
Exploiting Approximation for Run-time Resource
Management of Embedded HMPs

ZAIN TAUFIQUE, University of Turku, Finland
ANIL KANDURI, University of Turku, Finland
ANTONIO MIELE, Politecnico di Milano, Italy
AMIR M. RAHMANI, University of California Irvine, United States of America
CRISTIANA BOLCHINI, Politecnico di Milano, Italy
NIKIL DUTT, University of California Irvine, United States of America
PASI LILJEBERG, University of Turku, Finland

Run-time resource management (RTM) of multi-programmed workloads on heterogeneous multi-core plat-
forms is challenging due to i) fixed power budget of the device, ii) variable performance requirements of the
workloads, and iii) unknown arrival of the applications. Existing RTM solutions lack power-performance
coordination, resulting in performance degradation during power actuation or power violations during perfor-
mance provisioning. Exploiting inherent error-resilience of the applications can address the performance loss
incurred in power actuation, by combining run-time approximation with traditional power knobs (including
Dynamic Voltage/Frequency Scaling, Task Migration, Degree of Parallelism, and CPU Quota). In this work,
we present an accuracy-aware resource management framework that jointly actuates run-time approxima-
tion and traditional power knobs for efficient power-performance management of multi-programmed and
multi-threaded workloads running on heterogeneous mobile platforms. Our strategy configures the accu-
racy of the applications at run-time to exploit accuracy-performance trade-offs, by considering system-wide
power-performance dynamics. We use heuristic estimation models to jointly enforce accuracy configuration
and traditional power knobs settings at run-time. We evaluated our framework on real-world embedded
mobile platforms including Odroid XU3 and Asus Tinker Edge R boards to demonstrate the efficiency of
our proposed approach across multiple workload scenarios. Our approach achieved 25% lower performance
violations against the state-of-the-art run-time resource management policies at the cost of 2.2% accuracy loss
across six applications.

Additional Key Words and Phrases: Dark Silicon, Run-time Mapping, and Dynamic power

1 INTRODUCTION
Embedded, mobile, and edge systems are increasingly using Heterogeneous Multi-Processing (HMP)
architectures to meet diverse performance requirements of applications within stringent power
and energy budgets [27]. HMP systems are characterized by flexible use of their heterogeneous
cores by (i) mapping applications on the most suitable cluster(s), and (ii) moving the application
between different clusters for power/performance optimization. In particular, such optimization
goal is pursued by means of Application Mapping (MAP) and Task Migration (TM) policies and
Run-time Resource Management (RTM) techniques, jointly with traditional power knobs, such as
Dynamic Voltage/Frequency Scaling (DVFS) [11, 24] and CPU Quota assignment [22, 35]. Existing
RTM strategies use machine learning models to navigate wider power-performance trade-off
space exposed by HMP systems through extensive offline profiling (e.g., [16, 26]), online learning
(e.g., [6]), and hybrid models (e.g., [1, 13, 33]). However, the efficacy of these strategies is limited
when facing unknown and dynamic workload variations, resulting in limited performance gains
and/or performance degradation during power actuation. These limitations can be attributed to: (i)

Authors’ addresses: Zain Taufique, zatauf@utu.fi, University of Turku, Turku, Finland; Anil Kanduri, spakan@utu.fi,
University of Turku, Turku, Finland; Antonio Miele, antonio.miele@polimi.it, Politecnico di Milano, Milan, Italy; Amir
M. Rahmani, a.rahmani@uci.edu, University of California Irvine, California, United States of America; Cristiana Bolchini,
cristiana.bolchini@polimi.it, Politecnico di Milano, Milan, Italy; Nikil Dutt, dutt@uci.edu, University of California Irvine,
California, United States of America; Pasi Liljeberg, pasi.liljeberg@utu.fi, University of Turku, Turku, Finland.

, Vol. 1, No. 1, Article . Publication date: March 2025.

