
Tango: Low Latency Multi-DNN Inference on
Heterogeneous Edge Platforms

Zain Taufique
University of Turku

Turku, Finland
zatauf@utu.fi

Aman Vyas
University of Turku

Turku, Finland
amvyas@utu.fi

Antonio Miele
Politecnico di Milano

Milan, Italy
antonio.miele@polimi.it

Pasi Liljeberg
University of Turku

Turku, Finland
pasi.liljeberg@utu.fi

Anil Kanduri
University of Turku

Turku, Finland
spakan@utu.fi

Abstract—There is an increasing demand to run DNN appli-
cations on edge platforms for low-latency inference. Executing
multi-DNN workloads with diverse compute and latency require-
ments on resource-constrained heterogeneous edge platforms
poses a significant scheduling challenge. In this work, we present
Tango framework for orchestrating multi-DNN inference on
heterogeneous edge platforms. Our approach uses a Proximal
Policy-based Reinforcement Learning agent to jointly optimize
cluster selection, accuracy configuration, and frequency scaling
to minimize inference latency with a tolerable accuracy loss.
We implemented the proposed Tango framework as a portable
middleware and deployed it on real hardware of the Jetson
TX edge platform. Our evaluation against relevant multi-DNN
scheduling strategies demonstrates 61% lower latency and 48.4%
lower energy consumption at a maximum accuracy loss of 1.59%.

Index Terms—Edge AI, DNN inference, Heterogeneous systems

I. INTRODUCTION

There is an increasing demand to run Deep Neural Network
(DNN) inference on user-end mobile and edge devices to mini-
mize latency and improve response time in applications such as
autonomous vehicles, smart buildings, and augmented/virtual
reality (AR/VR), etc [1]. Most applications require simulta-
neous and low-latency inference of multiple DNNs to deliver
complex autonomous services. For example, autonomous vehi-
cles use multiple DNNs for object detection and classification,
while AR/VR applications use them for user tracking and
pose estimation [2]. Under multi-DNN workloads, inference
latency of a DNN is affected due to shared resource contention
with other concurrently running DNNs. (i) Limited compute
capacity and energy budgets, and core-level heterogeneity
(e.g., asymmetric CPUs, GPUs, and custom accelerators) of
edge devices, (ii) diversity in compute characteristics and
latency requirements of concurrent DNNs, and (iii) stochastic
run-time variance (e.g., cluster availability, workload variation)
of running dynamic multi-DNN workloads exacerbate the
multi-DNN inference challenge. Minimizing DNN inference
latency within these constraints requires intelligent run-time
orchestration to schedule multi-DNN workloads efficiently.

Existing multi-DNN inference scheduling techniques use
offline profiling to partition DNNs into multiple layers and
schedule each partition on a different cluster in a coordinated
fashion [3], [4]. These approaches primarily focus on ensuring
global throughput; they achieve low latency inference for the
DNN mapped onto the GPU while compromising the latency

Fig. 1. Orchestrating concurrent DNNs with different scheduling strategies

of other concurrent DNNs mapped on the CPU. Other ap-
proaches [2], [5] enhanced coordinated DNN scheduling with
Dynamic Voltage/Frequency Scaling (DVFS), although ag-
gressive frequency scaling has only limited gains considering
the stringent power budgets of edge devices. Existing multi-
DNN inference techniques thus inevitably degrade the latency
requirements of concurrent DNNs, necessitating alternative
approaches for low latency inference.

From the applications’ standpoint, we note that most of
the DNNs are error resilient due to their algorithmic nature,
input data quality, and results’ format. Edge inference tech-
niques exploit these DNN properties through model pruning,
compression, and quantization for low latency inference [6].
We posit that opportunistically using pruned/quantized mod-
els jointly with appropriate cluster selection improves per-
inference latency of multi-DNN workloads. When a DNN has
to be inevitably mapped on a sub-optimal cluster under multi-
DNN workload, this approach mitigates the latency penalty by
trading off accuracy within a tolerable range.

