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Abstract— mHealth services use multi-modal machine learn-
ing (MMML) models to process physiological and contextual
data for automated decision making. Run-time input data
perturbations degrade the prediction accuracy of MMML
models, while continuous sensing, transmission, and processing
of such noisy data drains the energy resources of wearable
devices. Identifying qualitative input data and dropping non-
insightful modalities can improve prediction accuracy and
energy efficiency simultaneously. We propose a ISCA: a sense-
compute adaptive co-optimization framework that employs re-
inforcement learning to jointly determine sensing and compute
configuration settings which minimizes energy consumption
while providing accuracy guarantees. Our approach considers
run-time noise levels to selectively sense specific modalities,
followed by selecting MMML models that are suitable for the
chosen modality combination. We demonstrate the effectiveness
of our solution using an exemplar mHealth application of pain
assessment over various noise levels. Our solution achieves up to
23% improvement in prediction accuracy compared to Noise-
agnostic method, and 42% energy savings in comparison with
state-of-the-art selective sensing frameworks.

Keywords: Multi-modal machine learning, Efficient infer-
ence, Wearable computing, Internet of Things, Energy efficiency

I. INTRODUCTION

mHealth applications such as sleep monitoring, pain and
emotion recognition, activity tracking etc., require inputs
from multiple sensor modalities for holistic data-driven de-
cision making. Smart mHealth applications use Multi-modal
Machine Learning (MMML) algorithms to fuse supplemen-
tary and complementary information across different sensor
modalities for accurate predictive results [1]–[3]. There is an
increasing demand for on-device and edge-only inference to
guarantee low-latency resilient mHealth services and ensure
privacy of users’ sensitive health data. However, wearable
devices have stringent compute capabilities and energy bud-
gets to run data and compute intensive MMML algorithms.

On the other hand, continuous data acquired by wearable
sensors in everyday settings is prone to perturbations such as
unreliable signal quality, noisy components, and motion ar-
tifacts. Processing such perturbed input data drains compute
and energy resources of wearable devices on un-insightful
computations. Further, running inference on garbage data
affects the confidence and prediction accuracy of MMML
models. Existing mHealth strategies ignore/replace perturbed

input samples through data filtering and pre-processing, out-
lier detection, and signal quality assessment [4]. These tech-
niques focus on data quality rather than sensing efficiency,
resulting in significant energy drain by continuously sensing
data and eventually trashing the perturbed data. Advanced
mHealth applications have adopted selective sensing i.e.,
sensing a subset of input samples based on run-time context-
awareness [5], and relevance of a given sensor modality
to achieve overall prediction accuracy [2]. While these
approaches reduce the penalty of sensing and processing
garbage data, they are agnostic to subsequent impact on pre-
diction accuracy of MMML models. Effectively, input data
perturbations from the sensing phase influences the efficiency
of the compute phase, in terms of energy consumption and
prediction accuracy. However, existing mHealth applications
optimize multi-modal sensing and computation disjointly [6],
affecting resilience of mHealth services and energy efficiency
of wearables.

Developing mHealth services that are resilient to input
data perturbations while minimizing energy consumption
necessitates end-to-end sense-compute co-optimization. This
approach (i) selectively senses data from insightful modali-
ties and (ii) intelligently selects appropriate MMML models
suitable for given input data and feature sets. Selective
sensing minimizes sensing energy consumption and improves
input data quality, and intelligent MMML model selection
maximizes prediction accuracy while handling noisy input
data. Further, sense-compute co-optimization attenuates total
input data volume at the source, reducing also the commu-
nication energy penalty.

Our ISCA intelligent sense-compute adaptive co-
optimization approach addresses these challenges through
continuous monitoring of sensor modalities to detect input
data perturbations, selective feature aggregation to isolate
reliable inputs, and model selection to choose suitable
MMML models for given input modalities and feature
vectors. Selecting the optimal sense-compute configuration
settings while considering run-time stochastic variance
of multi-modal input data perturbations and diversity of
MMML models is an NP-hard problem [7]. For such
multi-constraint problems with conflicting objectives,
Reinforcement Learning (RL) has been used as an effective
approach for optimal decision making [8]. In the context of
mHealth services, RL can be employed for sense-compute
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TABLE I: Summary of MMML-based solutions for mHealth
services.

