more splay in the rods

Discussion & conclusions

- ullet A simple MD-simulation can replicate essential features of $J_{
 m c}(heta)$ close to B||c|
- This enables true understanding of pinning and designing effective pinscapes for applications
- Large pinning sites lead to $p \approx 1$ due to breaking of the vortex lattice
- Small pinning sites cannot break the lattice
- \bullet Width of c-axis peak is defined by pinning site size
- Pinning site density does not affect the width of the peak
- In future:
 - True 3D implementation will enable modelling around $B \perp c$
 - Implementation of temperature

Videos at:

Materials at:

References

- [1] H. Palonen, J. Jäykkä, and P. Paturi, *Phys. Rev. B*, **85**, 024510 (2012).
- [2] M. Malmivirta, R. Rijckaert, V. Paasonen, H. Huhtinen, T. Hynninen, R. Jha, V. S. Awana, I. Van Driessche and P. Paturi Sci. Reports **7**, 14682 (2017).
- [3] P. Paturi, M. Malmivirta, T. Hynninen and H. Huhtinen J. Phys. Cond. Mat. **30**, 315902 (2018).

Acknowledgements

Jenny and Antti Wihuri Foundation is acknowledged for financial support.

The computer resources of the Finnish IT Center for Science (CSC) and the FGCI project (Finland) are acknowledged.

UNIVERSITY OF TURKU

Wihuri Physical Laboratory