Figure 1 presents a multi-DNN workload with different
compute and inference latency requirements (0.4s, 0.5s, 0.6s
respectively for DNNs 1-3) executed on a heterogeneous edge
platform. In this example, the First-come-first-serve (FCSFS)
scheduler maps the first arriving DNN-1 onto the GPU, and
the subsequent DNN-2 and DNN-3 onto the CPU clusters,
resulting in higher latency of DNN-2 and DNN-3. State-of-
the-art coordinated scheduling approaches map each DNN to
a different cluster based on offline profiling. In Figure 1, the



coordinated scheduler maps DNN-2 onto the GPU, DNN-3
onto CPU cluster-1, and DNN-1 onto CPU cluster-2. This
ensures low latency inference of DNN-2 onto the GPU; how-
ever DNN-1 and DNN-3 potentially fail to meet the latency
requirements on CPU clusters. While coordinated scheduling
makes optimal cluster selection decisions for standalone DNN
requests, such approaches fail in providing latency guarantees
under multi-DNN requests. It should be noted that both FCSFS
and Coordinated scheduling approaches use the default DNN
models (ρ0) without considering the usage of pruned/quantized
models for lower latency. Finally, the Adaptive coordinated
scheduler jointly (i) selects the appropriate cluster for execut-
ing each DNN and (ii) simultaneously configures the accuracy
of the DNN kernels (ρ2 for DNN-1 and ρ3 for DNN-2)
such that target inference latency of the DNN request is met
on the selected cluster. Hence, an adaptive coordinated run-
time resource management framework is required to leverage
the configurable accuracy-latency trade-off, and the cluster
heterogeneity to meet the intense workload requirements at a
minimal accuracy loss. It should be highlighted that the cluster
placement of coordinated and adaptive coordinated strategies
can be different because selecting a quantized model changes
the workload dynamics of the DNN kernels.

The example presented in Figure 1 is a simplified instance
of multi-DNN workloads. In practical scenarios, implementing
adaptive coordinated scheduling requires wider exploration
of per-cluster latency-accuracy trade-offs, consideration of
latency requirements across multi-DNN workloads, and inter-
faces for enforcing scheduling decisions. Given these motiva-
tions, we propose Tango, a multi-DNN inference framework
for mapping concurrent DNNs requests on heterogeneous clus-
ters while opportunistically using pruned/quantized models
to meet latency requirements of each DNN inference. Our
approach considers diverse compute and latency requirements
of all the concurrently running DNNs to jointly (i) select an
appropriate cluster for a given DNN, (ii) configure the accu-
racy of the DNN kernel at run-time such that target inference
latency of the DNN request is met on the selected cluster, and
(iii) fine tunes the performance by actuating per-cluster DVFS.
When a suitable cluster is busy executing a workload, our
approach addresses the relatively high latency of DNN infer-
ence requests scheduled on a lower-performing cluster through
accuracy configuration. Under dynamic multi-DNN requests,
our approach efficiently switches among different clusters and
accuracy configurations to meet latency requirements of all
the currently running DNNs. Considering the complexity of
run-time joint cluster selection and accuracy configuration
on heterogeneous edge devices, we formulate multi-DNN
scheduling as a Reinforcement Learning (RL) problem. We
design a Proximal Policy Optimization (PPO) based RL agent
that makes joint cluster selection and accuracy configuration
decisions to minimize inference latency at minimum output
accuracy loss. PPO based RL agent is suitable for our problem
statement because it provides the probability distribution of
actions based on observations.
Our novel contributions include:

Fig. 2. Comparison of inference performance-per-watt of different DNNs.

• Multi-DNN inference framework that can handle concurrent
DNN requests with varying compute and latency requirements
and accuracy constraints on heterogeneous edge platforms
• Design of RL agent for joint cluster selection and accuracy
configuration of multi-DNN workloads to minimize inference
latency and maximize prediction accuracy
• Evaluation of the proposed solution on real hardware testbed
of Jetson TX embedded platform with 17 different combina-
tions of DNN kernels, achieving upto 61% improved latency
and 48% lower energy consumption

The paper is organized as follows: Section II provides
background and motivation for our proposed approach, Section
III presents an overview of our framework infrastructure,
Section III-B elaborates our proposed strategy. Section IV
evaluates our proposed solution against other relevant strate-
gies, followed by conclusions in Section V.

II. BACKGROUND AND MOTIVATION

This section presents the challenges and opportunities for
inferring multi-DNN workloads on heterogeneous platforms
with CPU and GPU support. We used Jetson TX board [7],
with a Pascal GPU, heterogeneous CPU clusters (quad-core
ARM cluster and dual-core Denver cluster) as a baseline setup
to demonstrate multi-DNN inference challenges.

A. Utilizing Device Heterogeneity

Modern edge platforms, supported by heterogeneous CPU
and GPU clusters, exhibit diverse energy-latency charac-
teristics for multi-DNN workloads. Figure 2 shows the
performance-per-watt of inferring five different DNN kernels
on the Jetson TX. The convolution layers in DNNs have the
highest computation and energy requirement to perform nu-
merous Multiply–Accumulate operation (MAC) operations [8].
GPU and ARM clusters report low inference latency of the
DNNs because they allow parallelization of the convolution
operations. In contrast, the Denver cluster shows the highest
latency because it is inherently designed to perform single-
threaded operations. GPU has the highest power consumption
but reports the highest performance-per-watt due to signifi-
cantly lower latency. The non-uniform energy-latency charac-
teristics of heterogeneous devices expose large design space
to schedule diverse multi-DNN workloads.