HTTPS://ORCID.ORG/0000-0002-5298-6049
HTTPS://ORCID.ORG/0000-0003-3188-8703
HTTPS://ORCID.ORG/0000-0003-3197-0723
HTTPS://ORCID.ORG/0000-0003-0725-1155
HTTPS://ORCID.ORG/0000-0001-5065-7906
HTTPS://ORCID.ORG/0000-0002-3060-8119
HTTPS://ORCID.ORG/0000-0002-9392-3589
https://orcid.org/0000-0002-5298-6049
https://orcid.org/0000-0003-3188-8703
https://orcid.org/0000-0003-3197-0723
https://orcid.org/0000-0003-0725-1155
https://orcid.org/0000-0003-0725-1155
https://orcid.org/0000-0001-5065-7906
https://orcid.org/0000-0002-3060-8119
https://orcid.org/0000-0002-9392-3589


2 Zain et al.

dependence on traditional power knobs with relatively orthogonal power-performance trade-offs,
(ii) lack of coordination between power and performance actuation decisions, and (iii) limited
considerations on knob actuation feasibility and run-time system dynamics.
On the other hand, mobile and edge HMP devices are increasingly being used for running

lightweight machine learning kernels to deliver smart services. Such data-driven applications exhibit
tolerance to inaccurate computations given their characteristics such as noisy and redundant inputs,
stochastic outputs, and human perception as end result [34]. The approximate computing paradigm
leverages the inherent error resilience of applications for performance and energy gains within
an acceptable accuracy loss. Approximate computing is widely adopted in embedded processors
by combining accuracy trade-offs with traditional power/performance knobs to maximize the
performance within stringent power and energy budgets [22]. Some of the existing approaches have
used approximation for resource management in both static (e.g., [14, 25, 29]) and dynamic workload
scenarios (e.g., [7, 21, 37]). These approaches create a limited and fixed number of approximate
versions of an application at design time and opportunistically select an approximate version at
run-time for power/performance gains. However, such design time coarse-grained approximation
narrows down the accuracy-performance-power trade-off space, resulting in higher accuracy loss
or limited gains with approximation. Exploiting accuracy-performance-power trade-offs require
disciplined tuning of fine-grained approximation, along with the traditional knobs of DVFS, CPU
Quota assignment, MAP, and TM.
Given these motivations, we propose run-time dynamic approximation for multi-programmed

parallel workloads running on HMP architectures. We design a run-time resource management
policy that configures the algorithmic parameters of applications at run-time to generate fine-
grained approximate versions. The resourcemanagement policy determines run-time approximation
and traditional resource configuration knob settings based on concurrent workloads’ performance
requirements, their error resilience characteristics, and system-wide power consumption. The
resource management policy considers the error resilience of applications to prioritize candidates
for approximation among concurrently running applications, minimizing the overall accuracy loss.
We design and implement a resource management framework that integrates our proposed policy
with Operating System (OS) level interfaces for monitoring power consumption and per-application
performance and enforcing resource allocation decisions on MAP, Degree of Parallelism (DoP),
TM, DVFS, CPU Quota assignment, and run-time approximation. We target heterogeneous edge
platforms having asymmetric big.LITTLE CPU clusters with non-uniform power and performance
characteristics. We evaluated our strategy on two real hardware testbeds including Odroid XU-3 [18]
and Asus Tinker Edge R [5] over relevant machine-learning micro-kernels. Our approach achieved
25% lower performance violations against the state-of-the-art run-time resource management
policies at the cost of 2.2% accuracy average loss across six machine learning micro-benchmark
applications.

A preliminary version of our resource management approach and policy for serial applications
is partly presented in [22]. In this work, we design a comprehensive accuracy-aware runtime
resource management approach to support multi-programmed and multi-threaded workloads,
while dynamically prioritizing applications for exploiting run-time approximation based on their
error resilience. Our novel contributions are as follows:

• Modular and scalable framework for run-time resource management of HMP architectures
to handle unknown dynamic workload variation, composed of a mixture of concurrently
running parallel and serial applications.
• Fine-grained run-time accuracy configuration of applications, and prioritization of applica-
tions as candidates for approximation based on error resilience characteristics.

