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ABSTRACT
Satisfying performance of complex workload scenarios with respect

to energy consumption on Heterogeneous Multi-core Platforms

(HMPs) is challenging when considering i) the increasing variety of

applications, and ii) the large space of resource management con-

figurations. Existing run-time resource management approaches

use online and offline learning to handle such complexity. How-

ever, they focus on one type of application, neglecting concurrent

execution of mixed sensitivity workloads. In this work, we propose

an energy-performance co-management method which prioritizes

mixed type of applications at run-time, and searches in the configu-

ration space to find the optimal configuration for each application

which satisfies the performance requirements while saving energy.

We evaluate our approach on a real Odroid XU3 platform over

mixed-sensitivity embedded workloads. Experimental results show

our approach provides 54% lower performance violation with 50%

higher energy saving compared to the existing approaches.

CCS CONCEPTS
•Computer systems organization→ Embedded systems; Sys-
tem on a chip.

KEYWORDS
On-chip Resource allocation, Heterogeneous Multi-core Systems,

Performance, latency, throughput, Concurrent applications

ACM Reference Format:
Elham Shamsa, Anil Kanduri, Amir M. Rahmani, and Pasi Liljeberg. 2021.

Energy-Performance Co-Management of Mixed-Sensitivity Workloads on

Heterogeneous Multi-core Systems. In 26th Asia and South Pacific Design
Automation Conference (ASPDAC ’21), January 18–21, 2021, Tokyo, Japan.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3394885.3431516

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00

https://doi.org/10.1145/3394885.3431516

1 INTRODUCTION
Run-time resource management in Heterogeneous Multi-core Plat-

forms (HMP)s is critical, considering diversity in power-performance

characteristics of cores and workload variation among concurrent

applications [20, 23]. Applications with streaming inputs require a

certain fixed level of performance within a strict deadline - these are

latency-sensitive applications. Other applications processing batch

inputs do not have any strict latency constraints, but require a

higher overall performance - these are throughput-driven appli-
cations. Real workload scenarios in embedded processors often

feature a combination of both latency-sensitive and throughput-

driven applications running concurrently. For example, streaming

video in a mobile processor, while uploading files to the cloud in the

background represents both latency and throughput applications

running concurrently. In this scenario, the deadline for latency

applications have to be met (eg., target video frame rate), while

ensuring higher performance for throughput applications (eg., file

uploads as fast as possible). Prioritizing among these concurrent la-

tency and throughput applications can lead to conflicting resource

allocation decisions [19, 20]. On the other hand, embedded pro-

cessors are largely constrained by power and energy budgets. In

addition to managing performance, optimizing energy efficiency

is another key criterion for resource management strategies. Core

level heterogeneity makes HMPs efficient in handling performance

requirements of concurrent mixed sensitivity workloads (latency

and throughput), through appropriate application-core mapping

[22]. Similarly, other resource actuation knobs such as dynamic volt-

age and frequency scaling (DVFS), Degree of Parallelism (DoP), and

task migration (TM) support energy efficiency. However, managing

mixed sensitivity workloads’ requirements with the combination

of the aforementioned knobs (heterogeneity, DVFS, DoP, TM) ex-

poses a wide range of resource allocation choices. Pruning such a

large Pareto-space at run-time for efficient resource allocation is

an exhaustive process.

In this context, application characteristics can be an informa-

tive guide for resource allocation to satisfy applications’ perfor-

mance while optimizing energy consumption under mixed sensi-

tivity workloads. Some of the existing approaches for energy and

performance management ignore application characteristics, limit-

ing their efficiency in adapting to various workloads[5, 8, 13]. The

other approaches leverage offline profiling [11] or on-line learning

https://doi.org/10.1145/3394885.3431516
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[14, 15, 18] for understanding applications characteristics. However,

those ignore considering dynamic workload scenario with combi-

nation of multiple concurrent latency and throughput applications.
The approaches in [10, 11] focuses on satisfying throughput-driven

applications by maximizing performance per power, while the other

approaches [3, 15] focus on satisfying latency applications. A real

workload scenario contains different types of applications that enter

and leave system dynamically, which may cause varying priorities

for applications at run-time. Therefore, there is a critical need for

an intelligent resource management approach which considers ap-

plications’ requirements based on their performance requirement

category and prioritizes them for efficient energy performance

co-management. To handle this problem, we propose a holistic

resource allocation approach which leverages offline characteriza-

tion for online management. Offline characterization can efficiently

reduce the computation overhead at run-time. Our framework i)

monitors applications’ requirements periodically at run-time, ii) pri-

oritizes the applications based on their performance requirements

and sensitivities to latency and throughput, iii) selects a suitable

resource configuration which satisfies applications’ requirements

while saving energy. Our contributions in this paper are:

• Offline characterization and analysis of mixed-sensitivity

applications from the Rodinia benchmark suite.