B. Latency penalty with multi-DNN workloads

Figure 3 shows the inference latency of five DNNs when
executed in (i) standalone (only 1 DNN) and (ii) multi-
DNN (executed simultaneously with other DNNs) modes



Fig. 3. Latency of DNN kernels in standalone vs multi-DNN workloads.

on the CPU and GPU clusters. For multi-DNN workloads,
we used the combinations of VGG-19 + MobileNetV2 1.0,
MobileNetV2 1.0 + ResNet-152, ResNet-152 + DenseNet-
201, DenseNet-201 + EfficientNet-B4, and EfficientNet-B4 +
VGG-19 respectively. The standard Linux governors prioritize
GPU mapping of the DNN applications in the standalone mode
by default. As shown in Figure 3, inference latency of each
DNN increases when executed under multi-DNN workloads,
while the latency penalty is significantly higher when run on
the CPU clusters. For example, VGG-19 has an inference
latency of 0.4s when executed on GPU in standalone mode.
However, it increases to 0.6s when MobileNetV2 concurrently
runs on the ARM cluster. Further, the inference latency of
VGG-19 increases to 2.43s when executed on the ARM
cluster with MobileNetV2 concurrently running on the GPU.
It should be noted that in Figure 3, the latency penalty is
different for different combinations of multi-DNN workloads,
due to diverse compute characteristics of DNNs. Moreover, the
perceived impact of the latency penalty is subject to the latency
requirements of a given inference request. For example, a
VGG-19 inference request with a target latency of 3s does not
get affected under the multi-DNN combination of VGG-19 +
MobileNetV2. Conversely, the same inference request with a
target latency of 0.5s violates the latency requirement under a
multi-DNN workload. Our proposed Tango framework handles
the aforementioned challenges through run-time joint cluster
selection and accuracy configuration by considering latency
requirements of all the concurrently running DNNs.

C. Resource Allocation Example

Joint optimization of cluster selection and accuracy configu-
ration can minimize the inference latency of multi-DNN work-
loads on sub-optimal clusters. Figure 4 shows a motivational
example of inferring two concurrent DNN kernels including
VGG and ResNet on Jetson TX where both the applications
require a minimum latency of 1s. With the placement config-
uration Map1, VGG-19 is mapped on GPU, and Resnet152 is
mapped on the ARM-CPU cluster. Here, VGG-19 takes 0.6s
per inference at 73% output accuracy, while ResNet-152 is
lagging the target with 1.8s latency at an output accuracy of
76.6%. At Map2, the CPU and GPU mapping is switched
for VGG-19 and ResNet152. Now the VGG-19 takes 2.4s
per inference, while the latency of ResNet152 is improved
to 0.59s per inference. In these mapping configurations, all
CPUs and GPU are running at the highest frequencies, and
yet at least one DNN kernel is underperforming. The ex-

Fig. 4. Latency of VGG + ResNet combination with different cluster selection
and accuracy configuration choices.

TABLE I
COMPARISON OF TANGO WITH STATE-OF-THE-ART RESEARCH WORKS

Acc.
aware Platform Multi

-DNN Strategy

pipeit [3] ✘ Asymmetric ✓ DNN pipelining
OmniBoost [4] ✘ heterogeneous ✓ DNN pipelining
MOC [9] ✘ heterogeneous ✘ Placement + DVFS
Band [2] ✘ heterogeneous ✓ Pipelining + DVFS
Kim et. al [10] ✘ heterogeneous ✓ DNN pipelining
Kang et. al [6] ✓ heterogeneous ✘ Quantized+pipelined
Proposed ✓ heterogeneous ✓ Acc. config + DVFS

periment shows that both cluster mapping and DVFS have
computational and energy limitations, requiring an additional
control knob is required to achieve the target latency for a
multi-DNN workload. For Map1, we configure the accuracy of
VGG-19 by switching the kernel to VGG-16, achieving 0.65s
latency on the ARM-CPU cluster at an accuracy loss of 1.7%.
Similarly for Map2, we configure the accuracy of ResNet152
by switching to ResNet50, achieving an inference latency of
0.65s at an accuracy loss of 0.7%. In this scenario, Map2
with accuracy configuration is a suitable option since it meets
the target latency at a minimal accuracy loss. Our proposed
Tango framework aims to search optimal combinations for low
latency multi-DNN inference.