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 3

Fig. 1. Knob actuation dynamics. (a) DVFS and CPU Utilization, (b). Parallelism, (c). Task migration and
approximation

• Run-time resource allocation policy that decides on a combination of run-time approximation,
MAP, DVFS, CPU Quota assignment, TM, and DoP, by considering performance requirements
and available power budget.
• Coordinating power actuation with performance management through analytical estimation
models for joint optimization of approximation with other knobs.
• Experimental evaluation of our strategy on two different embedded heterogeneous platforms
including Odroid-XU3 [18] and Asus Tinker Edge R [5], with different multi-threadedmachine
learning micro-benchmark applications.

Manuscript Organization: Section 2 provides background and motivation for our proposed approach,
Section 3 presents overview of our run-time management framework infrastructure, Section 4
elaborates our proposed policy, Section 5 presents evaluation of our proposed solution against
other relevant strategies, followed by conclusions in Section 6.

2 BACKGROUND ANDMOTIVATION
2.1 Knob Actuation Dynamics
We demonstrate the diversity in power-performance characteristics among different knobs through
the example of least squares micro-kernel executed on an HMP platform (that is Odroid XU-3
described in Section 5). Figure 1(a) shows the normalized performance when actuating power
consumption using DVFS (scaled in steps of 100 MHz), and CPU Quota assignment (scaled in
steps of 5%). DVFS has a significant reduction in power consumption with the quadratic effect of
lowering both Voltage/Frequency (VF) levels, whereas scaling CPU Quota has almost a linear effect
on power and performance. For the same application, Figure 1(b) shows normalized performance
with varying levels of DoP (1 to 4 threads), combined with DVFS by scaling the frequency levels.
Figure 1(c) shows the performance metrics with migrating the application from high performance
(big) cluster to low power (LITTLE) cluster - for both accurate (acc) and approximate (apx) kernels.
Upon task migration, the performance of the accurate version of the application is reduced by about
2.8×, whereas power consumption is significantly lowered by almost 2×. In this scenario, Figure 1
(c) also shows normalized performance with different approximate versions, where 10-50% of the
workload is reduced using loop perforation. Within the same power consumption, each progressive
approximate version provides higher performance on the LITTLE cluster in comparison with the
accurate version.
While the aforementioned knobs expose various power-performance configuration options,

selecting an optimal knob setting depends also on feasibility. For instance, consider 2 applications
with different performance requirements running on the same cluster. Actuating DVFS for tuning
the performance of one application would affect the other application also, being VF settings

, Vol. 1, No. 1, Article . Publication date: March 2025.



4 Zain et al.

Fig. 2. Accuracy-performance trade-offs for different applications. (a) Linear regression, (b). Least squares.

scaled at the cluster level. Thus, tuning the performance of a single application would require the
actuation of an application/process-level knob (CPU Quota assignment/approximation) and such a
knob setting would not be optimal on a generic power-performance trade-off space of all possible
knobs. While the knob actuation dynamics presented in Figure 1 are widely understood, jointly
actuating all these knobs at run-time considering dynamic workload variation, power-performance
Pareto-space, and knob actuation feasibility is a complex optimization problem. In our work, we
build analytical models for the estimation of power consumption and performance with every
resource allocation decision, to coordinate among the actuation of different knobs.