• On-line prioritizing of throughput and latency driven appli-

cations based on their requirements.

• Run-time resource management for satisfying mixed sen-

sitivity workload’s requirement while minimizing energy

consumption by using an on-line progress predictor.

• Implementation and evaluation of the resource management

method on a real heterogeneous Odroid XU3 platform on

real embedded benchmark workload scenarios.

2 BACKGROUND AND MOTIVATION
In this section we discuss the challenges of resource management

for mixed-sensitivity workloads and present a motivation examples,

then we refer to the related works in this area.

2.1 Motivation
In this section, we highlight two challenges in resource manage-

ment by considering mixed type workload scenarios:

(1) Prioritizing the latency and throughput applications in dy-

namic workload scenarios.

(2) Finding the best configuration which satisfies performance

requirements of all the applications among a large space of

configurations.

The first challenge is demonstrated through an example in Figure 1.

We use ParticleFilter (Pf ) and Streamcluster (St) application
form Rodinia benchmark suite [7] which are throughput and la-

tency applications, respectively. These applications arrive and leave

the system over three different baselines viz., P1) higher priority for

throughput application, P2) higher priority for latency application,

P3) Intelligent prioritizing. The red dotted line shows a strict target

for latency application and the blue dotted lines show the accept-

able range of performance for throughput application. The higher

performance than the upper bound leads to overusing and waste

of energy and the lower leads to user dissatisfaction. P1 assigns

Figure 1: Normalized performance of Particle Filter (Pf) and
Stream Cluster (St) running concurrently using 3 different
policies.

higher priority to Pf and maps it to 4 big cores to provide higher

performance, however, by mapping the St to 4 LITTLE cores misses

the target latency of St. P2 assigns higher priority to St and maps

it to 4 big cores while mapping Pf to 4 LITTLE cores which leads

to overusing of St and missing the performance limit for Pf. How-
ever, an intelligent prioritizing (P3) which we use in our method,

dynamically updates the priority at run-time. P3 prioritizes Pf and

maps it to 4 big cores at first when Pf is running singular. When St
arrives the priority of Pf decreases and St becomes prior. Then the

resource management search for a reasonable mapping for both

applications within the available configurations to find the best

mapping in which the performance of both applications is satisfied

while avoiding energy wasting. In this example, P3 maps Pf to 2

big cores and St to the 2 other big cores to reach the goal. Finding

such configuration is the second challenge which is demonstrated

through another example in Figure 2. In this example, we show

the various execution times of pf and Ferret (Latency application)
applications when running concurrently on different configura-

tions of Odroid XU3 [12] platform. Such a platform provides 44

possible mapping configurations (1-4 big and LITTLE cores for each

application) for running two applications concurrently. The red

dashed line in the Figure 2 (b) shows strict deadline of Ferret which
must be respected in resource management. Finding the best con-

figuration which satisfies both applications requires an exhaustive

search among all 44 configurations. The configurations which lead

to violating Ferret deadline are not suitable (red circles). Within

the remained configurations, the configuration which results in

higher throughput for Pf (within the acceptable range) and at the

same time meets the deadline for Ferret with the lowest energy

consumption should be selected. In this example, the green point

provides the highest throughput (lowest execution time) for Pf by

mapping it to 4 big cores and meet the Ferret deadline by using

3 Little cores. Finding this optimal configuration by considering

the DVFS knob is even more challenging and requires an intelli-

gent resource management framework. In this paper, we propose a

method which tackles the above-mentioned challenges.

2.2 Related Work
By increasing the complexity of workload scenarios in embedded

systems, the existing resource management approaches character-

ize the applications using i) offline data collection [11, 16, 21], ii)
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Figure 2: Execution time of Particle Filter and Ferret applica-
tion through different configurations. (a) Particle Filter, (b)
Ferret.

online learning method [3, 15], or iii) combination of both [2, 14].