Related Works
[1] [9], [10] [5] [11] ISCA

Selective Sensing ✗ ✓ ✗ ✓ ✓
Noise-Awareness ✗ ✗ ✓ ✓ ✓✓

Network Awareness ✗ ✗ ✗ ✗ ✓
App Flexibility ✗ ✗ ✗ ✓ ✓

Platform Agnostic ✗ ✗ ✗ ✗ ✓

co-optimization decisions to maximize prediction accuracy
while minimizing energy consumption [7]. In this work,
we propose an RL guided sense-compute co-optimization
framework for MMML based mHealth services. We design
an RL agent to jointly configure (i) sensing parameters i.e.,
selecting/prioritizing among different sensor modalities and
setting their sampling rates, and (ii) model selection i.e., to
select a MMML model that is appropriate for the updated
sensing configuration. The RL agent makes optimal sense-
compute decisions by exploring accuracy-energy trade-off
space, while considering run-time input data perturbations
among different sensor modalities and prediction accuracy
of different MMML models. Table I summarizes the key
contributions of our ISCA approach in comparison with
state-of-the-art mHealth orchestration strategies.
ISCA’s novel contributions are as follows:
• A scalable sensor-edge sense-compute co-optimization

framework for delivering resilient MMML-based smart
mHealth services, capable of understanding input data dis-
crepancies and optimizing end-to-end energy consumption

• Design and implementation of an RL agent for online
decision making on setting sensing configuration, qual-
itative feature selection, weighted prioritization of input
modalities, and input-driven MMML model selection

• Design of an adaptive rule-based controller to enforce
the RL agent’s decisions on feature, modality, and model
selection, and sensing configuration for improving energy
efficiency and prediction accuracy

• Evaluation of the proposed framework’s efficiency on an
exemplar pain assessment mHealth case study.

II. MOTIVATION AND SIGNIFICANCE

We present the significance of sense-compute co-
optimization approach for multi-modal mHealth services
through an exemplar case study of pain monitoring applica-
tion. The pain monitoring application acquires physiological
data from different modalities viz., Photoplethysmography
(PPG), Electrodermal Activity (EDA), and Electrocardiogra-
phy (ECG) sensors to capture the autonomic nervous system
activity against pain.
Sense-compute pipeline in mHealth services Figure 1
shows an end-to-end pipeline of multi-modal data acquisi-
tion, feature extraction, selective feature aggregation, and
MMML model selection. In this example, PPG, EDA, and
ECG sensors are sampled at 500Hz (2 channels), 4Hz, and 64
Hz, respectively. Relevant features from each input modality
are extracted and fused at an early stage into a single
feature vector. A relevant MMML model then predicts the
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Fig. 1: Processing with modality selection (selective feature aggre-
gation and model selection) and additional intelligence for adaptive
sense-compute

pain levels using the aggregated feature vector. In practical
scenarios, one or more modalities can be distorted due to
noises caused by motion artifacts, physical damages, battery
shutdown. In this example, we consider the ECG modality to
be noisy due to motion artifacts. A naive baseline approach
that is agnostic to input data perturbations processes noisy
ECG data, resulting in a 51% prediction accuracy (shown
at the bottom of Figure 1). On the other hand, an adaptive
sense-compute optimization approach (i) reduces the feature
volume of noisy ECG modality by lowering the sampling
window, followed by (ii) selecting a MMML model that
is suitable for the updated feature vector. This approach
improves the prediction accuracy to 74%, which can be
attributed to deliberate dropping of features from the noisy
ECG modality. Further, lowered sampling of the noisy ECG
modality also reduces the sensing energy consumption to 1.8J
(from 3.85J with the baseline) and communication energy
consumption at the edge to 2.6J (from 5.1J with the baseline).
This demonstrates both accuracy and energy gains with the
sense-compute co-optimization approach.
Dynamic accuracy-energy trade-off space Figure 2 shows
the accuracy-energy trade-offs for the pain monitoring ap-
plication under different levels of input data perturbations
in the form of motion artifacts. In Figure 2, combination of
different modalities is represented as a bit sequence, where
1= modality considered, 0= modality dropped. For example,
the sequence 110 represents PPG and EDA modalities
being considered in the MMML model and ECG modality
being dropped. As shown in Figure 2, MMML models with
different modality combinations provide different levels of
accuracy at various levels of noise. For instance, the modality
combination 011 (EDA+ECG) provides a higher accuracy
(92%) with no noise, while the accuracy of this combination
drops to 85% with 10% noise. Each modality combination
consumes a different amount of sensing energy, represented
by the size of the circle marker. Although the combination
of 111 offers better accuracy, the energy consumption by
using input data from all three modalities is higher. Also,
certain uni-modal combinations (for example, 100) provide
relatively higher accuracy with significantly lower energy
consumption. Both the modality combinations 100 (PPG)
and 101 (PPG+ECG) provide higher accuracy even with
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Fig. 2: Accuracy and energy trade-offs of different modalities with
varying noise levels