2.2 Error Resilience Considerations
Outcomes of traditional power/performance knob actuation are deterministic, enabling analytical
modeling of power and performance with specific knob settings. However, approximation is
entirely application-specific, such that applications with higher error resilience could achieve
higher performance gains with approximation. We demonstrate the variation of error resilience
among different applications with an example. Figure 2 shows the accuracy-performance trade-offs
of two applications viz., linear regression and least squares. In each case, loop perforation [34] is used
to skip a percentage of input data to generate different approximate versions. We experimented
with 1000 different random data sets and collected the relative root mean square error induced
with approximation in each case. Figure 2 (a) and (b) show the average and worst-case errors with
approximation across all the data sets. The amount of error induced with reduced workloads is
non-linear and is different in both the cases in (a) and (b). For a direct comparison, linear regression
has a higher average case and worst-case errors when compared to that of least squares. The
average and worst-case accuracy values are exclusively a function of input data and these numbers
may vary across different datasets. We ran extensive experiments to show that across diverse input
datasets, the average and worst-case errors are bounded by a tolerable accuracy loss (for example
3%). Moreover, in Figure 2 (b), the error induced with further approximation from about 25% of
skipped loops becomes less significant. The performance gains for both applications are expected to
be proportional to the amount of relaxed workload. However, the normalized performance gained
per error induced creates discrepancies in error resilience characteristics between applications.
Precisely, for the same amount of comparable performance gain, least squares incur a smaller
error than that of linear regression. As shown in Figure 2 (a), normalized performance per error is
sub-linear for linear regression, whereas it is super linear for least squares, assuming an error of
0.25% as a minimum. This example demonstrates the diversity among error resilience of different
applications, an aspect to be considered for making appropriate accuracy trade-off decisions. For
instance, in a dynamic workload scenario with both applications running, it is efficient to select least
squares as the priority candidate for approximation. This could prompt approximating least squares
while provisioning linear regression with other system resources such as CPU Quota. Therefore,

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 5

Fig. 3. Exemplar knob actuation scenarios.

exploiting approximation for performance/power management has to consider two aspects viz.,
i) performance gained with approximation, which depends on the amount of relaxed workload, and
ii) error induced with approximation, which depends on input data and application characteristics.
To enable such disciplined tuning and choice of accuracy configuration, we characterize the error
resilience of applications through profiling and use these heuristics at run-time for appropriate
resource allocation to maximize performance while minimizing inaccuracy and power consumption.

2.3 Example Scenarios
Knob actuation nuances, feasibility, and run-time system dynamics present complex scenarios for
resource allocation decisions. We demonstrate such scenarios and possible knob actuation decisions
through a motivation example in Figure 3. In this example, we run two parallel (App-1 and App-3)
and one serial (App-2) applications with diverse characteristics on an HMP platform1.
Scenario (a): App-3 is running on the LITTLE cluster, and the power intensive App-1 and App-2 are
running on the big cluster at high VF levels. Lowering the VF levels will degrade the performance
of both applications. Hence, we reduce the VF level and simultaneously approximate App-1 propor-
tionally to the performance loss and scale the CPU Quota of App-2 from 80% to 100% to improve its
performance. DVFS reduces power consumption quadratically, creating a power headroom that
can be utilized intuitively to scale the CPU Quota of App-2.
Scenario (b): App-2 is running on the LITTLE cluster, App-1 and App-3 are running on big cluster;
power consumption of the system is high. Similar to scenario (a), lowering VF could degrade the
performance of applications. Hence, we migrate App-1 to the low power LITTLE cluster with
3 idle cores and approximate the application proportionally to the performance loss. We select
App-1 as the candidate for joint invocation of TM and approximation since it achieves higher
performance gain with approximation than App-3. We lower the VF levels of the big cluster and
use the power headroom created with TM and DVFS to scale out (DoP) the App-3 to 4 cores for
mitigating performance loss due to lowering VF levels.
Scenario (c): All the cores are occupied, power consumption is under control, and App-1 is under-
performing. The LITTLE cluster is running at full throttle VF levels, the CPU Quota of App-1 is at
100%, and TM has been recently invoked (scenario (b) – migrating App-1 to LITTLE), reflecting an
exhaustion of invoking traditional knobs. In this scenario, we approximate App-1 by configuring
the accuracy proportionally to meet the target performance.
Scenario (d): App-1 (approximated) and App-2 are running on the LITTLE cluster, App-3 has
completed its execution, and the power consumption is under control. Completion of App-3 frees
up cores on the big cluster and also creates power headroom to upscale resources. Hence, we migrate
App-1 to the big cluster and re-configure the execution to accurate mode since the performance

1Experimental setup is presented in details in Section 5.