However, some resource management approaches ignore applica-

tion characterization, limiting their efficiency for adapting various

workload scenarios [5, 8, 13]. HMPs are well-suited platforms for

handling complex workload scenarios by various controlling knobs

such as DVFS, DoP for multi-thread applications, and TM to provide

a suitable trade-off between energy and performance. Several exist-

ing approaches do not use the benefits of all controlling knobs and

remain space for improving the resource management efficiency

[8, 13]. Other approaches which use a combination of different

controlling knobs focus on a single application workload and ig-

nore the complexity of multiple concurrent applications [10, 11, 15].

Some of these techniques focus on satisfying throughput appli-

cations [9, 11], failing to meet deadlines for latency applications,

while the others ignore throughput applications’ requirements [15].

Although these approaches overlook the complexity of multiple ap-

plications, some other approaches do consider multiple applications

scenario [1, 6, 18], but ignore the different types of applications in

workload scenarios. These techniques consider applications with

a specific requirement which is throughput or latency and try to

satisfy that requirement for all the applications. In this work, we

provide a run-time resource management framework which satis-

fies performance requirements of complex mixed type of workload

scenarios by using combinations of all the controlling knobs in an

HMP platform.

3 PROPOSED METHOD
In this section, we explain the components of our framework which

is shown in Figure 3 and consists of i) offline characterization and

ii) online monitoring and controlling. In the following, we explain

each part in Figure 3 in details.

3.1 Offline characterization
When a multi-thread application runs on a heterogeneous platform,

each resource allocation configuration e.g core type, DoP, and fre-

quency can provide a different progress rate for that application. We

characterize applications based on the variation of their progress

Figure 3: High level architecture of the proposed method.

rates in different configurations on the Odroid XU3 platform.

Data collection:We run various applications from Rodinia [7] and

Parsec [4] benchmark suits on different configurations and collect

Instruction-per-second (IPS) for each application during their ex-

ecutions. We consider various combinations of < 𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠 ><

𝑐𝑜𝑟𝑒_𝑡𝑦𝑝𝑒 > including 1b-4b, and 1L-4L, where b and L represent

big and LITTLE cores and set the frequency to 1.4 GHz for the

Little cluster and 1.8 GHz for the big cluster. The Odroid XU3 plat-

form has 19 levels of frequency for the big cluster and 13 levels for

the LITTLE cluster. Considering all combinations of frequencies,

num_cores, and core_type makes a huge space of configurations

even for offline analysis. Thus, we collect data for a fixed frequency

and predict IPS for the other frequencies. Then, we use such data

for encapsulating each application’s characteristics and use that at

run-time management.

Characterization:We define progress (Prog) of each application

in a given time as the ratio of completed instructions at that time

to the total instructions that the application should complete.

𝑃𝑟𝑜𝑔 =
𝐴𝑐𝑐_𝐼𝑃𝑆𝑡

𝑇𝑜𝑡𝑎𝑙_𝐼𝑃𝑆
, (1)

where 𝐴𝑐𝑐_𝐼𝑃𝑆𝑡 refers to accumulated IPS at time 𝑡 , and𝑇𝑜𝑡𝑎𝑙_𝐼𝑃𝑆

shows total IPS that an application should complete in its execution.

Based on the collected data, the progress rate is different for various

applications in a fixed configuration, thus it can be a characteristic

for an application. Similarly, the ratio of progress rate in two various

configurations is different for a unique application. Therefore we

define Core_Speedup and Parallelism_speedup for each application

to leverage these two characteristics at run-time management.

𝐶𝑜𝑟𝑒_𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑃𝑟𝑜𝑔𝑏

𝑃𝑟𝑜𝑔𝐿
, (2)

where Core_Speedup is the gained speedup by changing cluster

from LITTLE to big, 𝑃𝑟𝑜𝑔𝑏 and 𝑃𝑟𝑜𝑔𝐿 are the progress rate when

the application runs on one big or one LITTLE core, respectively.

Parallelism_Speedup which is the gained speed_up by increasing
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the number of cores is formulated as follows.