D. Related Work

Optimized resource management of multi-DNN workload
on resource-constrained devices requires awareness of re-
source heterogeneity, latency, system energy, and output ac-
curacy. A few works have proposed accuracy-aware resource
management of multi-application workloads on CPUs [11],
and GPUs [12] without considering DNN workloads. Pipeit [3]
proposed pipelining the DNN workload on CPU cores to
enhance the inference throughput in batch applications. Om-
niBoost [9] scaled the DNN pipelining solution to both CPU,
and GPU platforms. However, OmniBoost does not consider
the impact of each decision on the energy or accuracy of the
workload. MOC [9] has recently proposed joint optimization
of energy and latency through DVFS and DNN pipelining of
single DNN workloads. Band [2] used heuristics to Figure out
the efficient workload placement on CPU, GPU, and Neural
Processing Unit (NPU) platforms to optimize energy and
latency of multi-DNN workloads. Similarly, Kim et. al. [10]
presented energy-aware resource allocation of scenario-based
multi-DNN workloads on all CPU, GPU, and NPU platforms.
However, both [2], [10] are limited by the device resources due
to a lack of accuracy configuration. Kang et. al. [6] performed



Fig. 5. Tango framework. (a). The resource manager receives the inference requests, reads the cluster availability, and invokes the RL for DSE, (c). ThePPO-
based RL agent sends back the optimal cluster, and accuracy configuration, (d). the resource manager configures the accuracy of DNN-1 DNN, allocates
cluster-2 to DNN-1, cluster-3 to DNN-2, and cluster-1 to DNN-3. The latency of DNN-3 is fine-tuned with DVFS.

layer-level quantization of a single DNN kernel with DNN
pipelining and DVFS. The strategy performs static optimiza-
tion where the GPU kernels require 16-bit quantizations lead-
ing to scalability limitations. Table-I compares our proposed
solution Tango to the State-of-the-Art resource management
solutions for DNN workloads on embedded platforms. We
present a generalized and scalable resource allocation solution
for multi-DNN workloads on embedded platforms to minimize
inference latency while considering system energy minimiza-
tion and output accuracy improvement.

III. TANGO FRAMEWORK

A. Framework Overview

We have designed Tango, a run-time resource management
framework to infer dynamic multi-DNN workloads on Hetero-
geneous Multi-Processing (HMP)-based edge devices, hosting
CPU and GPU clusters. Figure 5 shows an overview of the
proposed Tango framework. Tango comprises of (i) Applica-
tion module with the DNN application queue, (ii) Resource
Manager hosting the scheduling policy, (iii) PPO-RL – a pre-
trained PPO-based RL agent for run-time Design Space Ex-
ploration (DSE), and (iv) Linux-based Operating System (OS)
interfaces to exchange data and decisions between different
modules. The Resource manager receives inference requests
from the Application module with multiple DNN applications
(App0, App1, App2, ..., Appn ∈ Apps); each DNN request
has specific accuracy (A) and latency (L) requirements. The
Resource manager gets the cluster availability and sends a
scheduling query including the inference requests and the
cluster availability to the RL agent. The RL agent is pre-trained
with the average latency data of each DNN and its quantized
variants across different clusters. The RL agent follows PPO
protocol to find the optimal cluster and accuracy configura-
tion for the given DNN applications. Finally, the Resource
Manager enforces the accuracy configuration of the DNN
applications and allocates the selected clusters. The Resource
Manager monitors the applications’ latency; if required, it
fine-tunes the cluster performance by actuating DVFS. The
Tango framework is agnostic of the hardware platforms and

the architecture of the DNN workloads, providing a scalable
and generalized solution for multi-DNN workload scheduling
on edge devices.
Platform. A Linux-based OS runs on the device to enable an
interface for workload scheduling, mapping, cluster selection,
and run-time DVFS. The OS orchestrates application execution
through resource allocation by binding the application process
to the specified clusters. The OS uniformly distributes the
parallelized tasks over multiple cores of a cluster to ensure
a balanced execution. Tango uses the OS interface to override
the Linux scheduler and maps a given application to the
cores of a selected cluster. The OS interfaces provide granular
control over cluster-level DVFS actuation through supported
Linux drivers. The voltage and frequency values are organized
as a tuple; the OS driver only allows frequency selection and
automatically updates the corresponding voltage level. The
device supports run-time power monitoring through onboard
power sensors to analyze the impact of DVFS actuation on
the energy budget of the device. For devices without power
sensors, external power sensing equipment can be used to
monitor run-time power consumption.
Workloads. Tango framework supports concurrently running
DNN inference workloads of streaming applications. The
applications perform vision tasks that generate batches of
input images, with dynamic per-batch accuracy and latency
requirements. The applications infer the DNN kernels with
input data obtained from external devices such as cameras to
perform cognitive tasks of classification, detection, tracking,
etc. In this work, we used (i) VGG, (ii) MobileNetV2, (iii)
ResNet, (iv) DenseNet, and (v) EfficientNet as the target
DNNs. The Application Module loads the drivers and kernels
required for the selected model’s inference and stores the
resulting latency and accuracy.
Accuracy configuration. Tango performs DNN accuracy con-
figuration when the cluster selection and the DVFS actua-
tion cannot jointly meet the latency requirements. The error-
resilient nature of the DNN kernels can be exploited to
reduce the latency by switching between quantized models
of a given DNN kernel. Figure 6 shows how the Resource