, Vol. 1, No. 1, Article . Publication date: March 2025.



6 Zain et al.

requirements of App-1 can be met with scaled-up resources on the big cluster without sacrificing
accuracy.

2.4 Related Work
Run-time Resource Management. RTM techniques focus on objectives of minimizing pow-
er/energy consumption and maximizing performance within a power cap by using a combination
of traditional knobs such as DVFS, TM, CPU Quota assignment, DoP for resource management
(e.g., [2, 9, 11, 24]). State-of-the-art RTM techniques determine optimal resource configuration knob
settings using (i) heuristics (e.g., [9, 11, 24]), or (ii) machine learning predictions (e.g., [1, 6, 13, 26]).
Existing heuristic-based approaches have limited efficiency in handling unknown and dynamic
workloads and inevitably sacrifice performance when power consumption and/or workload inten-
sity is higher [2, 24]. Advanced RTM approaches built machine learning models using techniques
such as imitation and reinforcement learning to predict optimal resource configuration settings
(e.g., [16, 26]). However, these approaches rely on exhaustive offline profiling with high-design space
exploration overhead. Recent strategies have used run-time data collection to build online learning
models for determining resource configuration settings [1, 6], while some strategies have combined
both offline and online learning models [13, 33]. RTM strategies train machine learning models
on data where applications are run individually. However, when multiple applications are run
concurrently, decisions made by the models for an application could become sub-optimal/infeasible
and/or override the decisions made for other application(s). This behavior limits the efficiency of
machine learning-based RTM strategies in handling unknown and concurrent workloads, as well
as dynamic workload variation. Further, aforementioned RTM strategies are constrained by the
limitations of traditional knobs with orthogonal power-performance characteristics.
A crucial aspect in the RTM decision process is the estimation of power and performance of

any new configuration before enforcing it. Estimation models save the policy from the hassle
of enforcing the knob actuation, monitoring the results, and fine-tuning the complete actuation
decision based on the monitored results. Recent works [17, 31, 32] have proposed machine learning
models for predicting power, and performance against knob actuation. For instance, [31] uses a
pre-trained Deep Neural Networks (DNN) model to predict the performance impact of actuating
Task Migration of multi-threaded applications on S-NUCAmany-core architectures. SmartBoost [32]
uses online learning to predict the impact of processor frequency on application performance and
device power. STAFF [17] also provides online learning-based power and performance prediction of
unknown applications on heterogeneous multi-core architectures. These machine learning-based
state-of-the-art power and performance prediction methods have design time training and run-time
prediction overheads. We have designed lightweight models for fast estimation of power and
performance values. Our estimation models provide heuristics-based hints to the RTM policy to
make accurate knob actuation decisions without requiring highly accurate power and performance
values.
Run-time Approximation. The run-time approximation has been widely used in resource-
constrained systems in combination with traditional power knobs: to address performance loss
incurred during power actuation [20, 37], for dynamic thermal management [7, 29], and to provide
Quality of Service (QoS) guarantees [25]. Further, approximation benefits have been maximized
through optimal scheduling of a combination of approximate-accurate tasks for performance guaran-
tees [37] and thermal management [7]. However, all of these aforementioned approaches reactively
toggle through a fixed number of approximation levels (levels 1-4) without coordination between
power/performance/accuracy decisions. These approaches thus cannot fine-tune approximation as
per run-time power/performance demands, consequently leading to significant accuracy loss with
aggressive approximation. Capri [36] uses offline learning to determine fine-grained approximation

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 7

Table 1. Qualitative comparison of the proposed with respect to the existing approaches.