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚_𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑃𝑟𝑜𝑔𝑛+1_𝑐𝑜𝑟𝑒
𝑃𝑟𝑜𝑔𝑛_𝑐𝑜𝑟𝑒

, (3)

where 𝑃𝑟𝑜𝑔𝑛+1 is the progress ratewhen the application runs on𝑛+1
cores of the big or LITTLE cluster, and 𝑃𝑟𝑜𝑔𝑛 is the progress rate

when the application runs on 𝑛 cores of the same cluster. The anal-

ysis based on extensive experiments shows Parallelism_speedup

for big cluster and LITTLE cluster are almost the same, thus, in

our framework, we consider the average Parallelism_speedup of

the big and LITTLE cluster as the characteristic for each applica-

tion. Core_Speedup and Parallelism_speedup are two characteristics

which we leverage at run-time for progress prediction and select

the best configuration consequently.

Frequency_speedup is also required for progress prediction in

various range of frequencies. The Frequency_speedup is not application-

specific and for all the applications can calculate as follows:

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑓 𝑟𝑒𝑞𝑡 + 100

𝑓 𝑟𝑒𝑞𝑡
, (4)

where 𝑓 𝑟𝑒𝑞𝑡 is the frequency in epoch 𝑡 .

3.2 Online monitoring and controlling
In the online phase, we monitor the progress rate of running appli-

cations periodically and prioritize the applications based on their

types and requirements. Then, we control applications’ perfor-

mance, and energy consumption of the system by setting resource

allocation.

3.2.1 Monitoring. Periodically monitors arriving and leaving of ap-

plications at run-time and updates running applications list. When

new applications arrive, Initial mapper maps the applications to the

free cores based on their types (latency or throughput). Then the

framework monitors the progress rate of each running application

and updates the priority list based on the current progress rate and

the requirements.

Initial mapper: Figure 4 shows the workflow of handling latency

and throughput applications. The first step is the initial mapping

of new applications. When a new application arrives the Initial

mapper checks the core status, then selects the initial core assign-

ment for the new application. If the new application is a throughput

application, it will be mapped to one free big core; otherwise, the

application will be mapped to one LITTLE core. If all the cores are

full, the core assignment will be changed to release at least one

core. Then, the monitoring and controlling components adjust the

new configuration to satisfy all the applications requirement.

Progress monitoring: The progress monitoring is called in every

parametrizable epoch, and check the progress rate of each appli-

cation in the running application list. Progress monitoring read

Instruction-per-epoch (IPE) for each running application and con-

sider it as the progress rate of that application.

Update priority list: To prevent conflicting actions between per-

formance controller and energy saver, we define one specific pri-

ority list for each one: i) performance priority list, and ii) energy

priority list. The progress rate of running applications is used for

updating the priority lists. Each application is assumed to present

a target IPE as its nominal requirement. For updating priority list,

we define Relative Progress rate (RP) for latency and throughput

application in Equation 5 and 6. As latency applications have strict

deadline, the priority of such applications increase when progress

rate is lower than the target rate. Although throughput applications

do not have a strict deadline, executing slower than a specific limit

is not acceptable for a user and faster than another limit is waste of

energy. Thus, for defining the priority for throughput applications

we consider 𝑙𝑖𝑚𝑙 as a lower limit and 𝑙𝑖𝑚𝑢 as an upper limit.

𝑅𝑃𝐿 =
𝑃𝑟𝑜𝑔𝑡

𝑃𝑟𝑜𝑔𝑡𝑎𝑟𝑔𝑒𝑡
, (5)

𝑅𝑃𝑇 =

{ 𝑃𝑟𝑜𝑔𝑡
𝑙𝑖𝑚𝑙

if 𝑃𝑟𝑜𝑔𝑡 < 𝑙𝑖𝑚𝑙

1 if 𝑙𝑖𝑚𝑙 < 𝑃𝑟𝑜𝑔𝑡 < 𝑙𝑖𝑚𝑢
𝑃𝑟𝑜𝑔𝑡
𝑙𝑖𝑚𝑢

if 𝑃𝑟𝑜𝑔𝑡 > 𝑙𝑖𝑚𝑢

(6)

Where 𝑅𝑃𝐿 and 𝑅𝑃𝑇 are RP for latency and throughput applications,

respectively, 𝑃𝑟𝑜𝑔𝑡 is progress rate which is monitored at epoch

𝑡 , and 𝑃𝑟𝑜𝑔𝑡𝑎𝑟𝑔𝑒𝑡 is the target progress rate. When 𝑅𝑃 < 1, the

progress rate is low and the application fails to meet the deadline

in latency applications or satisfy user requirements in throughput

applications, thus the lower 𝑅𝑃 shows higher priority in the per-

formance list. 𝑅𝑃 = 1 is the ideal RP which leads to applications

satisfaction without any energy wasting. Therefore, when 𝑅𝑃 = 1,

the priority is the lowest for both performance and energy lists.