Fig. 6. Selecting quantized models for accuracy configuration of DNNs

manager chooses between a range of pre-trained models
(ρa, ρb, ρc, ..., ρm) at run-time for a given DNN workload.
These pre-trained quantized variants of the DNN applications
expose a diverse latency-accuracy trade-off space. The number
of pre-trained models for each application can vary depending
on the DNN architecture and the available storage space of the
device. The selected models are loaded into the source code
having supporting libraries and the environment designed for
inference. The Resource manager explores the multiple model
selection options such that the target latency is met on the
selected cluster at tolerable accuracy loss.
Resource manager. The resource manager is implemented
with a feedback loop as a control system. It integrates an inter-
nal policy continuously executed with a predefined frequency
and performs three phases; (i) Observe: to monitor the status of
both the applications and the architecture, (ii) Decide: to map
the workload applications, and (iii) Calibrate: to actuate DVFS
tuning. The complete workflow of the Resource manager’s
policy is explained in the next section.

B. Policy Workflow

The Resource manager policy is explained in Algorithm, 1.
In the Observe phase, the policy updates the application queue
on the arrival of a new application (Lines 2–4) and transitions
to the Decide phase (Line 5). Conversely, if an application
leaves the system after execution, the policy updates Applica-
tion queue and transitions to the Calibrate phase (Lines 6–8).

In the Decide phase, the policy iterates through all the
applications in the Application queue and stores their accuracy
and latency requirements (Lines 9–10). The policy explores the
optimal mapping and accuracy configuration of all the appli-
cations running, as the arrival of a new application changes
the total workload. The policy reads the cluster availability
to observe the current availability of CPU and GPU clusters
(Line 11). A cluster is considered unavailable for allocation if
it is already busy executing a workload. The policy invokes
DSE through the PPO-based RL agent to figure out the optimal
resource allocation and accuracy configuration of the workload
following the cluster availability and application requirements
(Line 12–14). The design of the PPO-based RL agent is
explained in section III-C. The selected DNN models are
mapped to the selected clusters (Line 15) and the policy
transitions to the Calibrate phase for DVFS tuning.

In Calibrate phase, the policy iterates through all the
running applications and adjusts the cluster DVFS according

Algorithm 1 Policy workflow of Resource manager
1: Input: Apps

Phase: Observe
2: if NewApp then
3: Update the Application Queue: Apps
4: NewApp ← 0
5: Phase ← Decide
6: else if App.left then
7: –Apps.queue
8: Phase ← Calibrate

Phase: Decide
9: for all appi ∈ Apps do

10: App reqs list[] ← (appi.accreq, appi.latencyreq)
11: cluster status ← get cluster availability()
12: config ← run DSE(cluster status, Apps, App reqs list)
13: new maps[] ← config.mappings[]
14: selected models[] ← config.models[]
15: enfore new mapping(selected models[], new maps[])
16: Phase ← Calibrate

Phase: Calibrate
17: for all appsi ∈ Apps do
18: fest ← appi.latencyreq

appi.latencycurr
* fcurr

19: update DVFS(fest, appi.cluster)
20: Phase ← Observe

to the target latency. The policy reads the current latency of a
DNN application and calculates a latency factor as the ratio of
the current to the required latency. The new DVFS frequency
level is calculated by multiplying the latency factor with the
current cluster frequency of the given application (Line 18).
Finally, the policy enforces the new DVFS settings to minimize
the latency according to the application requirements (Line 19)
and transits to the Observe phase (Line 20).