increasing noise levels, since the noisy component in this
example originates from the EDA modality. Furthermore,
the modality combination 111 yields a relatively lower
accuracy at the same noise level despite using data from all
modalities, being affected by the noisy EDA modality, which
explicitly shows the problem of garbage-in garbage-out. In
real-world settings, sensor modalities can be prone to input
data perturbations in a stochastic fashion, making the trade-
off space dynamic and unpredictable. Selecting a suitable
sense-compute configuration at run-time under such uncer-
tainty becomes a complex challenge. For instance, the most
insightful sensor modality becoming unreliable at run-time
changes the weighted priority of other modalities, necessi-
tating changes to MMML model selection and consequently
affecting prediction accuracy and energy consumption. In our
ISCA approach, we addresses these non-intuitive choices on
sense-compute co-optimization under varying system dynam-
ics through an intelligent reinforcement learning agent.

III. SENSE-COMPUTE CO-OPTIMIZATION FRAMEWORK

In the following, we present our proposed intelligent
sense-compute adaptive co-optimization framework (ISCA)
and design of reinforcement learning agent that guides the
sense-compute configuration settings.

A. System Architecture

Figure 3 shows an overview of the ISCA framework, with
a pipeline of sensor devices at the sensor layer and comput-
ing resources at the edge layer. The sensor layer provides
multi-modal sensing capabilities needed for target mHealth
applications. The edge layer comprises of data handling, or-
chestration modules for intelligent sense-compute adaptivity,
and a model pool with MMML models for inference.
Data Gateway captures raw inputs from different sensor
modalities. Physiological signals from these modalities can
contain different noise intensities, affecting specific segments
of the input signal window, from zero (no noise) to 100%

(highly noisy). Data Processing carries out pre-processing
and feature extraction of the input signals collected from
the sensors. This process involves synchronizing signals
from various modalities, filtering and cleaning the input
signals, and incorporating additional components essential
for subsequent affective signal processing (ASP) pipeline,
such as peak detection and data normalization. The ASP
pipeline encompasses necessary physiological signals (e.g.,
ECG, EMG, and EDA), which are crucial for feature ex-
traction in typical mHealth applications (e.g., stress and pain
monitoring). Subsequently, informative features are extracted
from previously pre-processed data. We extract handcrafted
features in both time and frequency domains, along with ad-
ditional automatic features extracted for all modalities. This
comprehensive process not only accelerates performance of
machine learning models for target mHealth application, but
also facilitates the signal quality assessment process. Quality
Assessment module monitors system parameters, disruptive
sensory events, and data quality to analyze contextual infor-
mation. Specifically, it evaluates the quality of signals and
their extracted features by tracking key parameters from the
sensing phase, and identifies events and triggers for jointly
optimizing both sensing and sense-making.
Intelligent Sense-Compute Adaptivity module analyzes inputs
from the Quality Assessment for configuring sensing and
selecting relevant features, modalities, and MMML models.
Our framework includes a Model Pool, which consists of a
set of pre-trained models for various combinations of modal-
ities and aggregated features. The compute configuration
decisions are enforced by selecting the appropriate MMML
model with the targeted modality and feature combinations
from the Model Pool. The Inference Engine executes an
instance of the selected model to run the inference for
predictive results. Sense-compute configuration settings are
determined by the RL agent, as described in the following.

