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Abstract—Edge inference techniques partition and distribute
Deep Neural Network (DNN) inference tasks among multiple
edge nodes for low latency inference, without considering the
core-level heterogeneity of edge nodes. Further, default DNN
inference frameworks also do not fully utilize the resources of
heterogeneous edge nodes, resulting in higher inference latency.
In this work, we propose a hierarchical DNN partitioning strategy
(HiDP) for distributed inference on heterogeneous edge nodes.
Our strategy hierarchically partitions DNN workloads at both
global and local levels by considering the core-level heterogeneity
of edge nodes. We evaluated our proposed HiDP strategy against
relevant distributed inference techniques over widely used DNN
models on commercial edge devices. On average our strategy
achieved 38% lower latency, 46% lower energy, and 56% higher
throughput in comparison with other relevant approaches.

Index Terms—Edge AI, DNN inference, Heterogeneous systems

I. INTRODUCTION

Deep Neural Networks (DNNs) enable a wide range of
applications such as augmented reality, smart glasses, and live
video analytics, etc [1]. Such applications demand real-time
low latency DNN inference over continuous streaming input
data [2]. Offloading DNN inference to remote cloud servers
can lead to unpredictable latency with communication penalty,
while local edge devices have limited compute capabilities to
provide low latency inference [3]. Edge inference techniques
distribute the inference workload among a cluster of collocated
edge nodes to improve DNN inference latency [3]–[5].

Existing distributed edge inference strategies partition the
inference workload into blocks by splitting the layers of a
DNN model [6]–[12] and/or the input data of the DNN in-
ference request [3], [4], [13]–[16]. Subsequently, these blocks
are distributed to different edge nodes within the edge cluster,
based on the compute capacity of an edge node [3], [4],
[17] and the computation-communication ratio of a block [2],
[5], [7]. It should be noted that edge nodes are composed
of heterogeneous processing units including CPU, GPU, and
Neural Processing Units (NPUs), exhibiting a high degree of
compute diversity within the single node and across the edge
cluster. However, existing distributed inference techniques
make global decisions on DNN partitioning and distribution,
without considering the core-level heterogeneity of individual
edge nodes.

Fig. 1. Inference latency of DNN models with different workload partitioning
configurations.

After the creation and distribution of blocks, aforemen-
tioned distributed inference techniques rely on deep learning
frameworks to schedule the inference service on a local edge
device. Deep learning frameworks do not fully utilize the
resources of a heterogeneous multi-core edge node, leading to
sub-optimal inference latency. For example, TensorFlow [18]
schedules inference on GPU by default, unless explicitly
specified by the application to use other CPUs/NPUs [19],
[20]. Running inference on a single processing unit (e.g. GPU)
misrepresents the compute capacity of the local heterogeneous
edge node, resulting in sub-optimal workload partitioning and
distribution decisions made on a global level. This problem is
emphasized on edge platforms with CPUs performing better
than GPUs [21] [10], and while running CPU-friendly layers
of DNN models [22]. Advanced inference strategies that
consider core-level heterogeneity are tailored for inference on
a single edge node [10] [22] [1]. Adapting heterogeneity-aware
DNN scheduling techniques for distributed inference requires
intelligent orchestration to jointly optimize DNN partitioning
and workload distribution, along with infrastructural support
for inter-node data and decision control transfer. However,
existing distributed inference strategies lack such intelligent
orchestration.

We demonstrate the limitations of existing distributed infer-
ence techniques over four DNN models run on the Jetson TX2
platform [23]. Figure 1 shows normalized inference latency of
the DNN models with different workload partitioning config-
urations (P1-P9). Each partitioning configuration represents
a specific combination of (i) number of data-wise partitions
of the DNN model and (ii) CPU-GPU workload split. Among
these configurations, P1 is the default TensorFlow workload