C. Design Space Exploration (DSE) Strategy

We design a DSE strategy for minimizing the latency of
the DNN inference requests, by considering the heterogene-
ity of edge devices, latency, and accuracy requirements of
workloads. We address the edge inference problem using
RL that is widely adopted for intelligent decision-making
in complex systems, using information collected over time.
We use Markov’s Decision Process (MDP) based RL ex-
ploration to resolve the multi-DNN inference problem. The
MDP paradigm typically contains state, action, and reward
spaces, representing the current environment status, a selected
action, and the efficacy of a selected action in a given state.
Through extensive training, RL explores different state-action
combinations and converges towards an optimal policy. While
conventional RL typically optimizes one objective, the multi-
DNN inference problem has multiple conflicting objectives of
latency minimization at minimal accuracy loss.

In Tango framework, we map (i) edge cluster availability,
accuracy, and performance requirements of workloads to the
State space, (ii) cluster selection and accuracy configuration to
the Action space and (iii) minimizing latency and maximizing
accuracy to the Reward space. Figure 7 shows the RL agent
is designed for making scheduling decisions in the Tango
framework. The RL agent is modeled as a tuple (S,A, P, ω),



Fig. 7. Proximal Policy-based reinforcement learning agent model.

where S represents the state space, A is the action space, P is
the state transition probability matrix, and R is the immediate
reward function of G objective functions. The environment is
denoted by S(E,W ), where S shows end-to-end system, E
shows edge node resources, and W shows DNN workloads.
The availability of the heterogeneous clusters is represented
as E = {E1, E2, .., En}, where Ei is a binary integer repre-
senting the busy status of the available CPU or GPU clusters.
DNN workloads are represented as W = {W1,W2, ..,Wn},
where Wi is an inference workload request consisting of a
tuple (perf, acc) that represents performance and accuracy
requirements. These action space A includes cluster selection:

a1 : map(Ei←W ) (1)

and accuracy configuration:

a2 : select(W ← ρ) (2)

For accuracy configuration (ρ), the optimal model variant
is selected to perform inference from a pool of pre-trained
models, including quantized, pruned, and heavy models. Each
model presents different performance and accuracy character-
istics depending on their depth and number of parameters. The
reward (ω) depends on the latency and accuracy constraints:

ω = α ·A− β · L (3)

where α and β are the accuracy (A) and latency (L) coeffi-
cients, respectively, their values depend on the application sce-
nario. In MDP, the agent follows a policy function π, where π
is a S × A → [0, 1] mapping, i.e., for a given state, the selected
action corresponds to a certain probability distribution. In our
baseline multi-DNN inference problem, the state and action
sets are discrete but too large for manual selection. Thus, the
agent uses reinforcement learning to study the value of each
policy. In this task, we use the PPO algorithm to provide the
probability distribution of actions given observations in the
environment. The loss function in PPO, known as the clipped
surrogate objective, evaluates policy changes by comparing
new and old policies while incorporating action advantages.
Gradient descent minimizes this loss to update policy network
parameters, maximizing the objective function. States, actions,
and rewards are stored in a buffer, facilitating policy network

Fig. 8. The accuracy-latency trade-off space of different DNN models

updates based on past experiences, essential for optimizing
cluster mapping for future inference requests.

L(θ) = E[min(r(θ) ∗ v, clip(r(θ), 1− ϵ, 1 + ϵ) ∗ v] (4)

where r(θ) is the probability ratio between two subsequent
policies, v is the advantage function measuring the advantage
of an action compared to the average action taken in that state,
and ϵ is a hyper-parameter controlling the clipping range. We
executed different DNN kernels in each of their quantized
variants on the target platform [7] to collect latency, power
consumption, and accuracy. We used this data to train the RL
agent. The pre-trained RL is deployed in the Tango framework.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Platform and middleware. For evaluation, we use Jetson TX
[7] heterogeneous edge platform including Pascal GPU, quad-
core ARM CPUs, and dual-core Denver CPUs. The device
has onboard power sensors for collecting run-time power
consumption of CPU and GPU clusters. The device hosts
Linux-18.04 OS with Cuda support to enable GPU opera-
tions. We have implemented the Tango framework (shown in
Figure 5) as a middleware in Python, with a source code of
200 lines. The middleware enforces cluster selection, accuracy
configuration, and DVFS. The decisions of Tango framework
are made by the RL agent. We implemented the RL agent
using the Gymnasium library [13]. The Tango framework uses
CGroup libraries to map a DNN application to the required
cluster and apply cluster-level DVFS settings at run-time. The
maximum operating frequency of the Pascal GPU is 1.12GHz,
the ARM cluster is 2GHz, and the Denver cluster is 2GHz,
with frequency scaling in steps of 100Hz.
Workloads and accuracy configuration. For experiments,
we considered widely used image classification DNNs [14]
including, (i) VGG, (ii) MobileNetV2, (iii) ResNet, (iv)
DenseNet, and (v) EfficientNet. These models are highly
tunable with a wide energy-latency space, catering to diverse
real-world scenarios. All of these models are pre-trained on the
ImageNet dataset [15]. We use the TensorFlow-GPU library



