Verifying theoretical models of flux pinning using heavy ion irradiated in YBCO thin films

P. Paturi¹, M. M. Aye¹, H. Huhtinen¹, A. Soman², N. Strickland², C. Notthoff³ and P. Kluth³

¹Wihuri Physical Laboratory, University of Turku, Finland
² Victoria University of Wellington, New Zealand

³Research School of Physics, Australian National University, Canberra, Australia

petriina.paturi@utu.fi

Introduction

- HTS wires are made in km length, but how can we still increase their in-field properties?
- ullet Increasing $J_{\mathrm{c},0}$ requires better YBCO crystal quality
- Optimizing $J_c(B)$ requires effective pinning sites, most effectively tailored artificial pinning centers (APC)
- Theoretically, at low *T*, the APC-free distance between APCs is about the same as the diameter of the APCs.
- The optimal APC diameter is 8–10 nm, strong enough to break the vortex lattice, but small enough to accommodate only one vortex.
- Typical APCs are ${\rm Ba}M{\rm O}_3$ nanorods, which cause strain in the YBCO matrix and reduce $J_{{\rm c},0}.$
- Here, we use heavy ion irradiation to introduce APCs that the YBCO matrix is not affected.

Experimental

- PLD: λ =308 nm, E = 1.5 J/cm² & f = 5 Hz, $T_{\rm substrate}$ = 725 800 °C and p = 175 mTorr.
- APC-free micrograined YBCO target
- XRD: 10–130° 2θ - ω and 2θ from (005) peaks and $2\theta-\phi$ of (122)/(212) peak sets, texture (102)/(012)
 - → Lattice parameters, Williamson-Hall analysis (WH) oxygenation level, texturing, twins
- Magnetic PPMS at 10 K and in -8 8 T $\rightarrow T_{\rm c}$ from $M_{\rm ac}(T)$ and $J_{\rm c}(B)$ from $J_{\rm c}=\frac{3\Delta M}{\sigma^3 d}$
- Irradiation with Ag⁺ ions at 75 and 150 MeV with fluence 2−8·10¹¹cm⁻²
- XRD and magnetic measurements repeated
- Patterning and transport measurement with PPMS ACT option for $J_{\rm c}(\theta)$
- HRTEM with a JEOL JEM-2200FS (200 kV) and STEM with Titan 80–300 at 200 kV.

$J_c(\theta)$

- Irradiation causes very sharp c-peaks in $J_{\rm c}(\theta)$.
- *c*-peaks are wider with high fluence

Acknowledgements

Jenny and Antti Wihuri Foundation and the Royal Society of New Zealand under Marsden Fund under Grant VUW1805 are acknowledged for financial support.

XRD

- Some samples had an unirradiated part
- c increases with irradiation
- Oxygenation stays the same
- Microstrain is minimal with low doses

$T_{\rm c}$ and $J_{\rm c}$

- Irradiation reduces $T_{\rm c}$
- Some samples have non-irradiated areas
- Irradiation reduces $J_{c,0}$, but improves $J_{c}(B)$
- B* increases with fluence and is higher with
 150 MeV than 75 MeV irradiation

References

- [1] P. Paturi and H. Huhtinen, Supercond. Sci. Tech. **35**, 065007 (2022)
- [2] E. Rivasto, M. Todorovic, H. Huhtinen, and P. Paturi, New J. Phys., **25**, 113046:1–15 (2023).

1MPo1D-06

TEM

- Both energies form straight amorphous tracks
- 150 MeV tracks are all through the sample
- 75 MeV track only partly, causing more distortion in the lattice
- Track diameter is about 5 nm
- Same amount of tracks in samples with the same fluence

$J_{\rm c}$ improvement

- Highest improvement of $J_{\rm c}$ is obtained with 4e11 fluence at both 10 K and 65 K
- ullet Reduction of $J_{\mathrm{c},0}$ increases with fluence
- One can calculate the effective diameter of the rods from reduction of $J_{\rm c,0}$ as $\frac{J_{\rm c}(0)'}{J_{\rm c}(0)} \propto 1 F\pi r_{\rm eff}^2$ and get

F	$J_{\rm c}$ '(0)/ $J_{\rm c}$ (0)	$2r_{\text{eff}}$	D_r	$D_{ m free}$	B_ϕ
(10^{11})		(nm)	(nm)	(nm)	(T)
2	0.89	8.18	22	14.2	4.1
4	0.77	8.47	16	7.3	8.3
6	0.72	7.7	13	5.2	12.4
8	0.65	7.45	11	3.7	16.6

Conclusions

- Irradiation reduces $T_{\rm c}$
- Irradiation reduces $J_{\mathrm{c},0}$, but improves $J_{\mathrm{c}}(B)$
- Best improvement when distance between rods roughly equals effective rod diameter
- This concurs with models [1] and [2]