scheduling choice – running inference exclusively on the
GPU with no data partitioning. State-of-the-art distributed
inference techniques use the workload partitioning configu-
ration P1 (highlighted as SoA latency in Figure 1) on a local
edge device, resulting in higher inference latency. However,
inference latencies of all the DNN models are lower in
partitioning configurations other than P1, where the inference
workload is partitioned and split between the CPU and GPU.
Latency of ResNet-152 and VGG-19 are lowest at P7 (4
data partitions with 80% workload on GPU and 20% on
CPU), InceptionNet-V3 at P6 (90% workload with 2 data
partitions on GPU and 10% workload with 4 data partitions
on CPU), and EfficientNet-B0 at P9 (4 data partitions and
50% workload split between CPU and GPU). InceptionNet-
V3, ResNet-152, VGG-19, and EfficientNet-B0 have 65%,
40%, 25%, and 75% lower latency respectively, in comparison
with existing distributed inference strategies using the default
TensorFlow run-time. It should be noted that optimal parti-
tioning configuration (number of partitions and workload split
between CPU and GPU) differs for different DNN models. Our
analysis highlights that the default partitioning configuration
used by existing distributed inference techniques – (i) results
in higher inference latency on local edge devices, and (ii)
skews workload partitioning decisions exclusively made at a
global level. These limitations can be addressed by considering
the core-level heterogeneity of edge nodes while making both
global and local workload partitioning decisions.

In this work, we propose a two-tier hierarchical DNN
partitioning (HiDP) strategy to improve the latency of dis-
tributed inference over a cluster of heterogeneous edge de-
vices. Our approach considers both core-level and device-
level heterogeneity among edge devices within the cluster
to combinatorially determine global DNN partitioning and
workload assignment to edge nodes, followed by local DNN
partitioning. To the best of our knowledge, ours is the first
work that considers hybrid partitioning for distributed DNN
inference in heterogeneous edge nodes while optimizing core-
level resource usage. Our novel contributions include:

• Hierarchical DNN partitioning strategy for minimizing
latency of distributed inference on edge platforms

• Collaborative edge cluster framework for partitioning,
distribution, and scheduling of DNN inference services

• Evaluation of HiDP strategy against existing distributed
inference techniques on real hardware edge cluster setup
including Jetson Orin NX, Jetson Nano, Jetson TX2,
Raspberry Pi 4B, and Raspberry Pi 5.

The paper is organized as follows: Section II provides
background and motivation for our proposed approach, and
Section III presents an overview of our framework infrastruc-
ture. Section IV evaluates our proposed solution against other
relevant strategies, followed by conclusions in Section V.

II. BACKGROUND AND MOTIVATION

A. DNN partitioning
For distributed inference, DNNs can be partitioned model-

wise [4] and data-wise [16]. In model partitioning, DNN layers

Fig. 2. Comparison of global and hierarchical DNN partitioning strategies.

are dynamically grouped into executable blocks; these blocks
are offloaded to multiple devices for distributed execution in
a pipelined fashion. This strategy is inherently temporal since
layers across different DNN blocks are executed sequentially.
Minimizing inference latency requires creation of variable-
sized DNN blocks dynamically by considering resources
across the edge cluster. Model partitioning is feasible for dense
DNN models that enable coarse creation of compute-intensive
blocks. Alternatively, data partitioning splits the input data and
creates smaller-sized sub-models of the original model for par-
allel execution. Data partitioned inference is spatio-temporal,
since parallelly executed sub-models exchange intermediate
data to maintain accuracy. Workloads with larger input sizes
are suitable for data partitioning, considering the computation-
communication ratio of intermediate data sharing. Minimizing
inference latency of a DNN model on edge clusters requires
joint selection of feasible partitioning strategy, optimal parti-
tioning points, and workload distribution and scheduling.