Fig. 9. Comparison of (a). latency, (b). energy (c). accuracy of Tango against other strategies while running different combinations of 2 concurrent DNNs.

to infer the pre-trained models from the Keras application
library [14]. We trained the RL agent offline with the latency
and accuracy of these DNN applications and their quantized
variants. We meet the required accuracy by using a pre-
trained model selection from the pool of DNN kernels. Further,
Figure 8 shows the accuracy and latency trends of the base
DNNs and their lighter variants on all clusters of Jetson TX.
The accuracy-latency trend shows that typically the models are
biased towards GPU. Secondly, the ARM cluster reports lesser
latency than Denver for most DNNs. For evaluation metrics,
we use (i) latency as the time taken per inference, (ii) top-
1% output accuracy by comparing predicted labels to genuine
labels and calculating the proportion of correctly classified
samples, and (iii) energy as the product of latency and the
average power consumption per inference.

Comparison w.r.t. state-of-the-art approaches. We evaluated
our proposed strategy against default Linux governors includ-
ing Ondemand and SchedUtil. Moreover, we compared
against state-of-the-art multi-DNN scheduling approaches in-
cluding Pipeit [3], OmniBoost [4], and Band [2]. Pipeit
essentially pipelines the DNN inference over CPU clusters to
gain higher throughput. To implement Pipeit, we converted
the DNN kernels to Directed Acyclic Graphs (DAG) and
performed vertical partitioning of the graph nodes. We imple-
mented the performance prediction model of Pipeit and sched-
uled the DNNs over ARM and Denver cluster. OmniBoost
[4] presents a DNN pipelining strategy over CPU and GPU
clusters using a Monte-Carlo tree-based throughput estimator.
Again we implemented the strategy by vertically partitioning
the DAG-based DNN models and mapped them over the CPU
and GPU clusters. Finally, Band [2] minimized the latency by
jointly considering DNN pipelining and DVFS for CPUs, and
GPUs. We enhanced these strategies to adapt to the varying
workload conditions as in real-world application scenarios.

B. Experimental Results

Experiments with multi-DNN workloads We compared the
performance of Tango against different strategies in multi-
DNN scenarios with two and three concurrently running
applications. For each experiment, we initiate simultaneous
DNN requests to create concurrent workload scenarios. For
evaluation, we used a maximum of three concurrent DNNs for
the thermal safety of the evaluation platform while covering
the majority of real-world scenarios. However, the Tango
framework can handle a generic number of concurrent DNNs,
as practically supported by the edge platform.
Latency comparison for 2 concurrent applications. We eval-
uated the latency and energy of each strategy by concurrently
running two DNN applications in eight different combinations
as shown in Figure 9. We choose two different DNNs and gen-
erate simultaneous inference requests for both kernels at run-
time. Figure 9a shows the target latency of the workload and
the latency achieved by each strategy across all combinations.
For this experiment, we set the target latency to 1s following
the practical use of vision DNNs in edge and mobile platforms.
Similarly, Figure 9b shows the energy consumption of all
strategies across all workload combinations. The Ondemand
and SchedUtil governors randomly place one application on
GPU and the other on the ARM cluster as these clusters have
relatively high-performance capabilities. The greedy resource
allocation approach of the governors leads to higher energy
consumption without meeting the required latency of the
workloads. Pipeit [3] schedules a pipelined inference of the
two applications on the ARM and Denver clusters without
meeting the target latency. Omniboost [4] opportunistically
schedules a pipelined workload over all clusters depending
on the throughput estimations. Still, the workload placement
and pipelining are inefficient in meeting the intense latency
requirements for all the combinations. Band [2] takes leverage



Fig. 10. Comparison of (a). latency, (b). energy (c). accuracy of Tango against
other strategies while running different combinations of 3 concurrent DNNs.