Multi-
program

Unknown
workload

Knobs Apx
levels CoordinatedDVFS CPU Quota TM Apx DoP

[25] ✓ ✘ ✓ ✘ ✓ ✓ ✘ 2 +/-
[20] ✓ ✓ ✓ ✓ ✘ ✓ ✓ 2 +/-
[7] ✓ ✘ ✓ ✘ ✓ ✓ ✓ 2 +/-
[37] ✓ ✘ ✓ ✓ ✓ ✓ ✓ 5 ✘

[26] ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✘ +/-
[16] ✓ ✓ ✓ ✘ ✓ ✘ ✓ ✘ +/-
[1] ✘ ✘ ✓ ✘ ✘ ✘ ✓ ✘ +/-
[29] ✘ ✘ ✓ ✘ ✘ ✓ ✓ 4 ✘

[6] ✓ ✓ ✓ ✘ ✓ ✘ ✓ ✘ +/-
[41] ✓ ✘ ✓ ✘ ✓ ✘ ✓ ✘ ✘

[40] ✓ ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘

[39] ✓ ✓ ✓ ✘ ✓ ✓ ✘ Config. ✘

our ✓ ✓ ✓ ✓ ✓ ✓ ✓ Config. ✓

✓: supported, ✘: not supported, +/-: partially supported.

levels by considering performance; however, this approach does not consider system-level resource
allocation.

Recent works [23, 40, 41] have also focused on RTM of DNN workloads on heterogeneous multi-
core architectures. We did not consider DNN workloads for the proposed work because they restrict
the actuation of the run-time approximation knob due to fixed weights and network design. Tango
[39] explores the approximation of DNN inference on HMPs by selecting a model from a pool of 2-3
pre-trained models at run-time. However, this method does not allow run-time approximation of a
single DNN kernel and is limited to DNN models released with sub-model variants of non-uniform
numbers of parameters. Alternatively, we consider classical Machine Learning (ML) applications
that provide fine-grain control over their power-performance characteristics against the joint action
of the approximation and typical power knobs.

Table 1 summarizes the most relevant state-of-the-art RTM approaches, highlighting the novelty of
our proposed strategy in fine-grained run-time approximation, coordinated power/performance
decision-making, and handling of dynamic workloads. Some of these RTM techniques lack accuracy-
awareness, while others use ad-hoc and static knobs for exploring a limited sub-set of accuracy trade-
offs, typically for a given single application. On the other hand, our proposed approach combines
generic fine-grained run-time approximation with traditional power knobs, by re-configuring
applications’ accuracy and DoP at run-time based on power/performance demands.

3 RESOURCE MANAGEMENT FRAMEWORK
Our resource management framework consists of interfaces between hardware, OS, and application
layers, and a run-time controller to enforce decisions of the resource management policy. Figure 4
shows an overview of our resource management framework, elaborated in the following.
Hardware platform. We consider widely used ARM big.LITTLE asymmetric multi-core archi-
tecture as the baseline hardware [28]. It comprises two clusters – a set of high-performance
power-hungry big cores and a set of low-performance power-saving LITTLE cores. Each cluster
has an onboard power sensor for reading run-time power consumption and support for setting ap-
propriate VF levels. The platform is constrained by Thermal Design Power (TDP), the conservative
upper bound on power consumption for thermal safety.

, Vol. 1, No. 1, Article . Publication date: March 2025.



8 Zain et al.

Fig. 4. The resource management framework

Operating System. The OS running on top of the hardware platform is the Linux version targeted
for big.LITTLE architecture, with a 3-layered scheduler featuring:
• HMP scheduler (also called Global Task Scheduling [3]) to migrate tasks (process/threads)
between the big and LITTLE clusters, based on computational requirements,
• Balancer to uniformly distribute tasks among the ready queues of the cores of the same
cluster, and
• Priority-based round-robin algorithm used on each core by picking tasks from the correspond-
ing ready queue.

The OS exposes an interface to control the scheduler at run-time to orchestrate the execution of
applications and resource allocation through the following mechanisms:
• Application mapping for binding the execution of an application/process on a specified set of
cores, and
• CPU Quota assignment for setting a specific percentage of time for which the assigned cores
are dedicated to executing an application/process.