B. Motivational Example

We demonstrate the benefits of hierarchical DNN partition-
ing in comparison with global partitioning strategy over a
motivational scenario. Figure 2 shows an exemplar distributed
DNN inference scenario, with a sequence of DNN inference
requests (IR0-IR4) to be executed on two heterogeneous edge
nodes, device-1 and device-2. With the global partitioning
strategy (shown in green in Figure 2), the DNN Partitioner
creates layer-wise blocks and distributes them among devices
1 and 2. Within devices 1 and 2, the inference blocks are
executed on GPU by default. As presented empirically in Fig-
ure 1, this partitioning configuration leads to longer inference
latency, potentially affecting other DNN inference requests in
the queue. With the hierarchical partitioning strategy (shown
in blue in Figure 2), the Global DNN Partitioner creates
layer-wise blocks based on the core-level heterogeneity of
devices 1 and 2. It should be noted that the hierarchical
partitioning strategy creates blocks that are different from
the global partitioning strategy. Subsequently, the Local DNN
Partitioner on each device further partitions the DNN blocks
and allocates to all the available cores. Thus, the hierarchical
partitioning strategy results in lower inference latency, while
also freeing up resources for subsequent inference requests
in the queue. This example scenario highlights the need
for making heterogeneity-aware DNN partitioning decisions



Fig. 3. Overview of the proposed HiDP framework. In this instance, the framework is run on device-1, partitioning the DNN model globally through model
partitioning and locally through data partitioning.

globally, followed by local optimization for minimizing the
inference latency.

C. Related Work

Existing distributed inference techniques use DNN model
partitioning to schedule inference workload over multiple edge
nodes in a pipelined fashion [1], [10]–[12] or offload the infer-
ence service to resourceful cloud [6]–[9]. Pipelining the model
partitioned DNN inference is sequential and is beneficial for
dense DNN models with a continuous stream of inference re-
quests. Other techniques focus on data partitioning by splitting
the input data into batches [17], sub-images [4], [15], [16], or
intermediate layers through Fused Tile Partitioning (FTP) [3],
[14]. Data partitioning allows parallel and distributed infer-
ence. However, the communication overhead of intermediate
data exchange becomes significantly high for DNNs with
a smaller input size. Recently, DisNet [5] proposed hybrid
partitioning for DNN inference to minimize the overheads
of both partitioning techniques without considering granular
control over local device resources. HiDP performs hybrid par-
titioning using model and data partitioning while having fine-
grained control over local edge node’s resources to minimize
inference latency. Table I compares HiDP against different
workload partitioning strategies for edge-edge and edge-cloud
paradigms. Unlike the State-of-the-Art (SoA) strategies, HiDP
considers latency and energy reduction through hierarchical
partitioning.

III. HIDP FRAMEWORK

HiDP is a 2-step workload splitting framework for dis-
tributed DNN inference across heterogeneous edge clusters.
The nodes are connected via wireless networks and can
collaborate at run-time to perform inference tasks. The DNN
inference requests arrive randomly at a local node and the
HiDP framework performs hierarchical partitioning to achieve
low inference latency. As shown in the left side of Figure 3,
the framework includes Application Module, Communication
Module, Global partitioner, Local partitioner, and a Run-time
scheduler. The right side of the figure shows the scenario of
distributed DNN inference using HiDP framework across a

TABLE I
COMPARISON OF HIDP WITH OTHER RELEVANT APPROACHES

Partition
type

Target
platform

Global
Partitioning

Local
Partitioning

heterogeneous
block size

[3] Data Edge cluster ✓ ✘ ✘
[15] Data Edge cluster ✓ ✘ ✓
[7] Model Edge-cluster ✓ ✘ ✓
[9] Model Edge-cloud ✓ ✘ ✓
[5] Hybrid Edge cluster ✓ ✘ ✓