B. Reinforcement Learning Agent Design

Reinforcement learning (RL) is widely used to automate
intelligent decision making based on experience. Information
collected over time is processed to formulate a policy which
is based on a set of rules. Each rule consists of three major
components viz., (a) state, (b) action, and (c) reward. Among
the various RL algorithms [8], Q-learning has low execution
overhead, which makes it a perfect candidate for runtime
invocation. Specifically, model-free RL techniques operate
with no assumptions about the system’s dynamic or con-
sequences of actions required to learn a policy. Model-free
RL builds the policy model based on data collected through
trial-and-error learning over epochs [8]. In this work, we
design model-free RL agent to enable Platform agnostic and
Application flexible sense-compute optimization decisions,
where the agent finds optimal configuration through trial-
and-errors during training phase with no assumption on
Platform and Application. Figure 3 depicts the high-level
block diagram for our RL agent. The RL agent is invoked
at runtime for intelligent orchestration decisions. Our agent
is composed as follows:
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Fig. 3: ISCA System Architecture Overview.

State Space: Our state vector is composed of modality
availability, feature volume per each modality, and noise
level. Table II shows the discrete values for each component
of the state. Modality availability (represented as MA) is a
binary value that states our framework either collects sensory
data for that modality or is idle. Feature volume (FM ) states
what percentage of the feature volume for each modality is
incorporated for the further analysis after data processing.
FM is considered as discrete value between 0 to 100%.
Network condition (represented as NC) shows how the
sensors are connected to the edge device. We consider three
different network connections which demonstrates different
data transfer speed and power consumption. Noise level
(represented as NL) states what percentage of each modality
is noisy. The state vector at time step τ is defined as follows:

Sτ = {FM1, FM2, FM3,MA1,MA2,MA3, NL,NC}
(1)

Action Space: The action vector consists of
increase/decrease feature volume for each modality,
and configuring the sampling rate as: 1) 1x(default), 2)
0.8x, and 3) 0.6x of the default sampling rate, respectively.
Consequently, we have 9 different possible settings for
action at each time step, which includes selecting the feature
volume for each of the three modalities and setting the
sampling rate for that specific modality. The action vector
at time step τ is defined as follows:

Aτ = {A1, A2, A3, ..., A9} (2)

Reward Function: The reward function is defined as the
negative total energy consumption including edge and sensor
devices. In our case, the agent seeks to minimize the energy
consumption. To ensure the agent minimizes the energy
consumption while satisfying the accuracy constraint, the
reward R is calculated as follows:

if Accuracy > constraint:
Rτ ← −Energy

else:
Rτ ← −Max Energy

(3)

To apply the accuracy constraint, the minimum possible
reward is assigned when the accuracy threshold is violated.
On the other hand, when the selected action satisfies the ac-
curacy constraint, the reward is negative energy consumption

TABLE II: State Discrete Values

State Discrete Values Description

FMi 0,35%,70%,100% Modality Feature Volume
MAi 0,1 Modality Availability
NL 0, 20%, 50% Modality Noise Percentage
NC Regular, Moderate, Weak Network Condition

Algorithm 1 Q-Learning Algorithm
1: while system is on do
2: From Resource Monitoring:

Sτ ← State at step τ
3: if RAND < ϵ then
4: Choose random action Aτ

5: else
6: Choose action Aτ with largest Q(Sτ , Aτ )
7: end if
8: Monitor total energy consumption
9: Calculate reward Rτ

10: From Resource Monitoring:
Sτ+1 ← State at step τ + 1

11: Choose action Aτ+1 with the largest Q(Sτ+1, Aτ+1)
12: To Updating Qtable:

Q(Sτ , Aτ ) ←
Q(Sτ , Aτ ) + α[Rτ + γQ(Sτ+1, Aτ+1)−Q(Sτ , Aτ )]

13: Sτ ← Sτ+1

14: end while

in that time step. Algorithm 1 defines our agent’s logic with
the epsilon-greedy Q-Learning:

Line Description
3: The agent determines the current system state from the

resource monitors.
4-8: Either the state-action pair with the highest Q-value is

identified to choose the next action to take, or a random
action is selected with probability ϵ.

9-10: The selected action is applied and normal execution
resumes. The reward Rτ for the execution period is
calculated based on measured consumed energy.

11-12: Based on the resource monitors, the new state Aτ+1 is
identified, along with the state-action pair with highest
Q-value.

13: The Q-value of the previous state-action pair is updated.
14: The current state is updated, and the loop continues.