of DVFS to minimize the latency further and reports the least
latency against the other State-of-the-Art (SoA) approaches.
However, the strategy reports higher energy consumption in
multiple combinations due to high power consumption and
is still unable to achieve the target latency. Finally, Tango (i)
ensures coordinated inference by exploring the gain of placing
each application to different clusters, (ii) leverages latency
minimization through accuracy configuration at minimum ac-
curacy loss, and (iii) fine tunes the final selection with DVFS.
Figure 9c shows the average accuracy of each combination
for all strategies. For all eight combinations, Tango improves
the average latency against the strategies reporting the least
latency by 44.10%, 71.54%, 75%, 73.02%, 85.18%, 86.56%,
84.59%, and 63.96 respectively. Similarly, Tango consumes
less energy consumption on average than other strategies
47.89%, 23.62%, 25.49%, 36.77%, 84.31%, 77.55%, 64.54%,
and 40.75% respectively. The average accuracy loss by Tango
over the eight combinations is 1.3%.
Latency comparison for 3 concurrent applications. We
evaluated the latency and energy of each strategy for different
combinations of three concurrently running applications as
shown in Figure 10. Running three applications concurrently
leads to a significant increase in the inference latency on
each cluster due to inter-application interference, memory
operations, and resource contention. Thus, we set the target
latency to 5s. With 3 concurrent DNNs each strategy is forced
to allocate workload to the low-performing Denver cluster.
Hence, these strategies suffer significant performance loss
during the workload execution on the Denver cluster. For
example, the inference latency of all strategies except Tango in
combination-3 is more than 15 seconds, violating the target by
x3. Here, Tango opportunistically configures the accuracy of
the DNN kernels and achieves the target latency successfully.

Tango improves the latency against the compared strategies by
9.82%, 52.17%, 75.48%, and 17.66% for each combination
respectively. Similarly, Tango improves energy consumption
by 8.44%, 59.46%, 85.21%, and 27.08% respectively. The
average accuracy loss over the four combinations of three
concurrently running applications is 1.69%. Overall, Tango
improves the latency and energy consumption by 61%, and
48.4% for all the experiments at an accuracy loss of 1.9%.

V. CONCLUSIONS

We presented Tango framework for low latency multi-DNN in-
ference on heterogeneous edge platforms. Our approach jointly
configures cluster selection, accuracy configuration, and DVFS
for minimizing inference latency. We evaluated Tango on the
Jetson platform, achieving latency and energy improvements
of 61%, and 48.4% at a minimal accuracy loss of 1.59%
against state-of-the-art. We consider DNN partitioning and
distribution for future work.

ACKNOWLEDGEMENTS

This work is funded by the European Union’s Horizon
2020 Research and Innovation Program (APROPOS) under
the Marie Curie grant No. 956090

REFERENCES

[1] C.-J. Wu et al., “Machine learning at facebook: Understanding inference
at the edge,” in 2019 IEEE international symposium on high perfor-
mance computer architecture (HPCA). IEEE, 2019, pp. 331–344.

[2] J. Seong et al., “Band: coordinated multi-dnn inference on heterogeneous
mobile processors,” in Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Services, 2022.

[3] S. Wang et al., “High-throughput cnn inference on embedded arm
big. little multicore processors,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 10, 2019.

[4] A. Karatzas et al., “Omniboost: Boosting throughput of heterogeneous
embedded devices under multi-dnn workload,” in 2023 60th ACM/IEEE
Design Automation Conference (DAC). USA: ACM/IEEE, 2023.

[5] J. Kim et al., “Energy-aware scenario-based mapping of deep learning
applications onto heterogeneous processors under real-time constraints,”
IEEE Transactions on Computers, 2022.

[6] D. Kang et al., “Joint optimization of speed, accuracy, and energy for
embedded image recognition systems,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2018.

[7] NVIDIA, “Jetson tx2 module,” 2024. [Online]. Available:
https://developer.nvidia.com/embedded/jetson-tx2

[8] Z. Zhuoran et al., “DeepThings: Distributed adaptive deep learning
inference on resource-constrained IoT edge clusters,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 2018.

[9] Y. Wu et al., “Moc: Multi-objective mobile cpu-gpu co-optimization
for power-efficient dnn inference,” in 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), 2023, pp. 1–10.

[10] S. Minakova et al., “Scenario based run-time switching for adaptive cnn-
based applications at the edge,” ACM Trans. on Embedded Computing
Systems (TECS), vol. 21, no. 2, pp. 1–33, 2022.

[11] A. Kanduri et al., “Approximation-aware coordinated
power/performance management for heterogeneous multi-cores,”
in ACM Design Automation Conference (DAC), 2018, pp. 1–6.

[12] A. Miele et al., “A runtime resource management and provisioning
middleware for fog computing infrastructures,” ACM Trans. Internet
Things, vol. 3, no. 3, apr 2022.

[13] M. Towers et al., “Gymnasium,” 2023. [Online]. Available:
https://zenodo.org/record/8127025

[14] Keras Team. (Accessed: 2024) Keras documentation. [Online].
Available: https://keras.io/api/applications/

[15] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.
248–255, 2009.