HiDP Hybrid Edge cluster ✓ ✓ ✓

heterogeneous cluster of four edge nodes. The HiDP frame-
work receives a DNN inference request in the Application
module of Device-1 and sends the DNN to Run-time scheduler.
We designed a scheduling policy in the Run-time scheduler
module that monitors and controls the workload splitting and
distribution across the edge cluster. The Run-time scheduler
gets the status of the cluster-wide node availability and invokes
the Global partitioner to find the optimal partitioning point.
The Global partitioner consults a Design Space Exploration
(DSE) agent to find the optimal partitioning mode and the
feasible partitions. The Global partitioner selects model parti-
tioning; then it distributes the workload across the edge cluster
via Communication Module. The Communication Module pro-
vides access to send and receive data across the edge cluster.
The Global partitioner sends the local partition to the Run-
time scheduler for local execution. The Run-time scheduler
invokes the Local partitioner to find the optimal partitioning
point and mode using a DSE agent. The Local partitioner
selects data partitioning and splits the workload following
heterogeneity of two CPUs and one GPU. The Run-time
scheduler gets the local and global results via Communication
Module and merges all the results.
Platform. The edge nodes are supported by an Operating Sys-
tem (OS) with relevant libraries and programming framework
to run DNN inference, allowing inter-node communication,
workload scheduling, and application-to-core mapping. The
OS provides interfaces between software-software modules
to exchange data, and software-hardware modules to bind
applications to selected processors. Unlike SoA strategies,
HiDP overtakes the control from default OS governors and
allocates the workload to the desired processing units. The OS
allows run-time monitoring of the board’s power consumption
through onboard sensors or external power monitoring equip-



ment to measure the energy consumption of a DNN inference.
Workloads. We have designed HiDP to accept unknown DNN
inference workload without prior knowledge of the workload
arrival time. The target applications are streaming applications
that generate video and image data for live processing. These
applications generate scenario-based input data with variable
input sizes and batches. We consider the modern example
scenario of a person bearing different smart gadgets and
wearables including a smartwatch, smartphone, smart ring,
and augmented reality gear. Manufacturers like Apple and
Samsung have produced a series of smart devices that can
communicate with each other at run-time sharing notifications
and live data for a single user. These devices have diverse DNN
applications that perform cognitive vision tasks of variable
input sizes and data volume using similar DNN models
depending on the requirements of the application tasks.
System Model. We consider DNN model as Directed Acyclic
Graph (DAG) since the data flow is sequential without loops
and each partition is executed only once. The DAG nodes
represent the DNN layers and the edges represent the tensors.
The DNN is denoted as D(Li) = {L1,L2, ...,Li}, where
L represents set of layers that can be partitioned following
the model and data partitioning. The layer types include
convolution, pooling, flatten, or dense, where each layer can
be represented as a vector of kernel size, stride, padding,
number of input channels, number of output channels, and
height of the input dimensions. We denote edge cluster as
N (ϕj) = {ϕ1, ϕ2, ..., ϕj}, where ϕj represents the edge
node. For each node, there exist k processors such that
ϕ = {ρ1, ρ2, ..., ρk} where ρk represents CPU, GPU, or NPU.
We denote the computation frequency of a processor as fk
as computation cycles per second. We define the compute
intensity of a DNN as δ, representing the average number of
compute cycles of a processor to execute 1 flop [cycles/flops].
We define the computation rate [flops/sec] of each processor
as the ratio of the computation frequency of the processor to
the compute intensity of the DNN, such as λ = fk

δ [24]. We
denote the communication rate of each processor as a scalar
µk, representing the DNN transmission overhead between two
processors for a given time duration t. We calculate the local
computation-to-communication ratio of a node as:

ψ{λ, µ} =
{

λ1

µ1
, λ2

µ2
, · · · , λk

µk

}
(1)

Finally, we calculate the computation rate Λj of a node ϕj as
the sum of computation rates of the available processors:

Λj(ρk) =

k∑
1

[λk] (2)

We denote the communication rate of each node as a scalar βϕj

representing the DNN data transmission overhead between two
nodes for a given time duration t via a wireless network. HiDP
calculates the communication rate of each node by sending a
set of pseudo packets to each node and recording the time
taken to get the response. We form a global resource vector

Ψ including the global computation-to-communication ratio of
all nodes such that:

Ψ{Λ, β} =
{

Λ1(ρk)
βϕ1

, Λ2(ρk)
βϕ2

, · · · Λj(ρk)
βϕj

}
(3)

HiDP formulates an availability vector A(Nϕ) based on the
communication rate β(t)

ϕ such that:

A(Nϕ) = {α1, α2, · · · , αj} , αj =

{
1 available,
0 unavailable

(4)