The proposed policy enforces resource allocation decisions by overriding the Linux scheduler
to map an application on a selected cluster (by modifying HMP scheduler) and a subset of cores
within the cluster (by modifying the balancer) and to set the CPU Quota for the various applications
(by modifying round-robin algorithm priorities). When mapping a parallel application, we set
the number of threads always as equal to the number of assigned cores, thus from here on, we
use application mapping to implicitly refer to DoP as well. Moreover, an exclusive mapping of
at most one application per core is adopted, to guarantee execution isolation to achieve the best
performance, as in [2, 35]. The OS exposes the driver interface to access the hardware sensors
and knobs, and also enables reading per-core CPU utilization percentage, which can be implicitly
translated to the assigned CPU Quota. Voltage and frequency levels are organized in pairs of fixed
values. For DVFS knob actuation, the driver allows setting the frequency value alone while the
corresponding voltage level is automatically selected.
Workload and applications. The considered workload is representative of many use cases of
intelligent and smart edge systems, such as environmental monitoring, surveillance, and activity-
based applications (e.g., health monitoring and fitness tracking); such applications execute multiple
machine learning tasks that perform clustering, classification, and recognition processes on data
streams from cameras or input sensors. In these contexts, the computing system is tightly connected
with the surrounding environment; for instance, applications may be triggered by external events

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 9

1 in t main ( ) {
2 c o n t r o l l e r _ t ∗ c ;
3 / / . . . i n i t i a l i z a t i o n phas e . . .
4 c = a t t a c h C t r l ( " applX " , tp_max , tp_min , approx_ tab ) ;
5 / / i t e r a t i v e p r o c e s s i n g o f da ta chunks
6 for ( i = 0 ; i <num_of_chuncks ; i ++) {
7 p = getSWParams ( c ) ;
8 app lKe rne l ( p . threadN , p . apxKnobValue ) ;
9 s endHea r t b ea t ( c ) ;
10 }
11 d e t a c hC t r l ( c ) ;
12 }

Fig. 5. Application source code skeleton.

(e.g., perceived motion can initiate object tracking in a surveillance system), resulting in a variable
and unpredictable workload; simultaneously, the working context influences the performance
requirements for running applications (e.g., the number of moving objects or poor environmental
lighting may necessitate additional processing efforts for object tracking).

According to this scenario, we characterize the workload to be composed of multiple applications
entering and leaving the system in an unknown and unpredictable sequence, representing a
high degree of variability. We consider embedded machine learning kernels with streaming input
data sets, where the core compute-intensive block is repeated within a loop per every batch of
inputs. Due to their streaming nature, we adopt throughput in a given time window as the primary
performance metric. Applications’ source code is assumed to be enhanced with the HeartBeat
Application Programming Interface (API) [19], which measures the amount of data processed by an
application in a given time window, represented as heartbeats per unit of time (ℎ𝑏/𝑡 ). Figure 5 shows
the general code skeleton of applications in our proposed framework. The application notifies
a heartbeat at the end of each iteration of the application kernel loop (Line 9). Each application
has user-defined throughput requirements in terms of minimum and maximum admissible levels
(𝑡𝑝_𝑚𝑖𝑛 and 𝑡𝑝_𝑚𝑎𝑥 ) to guarantee the QoS; a throughput band is specified instead of a single target
value to tolerate possible run-time performance fluctuations on embedded devices. Throughput
requirements are registered by the application with a HeartBeat API call in the program preamble
(Line 4). The last parameter is a lookup table used for configuring run-time approximation, which
will be discussed in Section 4.1.
Software knobs and approximation. We use configuration of DoP and run-time approximation
as software knobs for tuning the power/performance of multi-threaded approximable applications.
We adapt the implementation of applications (as shown in Figure 5) such that software knob
settings viz., (i) Degree of Parallelism (DoP) – number of threads to spawn, and (ii) the desired
percentage of accuracy level are received at the beginning of the application main loop through the
Heartbeat API (Line 7). The software knob settings are transmitted to the compute kernel (Line 8) as
function parameters, enabling the application to self-configure at each execution cycle. The kernel
function is implemented to spawn the required number of threads and to invoke application-specific
approximation based on the received knob values (e.g., the number of loops to be skipped when
loop perforation is used).
We introduced DoP as a new actuation knob (in comparison with our preliminary policy [22]),

which increases the exhaustive resource configuration space with dynamic core folding and un-
folding decisions. Dynamically varying DoP alters the run-time mapping configuration of the
system – significantly affecting the performance of the other concurrently running applications,
system-wide power consumption, and consequently, accuracy configuration levels of currently

, Vol. 1, No. 1, Article . Publication date: March 2025.