Hyper-parameter Tuning An RL agent has a number of
hyper-parameters that impact its effectiveness (e.g., learning
rate, epsilon, discount factor, and decay rate). The ideal
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values of parameters depend on the problem complexity,
which in our case scales with the number of modalities
and noise level. In order to determine the learning rate and
discount factor, we evaluated values between 0 and 1 for
each hyper-parameters. We observed that a higher learning
rate converges faster to the optimal, meaning the more the
reward is reflected to the Q-values, better the agent works.
We also observed that a higher discount factor is better. This
means that the consecutive actions have a strong relationship,
so that giving more weight to the rewards in the near future
improves the convergence time. The selected configuration
for hyper-parameters is as follows: α = 0.99, γ = 0.7, decay
rate = 0.1, ϵinitial = 0.1

IV. EVALUATION

In this Section, we present our evaluation of the proposed
ISCA adaptive sense-compute co-optimization approach over
a case study of pain assessment application under scenarios
with diverse noise levels and different networks.

A. Experimental Setup
Pain Assessment Application The pain assessment appli-
cation requires continuous monitoring of multiple sensor
modalities including ECG, EMG, and EDA signals. We
collected data from face-, chest-, and wrist-worn devices via
an eight-channel biopotential acquisition system for EMG
and ECG recordings and Empatica E4 for EDA recordings.
We used 500 Hz ECG (2 channels), 500 Hz EMG (6
channels), and 4 Hz EDA sensor modalities during our
experiments. We pre-processed each modality and segmented
them into 60 second windows. We use different uni-modal
and multi-modal pre-trained models for the pain assessment
application. These models are trained using iHurt Pain DB,
a multi-modal dataset from postoperative patients in hospital
from 20 patients [12]. After pre-processing, we extract a set
of unique features from each modality viz., 52 features of
ECG, 52 features of EMG, and 42 features of EDA.
Platform Our platform for evaluation comprises a sensory
node - to collect physiological input modalities of ECG,
EMG, and EDA from the subject, and an edge node - to
control sensing and computation and execute the inference.
We deployed the ISCA framework on ODROID-XU3 with
an octa-core Exynos processor as the edge device.
Evaluation Scenarios We evaluate the ISCA approach under
different levels of input data noise (0-50%), across three
different networks (Wifi, 4G, 3G), exposing diverse scenarios
of energy and accuracy exploration targets. We augmented
the raw input training data with real-life noises such as BW
and MA at various portions like 20% and 50% of data, to
handle potential noisy components in physiological signals
for the prediction model. We evaluate the accuracy and
energy efficiency of the pain monitoring application under
each of these scenarios. We trained the RL agent of the ISCA
framework with accuracy-energy data extracted by profiling
the pain assessment application under varying noise levels
and network types. Within the current ISCA framework,
target of the RL agent is to minimize energy consumption
while satisfying the accuracy constraints.

B. Experimental Results

We present energy consumption and prediction accuracy of
the pain assessment application under different noise levels
over different network types. We compare the evaluation
metrics our proposed ISCA approach against (i) Noise-
agnostic baseline (agnostic to input data perturbations) and
(ii) framework presented in [11] named AMSER. Figure 4
shows the total energy consumption of the pain assessment
application with 0%, 20%, and 50% noisy data over different
network types viz., (a) WiFi, (b) 4G, and (c) 3G networks.
We present the total energy consumption as a summation of
energy consumed in sensing, uploading the data from sensor
to edge, downloading data at the edge, and computation
at the edge. In Figure 4, each of these individual energy
splits are shown as a stacked bar (with different shades)
for Noise-agnostic (in orange), AMSER (in blue), and ISCA
(in green). In Figure 4 (a-c), we show the modality com-
bination used by the Noise-agnostic, AMSER, and ISCA
methods on top of the energy bars. The notation used for
modality combination is a 3 digit number, with each digit
corresponding to ECG, EMG, and EDA respectively. Each
digit represents the selected feature volume for a modality
such that 0= 0% features (dropping the modality), 1=35%,
2=70%, and 3=100% of the features considered. For ex-
ample, the modality combination 300 indicates utilizing all
the features from ECG sensor and dropping the whole EMG
and EDA modalities, while the modality combination 203
indicates using 70% of ECG features, dropping the EMG,
and utilizing 100% of the feature volume from EDA. In
each of the scenarios, we set a minimum accuracy constraint
of 70%, 65%, and 60% for no noise, 20% noise, and 50%
noise scenarios, respectively. In each case, we determined
the minimum accuracy constraint as the median of accuracy
levels achieved across all possible sense-compute decisions
with different modalities and feature volume combinations.
For this purpose, we used the offline profiling data extracted
while training the RL agent. As shown in Figure 4, our
proposed ISCA approach has significant energy savings with
average saving of 72% and 42% in comparison with Noise-
agnostic and AMSER methods (across different noise levels
and network types), respectively. This is attributed to the
intelligent sense-compute configuration, where the ISCA
approach configures the sampling rate of each input modality
by considering varying noise levels at run-time. This enables
selecting specific feature volumes and modality combinations
that guarantee target accuracy level while minimizing energy
consumption at sensing, communication, and edge layers. For
instance, in Figure 4(a), the ISCA approach selects modality
combinations of 333, 203, and 201 for 0, 20% , and
50% noise levels respectively. In each of these cases, spe-
cific modalities are dropped/re-configured, leading to energy
savings within accuracy constraints. Whereas, the Noise-
agnostic approach continues to sense in full throttle across all
modalities 333 irrespective of the run-time noise, resulting
higher energy consumption, while also degrading prediction
accuracy. It is noteworthy to mention that although AMSER
framework is capable of selective sensing, since it is platform
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and network agnostic, it needs to re-evaluate various models’
performance with different modality combinations in each
scenario so it can pick the best one in terms of accuracy
and energy consumption, which results in higher compute
energy consumption at edge (compute energy). On the other
hand, ISCA picks the best performing modality combination
for inference from the trained Q-table at run-time without
compute energy overhead.