For workload partitioning, HiDP decides between the parti-
tioning modes and distributes the workload to the resources.
For model partitioning, we denote the width of a layer block
as ωi and calculate the total computation time as:

Θω =
{
γ · ω

}
, γ =

{
Ψ for global partitioning
ψ for local partitioning

(5)

Similarly, HiDP explores the number of parallel submodels σ
for data partitioning to calculate the total computation time as:

Θσ =
{
γ · σ

}
, γ =

{
Ψ for global partitioning
ψ for local partitioning

(6)

HiDP calculates the total computation time Θ of both model
and data partitioning modes and selects the faster strategy.
Scheduling Algorithm. Algorithm 1 shows the high-level
workflow of HiDP framework to perform distributed inference.
HiDP assigns leader status (ϕ∗1) to the node that receives new
inference request DL (Lines 1–2). The leader node checks the
availability status (A(Nϕ)) of the cluster (Line-3) and finds
the optimal partitioning mode using Dynamic Programming
(DP) algorithm (Lines 4–6). We used a standard subset sum
algorithm for an efficient recursive search with time com-
plexity O(n ∗ m), where n represents the number of DNN
blocks and m represents the number of available nodes. The
algorithm starts with the largest possible block sizes following
the resource heterogeneity to calculate the inference latency
and back-propagates block by block to converge to minimum
latency. We used the same algorithm to explore global and
local partitioning points because the function arguments are
essentially the same in either case including the DNN and the
computation-communication ratio. The leader node partitions
the workload and distributes the partitions to the global nodes
(Line 7). The leader node finds out the optimal partitioning
mode and the partitioning point for the local partition (Lines
8–10). The leader node executes the local workload on its local
processors and gathers the global results (Lines 11–12). The
leader node merges the final results and reports the prediction
to the DNN application (Line 13).
Run-time Scheduler. We have designed the scheduling policy
of the Run-time Scheduler as a Finite State Machine (FSM)
including Analyze, Explore, Offload, Map, and Execute states
as shown in Figure 4. The scheduling policy is the implemen-
tation on the method explained in Algorithm 1. The scheduling
policy is different for the leader and follower nodes.
Leader Node. In the Analyze state, the controller waits for an
inference request from a DNN application in the Application



Algorithm 1 HiDP framework on leader node
1: DL arrives on ϕ1 //Get the input DAG
2: ϕ1 ← ϕ∗ //Assign leader status
3: ϕ1 ← A(Nϕ) // Get availability status
4: Θω ← DPalg(ω,Ψ(ϕj , β)) //latency of model partitioning
5: Θσ ← DPalg(σ,Ψ(ϕj , β)) //latency of data partitioning
6: Θ← min(Θω,Θσ) //decide partitioning mode
7: ϕ1 partitions DL and allocates to nodes
8: θω ← DPalg(ω, ψ(ρk, µk)) //latency of model partitioning

at local
9: θσ ← DPalg(σ, ψ(ρk, µk)) //latency of data partitioning at

local
10: θ ← min(θω, θσ) //select partitioning mode at local
11: ϕ1 executes local workload
12: ϕ1 ← local and global results
13: ϕ1 merges the results and reports prediction

Fig. 4. Workflow of the leader and follower nodes in the HiDP controller

module. When a request is triggered, the controller checks
the availability status of the cluster nodes by sending and
receiving a status packet to the nodes via Communication
module and transitions to the Explore state. In the Explore
state, the controller refers to the global DSE agent to find
the optimal partitioning point of the given DNN workload
for global distribution. After finding the optimal partitioning
point, the controller transitions to the Global: offload state. The
controller offloads the workload to the available nodes using
the Communication module and transitions to the Local: Map
state for local execution of the allocated workload. Here, the
controller refers to the local DSE agent to figure out the local
partitioning of the workload following the available processing
units. After converging to the optimal partitioning point, the
controller transitions to the Execute state. In this state, the con-
troller executes the workload while sharing intermediate data
with the available nodes for parallel or sequential execution,
depending on the partitioning mode. After successful execu-
tion, the controller gathers the results and transitions back to
the Global: offload state for final merging and reporting of
the results. After merging the results from local execution and
cluster nodes, the controller transitions to the Analyze state
and waits for the next inference request.
Follower Nodes. For the follower nodes, the state machine is
much simpler, such that (i) the node receives the distributed
workload from the leader node in the Analyze state, (ii)
executes it after local partitioning in the Local: Map and the
Execute state, and (iii) report back the results to the leader.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Evaluation Platform. We design a collaborative heteroge-
neous edge cluster, comprising commercial edge platforms