When 𝑅𝑃 > 1, the applications can meet their requirements, how-

ever, may waste energy consumption. Thus, we similarly define a

priority list for energy saving. The higher 𝑅𝑃 for an application,

when 𝑅𝑃 > 1 shows that application waste more energy and has

higher priority in the energy priority list. As shown in Figure 4,

performance priority list (L1) and energy priority list (L2) con-

tains different applications at run-time. L1 and L2 are sent to the

performance controller and energy saver for energy performance

co-management. For preventing switching between performance

controller and energy saver we consider a threshold for changing

the mode to energy saver. For example, for creating energy priority

list, when 1 < 𝑅𝑃 < 1.2 the priority for applications is zero and

when 𝑅𝑃 > 1.2 the application place in energy priority list.

3.2.2 Controlling. Receives updated priority lists and decide to con-
trol performance or save energy based on the value of RP. The per-
formance controller and energy saver in controlling leverage progress
predictor to find the best configuration, then send it to knob setting

for applying on the platform.

Progress predictor: Uses Core_speedup and Parallelism_speedup

as offline characteristics of applications aswell as Frequency_speedup

for prediction. The above-mentioned characteristics are profiled

offline and stored for each application. The progress needs to be

predicted in three cases, virtual actuation of i) DVFS, ii) DoP, and iii)

TM. The performance controller and energy saver virtually actuates

each of the aforementioned knobs by one step and use progress

predictor for prediction. The performance controller virtually in-

creases frequency or DoP by one step or move the application from

the LITTLE cluster to the big. The predicted progress for perfor-

mance controller (𝑃𝑟𝑜𝑔𝑝𝑟𝑒𝑑−𝑝𝑒𝑟 𝑓 ) for each of the above actuation

is estimated as:

𝑃𝑟𝑜𝑔𝑝𝑟𝑒𝑑−𝑝𝑒𝑟 𝑓 = 𝑃𝑟𝑜𝑔𝑡 × 𝑠𝑝𝑒𝑒𝑑𝑢𝑝, (7)

where 𝑃𝑟𝑜𝑔𝑡 is the current progress rate, and speedup can be fre-

quency_speedup, Parallelism_speedup, or Core_speedup based on
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Figure 4: Workflow of handling latency and throughput ap-
plications

the action. In the other hand, the energy saver virtually decreases

the level of frequency or DoP by one step or move application from

big cluster to LITTLE, and estimates 𝑃𝑟𝑜𝑔𝑝𝑟𝑒𝑑−𝑒𝑛 as:

𝑃𝑟𝑜𝑔𝑝𝑟𝑒𝑑−𝑒𝑛 = 𝑃𝑟𝑜𝑔𝑡 × 1/𝑠𝑝𝑒𝑒𝑑𝑢𝑝, (8)

where 𝑃𝑟𝑜𝑔𝑝𝑟𝑒𝑑−𝑒𝑛 is progress rate for energy saver actuation.

Performance controller: Receives the priority list of applications
which require performance enhancement and their RP is lower than