Table III shows the prediction accuracy of the proposed
ISCA approach against Noise-agnostic and AMSER for
different noise levels. With 20% noisy data, the baseline
accuracy drops from 81% to 46.5%, while the ISCA ap-
proach provides an accuracy of 70.15% through intelligent
modality selection. Similarly, at 50% noise level, the baseline
slides to an accuracy of 41.6%, whereas ISCA delivers 60.2%
accuracy, demonstrating the resilience of our proposed sense-
compute co-optimization approach. In each of these cases,
the proposed ISCA approach meets the accuracy constraints
with a significantly lower energy consumption (4), while the
baseline fails to meet the accuracy constraints and also drain
energy across the system. Our evaluations on other network
types (4G and 3G) follows a similar trend of gains with ISCA
compared to Noise-agnostic and AMSER framework, while
meeting the minimum accuracy requirements. It should be
noted that prediction accuracy of a given modality combi-
nation remains the same across different networks. This can
be related to limited dimension of state and action space of
the RL-agent, which will be explored in other multi-modal
applications as a future work of this paper.

TABLE III: Accuracy gain with ISCA(%)

Approach No noise 20 % noise 50 % noise
Noise-agnostic 81.1 46.54 41.6

ISCA 81.1 70.15 60.29

Overhead Analysis We evaluate the time required by the
proposed agent for the training phase to identify an optimal
policy. Figure 5 shows the training phase under different
accuracy constraints using Q-Learning algorithm. This shows
that when training a model from scratch, the reward con-
verges after about about 170 inference runs on average.
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Fig. 5: Training overhead for Q-Learning algorithm under different
accuracy constraints

However, increasing the accuracy constraint leads to a more
complex problem and therefore increase in convergence time.
Runtime Overhead: To demonstrate the viability of mobile
inference deployment, we evaluate the ISCA runtime over-
head. The performance overhead of RL algorithm in ISCA
is, on average, 20 µs for training, excluding the time for
inference execution. It corresponds to 1.2% of the lowest
inference latency. In addition, when using the trained Q-
table, the overhead can be reduced to 7.3 µs with only 0.3%
overhead. This result means it takes 18.1 µs to measure the
inference results, calculate the reward, and update the Q-
table. The energy overhead is only 1% and 0.2% of the total
system energy consumption, when training the Q-table and
exploiting the trained Q-table, respectively.

V. CONCLUSION

We proposed ISCA, a novel RL-based intelligent and
adaptive multi-modal sense-compute co-optimization frame-
work for energy efficient and resilient mHealth applications.
Our approach monitors input signal and feature quality to
configure sense-compute settings that reduce non-informative
data, improve energy efficiency, while meeting accuracy
constraints. We demonstrated the effectiveness of the ISCA
framework with an exemplar mHealth application of pain
assessment, achieving up to 42% energy savings in compari-
son with state-of-the-art selective sensing methods, and up to
23% accuracy gains in comparison with the baseline method.
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