TABLE II
TECHNICAL SPECIFICATIONS OF THE EVALUATION SETUP

Device CPU GPU DRAM
Jetson Orin NX 8x ARM Cortex-A78 1024-core Ampere 8 GB
Jetson TX2 2x Denver-2, 4x ARM Cortex-A57 256-core Pascal 8 GB
Jetson Nano 4x ARM Cortex-A57 128-core Maxwell 4 GB
Raspberry Pi 5 2x ARM Cortex-A76 VideoCore VII 4 GB
Raspberry Pi 4 2x ARM Cortex-A72 VideoCore VI 4 GB

(shown in Table II), and deploy the HiDP strategy on the
defined platform. We monitor the run-time power consumption
of the Jetson boards using the on-board power sensors. We use
the external shunt resistor to monitor the power consumption
of the Raspberry Pi boards.
Workloads. We evaluated our framework over ResNet152, Ef-
ficientNetB0, VGG-19, and InceptionNetV3, which are widely
used DNN models in mobile vision applications. We imple-
mented these models using the TensorFlow library [18], with
input image sizes of 224x224, and 299x299. We enhanced the
top layer of these models to accept variable input sizes to
enable data partitioning.
Middleware. We implemented HiDP as a middleware in
Python with a source code of 400 lines. Each device hosts
Linux 18.04 OS to provide software and hardware interfaces.
We used CGroup libraries to bind the workload to the desired
number of CPU cores. For GPU implementation, the Ten-
sorFlow backend used CUDA libraries for NVIDIA boards
and OpenGL for Raspberry Pi boards. All the devices are
connected over 80 MBps wireless control through POSIX-
based client-server architecture. We used multi-threaded server
operations for the leader nodes to communicate with the avail-
able nodes dynamically. The overhead of using DP algorithm-
based exploration including both global and local partitioning
is 15ms on average for our experimentation.
Comparison w.r.t. state-of-the-art approaches. For evalua-
tion, we considered three different state-of-the-art partitioning
strategies – data [4], model [7], and hybrid [5]. MoDNN [4]
partitions and distributes the input data proportionally among
the available edge nodes. We implemented MoDNN using the
data partitioning module of HiDP framework. OmniBoost [7]
determines the optimal partitioning point using the Monte-
Carlo search tree and pipelines the DNN inference over both
CPU and GPU. We implemented the throughput estimator of
Omniboost using Gymnasium library [25] and trained it on
our target workloads. DisNet [5] uses heuristic-based DNN
partitioning and distribution by jointly considering data and
model partitioning. We used the data and model partitioning
algorithm of HiDP to implement DisNet.
B. Experimental Results

For our experiments, we consider inference latency,
throughput, energy consumption (based on run-time power
monitoring), and accuracy as evaluation metrics. Figure 5 (a)
shows the inference latency of EfficientNetB0, Inception-
NetV3, ResNet152, and VGG-19 using different strategies.
Our proposed HiDP strategy has the lowest inference latency
for all the workloads, in comparison with other relevant
strategies, achieving upto 61%, 61%, 59%, and 49% lower
latency for EfficientNet, InceptionNet, ResNet, and VGG,



Fig. 5. Inference (a). latency and (b). energy consumption of different
strategies for targeted DNN workloads.