1. Performance controller searches for a suitable configuration in

which applications’ performance meet the requirement. Within the

available actuation knobs, DVFS has the lowest run-time overhead

compare to DoP and TM. Therefore, the performance controller

starts with trying virtual DVFS and predicting progress in the higher

levels of DVFS. The progresses are predicted using Equation 7 by

virtually increasing the frequency level step by step e.g 100 Mhz,

then, we calculate RP for the predicted progress (𝑅𝑃𝑝𝑟𝑒𝑑 ) based on

Equation 5 and 6. Instead of 𝑃𝑟𝑜𝑔𝑡 we replace predicted progress

𝑃𝑟𝑜𝑔𝑝𝑟𝑒𝑑 , then if the 𝑅𝑃 >= 1 for both latency and throughput ap-

plications the performance is satisfied, thus performance controller

sends the desired frequency level to knob setting for applying. In

the second step, if increasing the frequency level does not satisfy

the performance requirement, we check the free cores and increase

the level of parallelism. We predict progress for higher levels of

parallelism step by step and stop when 𝑅𝑃 >= 1, then send that

to the knob setting. Finally, if the predicted progress by increasing

frequency and DoP does not provide target progress rate, the ap-

plication will be migrated from LITTLE core to big core, or if the

application is in the big core, we check the number of free LITTLE

core if they are two times higher than free big cores, the application

will be migrated to LITTLE cluster and DoP level will be increased.

In the performance controller, we find the best knob setting based

on prediction and then send it to knob setting module in Figure 3

for applying on the platform. Using prediction prevents run-time

overhead for real applying of DVFS, Dop, and TM. Such a process

applies to all the applications based on their priority.

Energy saver: After adjusting performance for all the applications

among their priorities, the monitoring section updates the energy

priority list and energy saver searches for suitable configuration

to save more energy. Energy saver predicts progress rates by vir-

tual actuation of DVFS, DoP, and TM. The energy saver virtually

decreases the frequency and Dop step by step and estimates the

progress rate for each step. When the relative progress rate for the

predicted progress is near the target e.g. 1 =< 𝑅𝑃𝑝𝑟𝑒𝑑 < 1.2 for

latency applications and 𝑅𝑃 = 1 for throughput applications, the

configuration is desired. When energy saver virtually decreases

the frequency of a cluster, the progress of all the applications on

that cluster will change, thus we predict the progress for all the ap-

plications to prevent performance violation. After finding suitable

frequency, knob setting component actuate DVFS on the platform,

then frequency decreases, and monitoring updates the priority list.

If still there is any application in the energy priority list, the energy

saver continues to combine knobs for saving energy, otherwise

saving more energy may lead to performance violation.

Knob setting: Apply the knob settings which are sent by the per-

formance controller and the energy saver. The knob settings can

be combinations of DoP, DVFS, and TM.

4 EVALUATION
In this section, we present the experimental setup and the evalua-

tion of the proposed approach.

4.1 Experimental Setup
We evaluate our framework by running applications on the Hardker-

nel Odroid XU3 board with an HMP containing 4 big and 4 LITTLE

cores [12]. The LITTLE cores operate within 0.2 to 1.4 GHz and pro-

vide energy efficiency, while the big cores operate in 0.2 to 2 GHz

for high performance. The frequency of each cluster is adjustable by

using DVFS which is provided in the platform. We measure the per-

formance in terms of IPS by reading operating system counters. We

monitor power by reading on-board power sensors periodically and

estimate the energy consumption of the framework by integrating

the measured power over time. Our framework is implemented as a

Linux user-space process on top of the MARS framework [17] and

is invoked periodically at run-time. We designed the monitoring

and controlling epochs to be parameterizable. For experimentation,

we set it to 1s in our setup.

4.2 Experimental Results
For evaluation purposes, we use 6 embedded systems applications

fromRodinia benchmark suite [7].We create a workloadwithmixed

sensitivity of latency and throughput applications. The created

workload contains at least 2 concurrent latency and throughput

applications. Since there is no work which considers mixed type ap-

plications, we compare our method with DyPO [11] and AdaMD [3]

which are recent state-of-the-art resource management approaches

for optimizing performance and energy on HMP platform. We

compare the instantaneous performance of each application in the

created workload over Dypo, AdaMD, and our framework in Figure

5. The dotted lines show the target deadline for latency applications

and acceptable performance limits for throughput applications.

App2, App3, App6, and App9 are throughput applications which

are concurrently running with the other latency applications. At

first, when App1 and App2 are executing concurrently, AdaMD

assigns higher priority to App2 and leads to missing the deadline for
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Figure 5: Performance comparison of latency and throughput applications in a dynamic workload scenario at run-time.
App1,7,8 : Heartwall, App2,3,6 : Particle filter, App4 : Streamcluster, App5 : Srad, App9 : bfs, App10 : Leukocyte tracking.

Table 1: Comparison of our method with existing ap-
proaches.

Objective DyPO AdaMD Proposed
Energy saving 45% 11% 22%

Perf. violation 91% 30% 14%

APP1 while APP2 is overusing. DyPO focuses on maximizing per-

formance per energy for each singular application, thus maps both

applications to their best configuration. Therefore, App1 meets the

deadline until 6s, but when APP2 arrives, both applicationmiss their

requirement because of their competition between the resources.

However, our method can satisfy both applications’ requirement

while saving energy by keeping App2 usage within the lower limit

of its requirements. Similarly, AdaMD provides overusing for App3-

10 except for App8, and Dypo could not handle multiple concurrent

applications which causes performance violation. Our framework

provides performance satisfaction for all the applications while

preventing energy wasting. Although the behavior of applications

is different, for example, App5 and App9 have a periodic behavior,

our method can handle the performance to be in the acceptable

range most of the time. Table 1 shows a comparison of energy

saving and performance violation between DyPO, AdamD, and

our framework. The presented energy saving is in comparison to

Ondemand Linux governor which is using in several smartphones

as a resource manager[18]. Our method provides the lowest per-

formance violation while saving 22% energy which is 50% higher

than AdaMD. Although Dypo has higher energy saving, it misses

the performance requirements most of the time. We demonstrate

the functionality of our framework in Figure 6 and 7 for better

evaluation. Figure 6 shows each application from APP1-10 (y-axis)

is mapped to which cores during run-time. The zero in the y-axis

shows the core is empty and the other numbers show the App with

that number is assigned to one of the cores which are shown in

Figure 6:Mapping ofApplication 1-10 (Y-axis) to big and LIT-
TLE cores at run-time. (a) Applications mapping to LITTLE
cores, (b) Applications mapping to big cores.

different colors. Each solid line in Figure 6 (a) shows one of the

LITTLE cores and in Figure 6 (b) one of the big cores. The dotted

black lines show the applications’ arrival times and the dashed or-

ange lines show the completion of applications. In each arrival and

completion of applications, the mapping configuration change to

optimize performance and energy. When App1 arrives, it is mapped

to big core0-3, as shown in Figure 6 (b). At t=6s, when App2 arrives,

it is mapped to LITTLE core0-3. Before 50s, App2 finish and free the

LITTLE cores, then App3 arrives, and it is mapped to one LITTLE

core because it is a throughput application, but then it migrates to

1 big core since the performance was not satisfied by the LITTLE

core. The App4 is assigned to 3 other big cores, and the LITTLE
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Figure 7: Frequency variation of big and LITTLE cluster dur-
ing the experiment.

cores remain free until App5 arrival. App5 is a latency application

and it is mapped to one big core at first by the initial mapper, then
it migrates to 4 LITTLE cores. Similarly, APP6 is assigned to one

big at first, then 2 big cores. By arriving App7, it is mapped to the

remained big cores. The configuration of App5 is changed dynami-

cally between big and LITTLE cores while concurrently running

with App6 and App7. After completion of App5,6, and 7, App8

arrives and it is mapped to 4 big cores, then App9 uses one LITTLE

core and App10 uses the other 3 LITTLE cores. In addition to the

dynamic application to core mapping, the frequency of each cluster

is also adjusted at run-time, which is presented in Figure 7. As we

explained in Section 3.2.2, after initial mapping, the performance
controller and the energy saver predict the suitable frequency and

send that to the knob setting for applying DVFS. When the clusters

are free, the frequency of the big cluster is set to 0.8 GHz and the

LITTLE cluster is set to 0.5 GHz; otherwise, the frequency changes

to the best match for satisfying the applications’ requirements. To

this end, our framework by determining mapping configuration at

run-time combining with DVFS provides applications satisfaction

and energy saving as shown in Figure 5 and Table 1.

5 CONCLUSIONS
We propose a resource management approach for satisfying the

performance requirements of mixed-sensitivity workload scenarios

while optimizing energy consumption. We calculate parallelism and

core speed_up as applications characteristic by offline data collec-

tion. Then, we use such characteristics to predict the application’s

progress in various mapping configurations on an HMP platform.

We monitor the applications at run-time and prioritize their re-

quirements based on their types and characteristics, then find the

optimal configuration by using the performance controller and the

energy saver. We evaluated the proposed approach on the real HMP

platform, and the results show lower performance violation with

optimal energy saving compare to the existing approaches.
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