Fig. 6. Performance (Gigaflops/s) of each strategy while concurrently running
targeted DNN workloads.

respectively. The hierarchical partitioning strategy of HiDP
jointly optimizes both global-level DNN block creation and
workload distribution, followed by local-level fine-grained
partitioning and workload scheduling. This results in signifi-
cantly lower latency compared to other distributed inference
strategies that are exclusively confined to global partitioning.
On average, HiDP has 37%, 44%, and 56% lower latency
than DisNet, OmniBoost, and MoDNN strategies, respectively.
Figure 5 (b) shows the energy consumption of different parti-
tioning strategies for all the workloads. The lowest inference
latency of HiDP strategy also reflects in the lowest energy
consumption for all the workloads. HiDP consumes upto
67%, 59%, 54%, and 54% lower energy for EfficientNet,
inceptionNet, ResNet, and VGG against relevant strategies. On
average HiDP consumes 33%, 48%, and 58% lower energy
than DisNet, OmniBoost, and MoDNN, respectively.

We evaluate the adaptability of different strategies under
varying workload dynamics. We created a dynamic workload
with successive run-time inference requests for every 0.5s,
in the order of EfficientNetB0, InceptionNetV3, ResNet152,
and VGG-19. This creates a progressively increasing workload
such that at t=1.5s, all four DNNs are running concurrently on
the edge cluster. Figure 6 shows the performance (Gigaflops
per second) of each strategy while running different DNN
models. It can be noticed that HiDP delivers the highest perfor-
mance throughout the execution cycle. Lower latency achieved
by HiDP frees up the resources of edge nodes, which can
be efficiently used to service subsequent inference requests.
HiDP completes the inference of all the models within 5s
in total, achieving 39%, 54%, and 56% higher performance
than DisNet, OmniBoost, and MoDNN, respectively. Higher
per-inference latency of other strategies keeps the worker

Fig. 7. Throughput of different strategies while running different combina-
tions of targeted DNN workloads concurrently.

edge nodes busy for a longer duration, affecting the overall
performance and throughput. We also evaluate the throughput
(number of inferences per 100s) of different strategies over 8
different mixes of DNN inference requests. We created Mix 1-
4 and Mix 5-8 with two and three different DNN models from
the target workloads, respectively. HiDP achieves significantly
higher throughput (upto 150% in Mix-2 and 56% on average)
compared to other strategies across all the workload mixes.
HiDP dynamically selects data/model partitioning based on
DNN characteristics, flexibly achieving low latency inference
across different workload mixes. This is reflected in higher
throughput achieved by HiDP in comparison with other strate-
gies that are confined to specific partitioning configurations.

We evaluate the adaptability of different strategies with
varying numbers of edge devices within the cluster. Figure 8
shows inference latency of all the DNN workloads using dif-
ferent strategies with 2-5 edge nodes. For all the workloads and
varying numbers of edge nodes, HiDP has the lowest inference
latency. It should be noted that the latency gap between HiDP
and other strategies becomes prominent with a decreasing
number of worker edge nodes. This can be attributed to HiDP’s
efficient utilization of local edge node resources, while the
other global strategies are affected by a lower number of edge
devices. On average HiDP achieves 30%, 46%, and 38% lower
latency than DisNet, OmniBoost, and MoDNN, respectively.
For VGG-19, EfficientNetB0, ResNet-152, and InceptionNet-
V3, HiDP has an average Top-1% accuracy of 75.3%, 77.1%,
78.6%, and 80.9% and Top-5 % accuracy of 89.7%, 92.25%,
92.7%, and 92.5%, respectively. Both the Top-1%, and Top-
5% accuracies of HiDP are the same as DisNet, OmniBoost,
and MoDNN, demonstrating robust intermediate data sharing
while enforcing DNN partitioning.

V. CONCLUSION

We present HiDP framework for low latency DNN inference
on distributed edge platforms. Our approach hierarchically
partitions the DNN inference workload at a global level,
followed by optimized partitioning and scheduling on a lo-
cal heterogeneous edge node. We evaluated HiDP on four
Jetson platforms and two Raspberry Pi platforms achieving
latency and energy improvements of 38%, and 46% against
SoA strategies, respectively. We consider energy-efficient dis-
tributed inference for future work.



Fig. 8. Inference latency with varying number of worker edge nodes.
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