10 Zain et al.

Fig. 6. The mechanism of application level approximation using a lookup table of performance gain at each
approximation level.

running applications. Hence, actuating DoP requires renewal of all the actuation decisions by
gauging the power-performance-accuracy trade-offs.
Run-time controller. The run-time controller (Figure 4) is implemented as a process running
on top of the OS to enforce resource management decisions of the policy. In this work, we adopt
the run-time controller implementation presented in [22], which is similar to state-of-the-art RTM
solutions [2, 13, 33]. The controller is connected to both the OS interfaces – to control the hardware
and the OS mechanisms for task execution and applications – to monitor performance and control
approximation through the Heartbeat library. Internally, the controller implements a feedback
control loop, which is triggered at every control cycle. We implemented the control cycle as a
parameterizable component [2, 22], to enable fine-tuning of the controller invocation for different
workloads and platforms. In this work, we empirically set the control cycle to 1 second, based on
the observed heartbeat rate (performance metric) of the benchmark applications. At each control
cycle, the controller i) monitors the status of the system (at hardware, OS and application levels),
ii) decides how to control the system to pursue a set of system-level and application-level goals and
requirements (e.g., applications’ performance vs. system’s power consumption), and iii) actuates on
knobs based on the decisions taken. The run-time controller enables the policy to make intelligent
resource allocation decisions, followed by enforcement of the resource configuration settings
determined by the policy through monitoring and feedback control.

4 THE PROPOSED POLICY
We here present the proposed resource management policy, which relies on run-time approximation
and traditional power knobs. The decision-making strategy uses estimation models to coordinate
decisions to: (i) meet applications’ performance requirements, (ii) honor system’s power budget,
and (iii) minimize accuracy loss due to approximation.

4.1 Run-time Approximation Control
We define an empirical model that correlates performance gain and accuracy loss at different levels
of fine-grained approximation for each application. To this end, every single application is profiled
at design time (as described in Section 2.2) to measure the performance gain and the average-case
error for relevant settings of the approximation knob w.r.t. the non-approximated golden run. Since
the approximation error is data-dependent, multiple runs are executed for a given configuration
by varying input data to measure the average-case error. The result of this design-time analysis
is the pair of plots shown in Figure 2 that are specific for every single application. Such data are
stored in a lookup table having the percentage error as the key, the performance gain, and the
approximation knob value as values. As shown in Figure 6, the table is saved in the application

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 11

Fig. 7. FSM-based workflow of the designed policy.

code and transmitted to the controller during the initialization phase (through the approx_tab
parameter at Line 4 in Figure 5). Then, the table is used in the policy to identify for every single
application the entry having the desired trade-off between average-case error and performance
gain (as will be discussed in Section 4.3) and the corresponding approximation knob value is sent
back to the application to be enforced (Lines 7–8 in Figure 5).

4.2 Policy Workflow
The proposed policy is designed as an Finite State Machine (FSM) with four states viz., i) Idle,
ii) Profile, iii) Decide, and iv) Refine (Figure 7). Its workflow is described as follows.
Idle. The policy is in the idle state when the platform is stable, i.e., (i) initially when no applications
are running on the platform, or (ii) performance requirements of the currently running application(s)
are met, and the power budget is honored. When no applications are running, the policy reduces
the static power consumption by setting the frequency of all the clusters to the lowest available
level. In this state, the policy continuously monitors relevant events of workload variation, which
can perturb the stable system state. Primary workload variation events include (i) entry of a new
application, (ii) termination of a currently running application, and (iii) migration of a currently
running application between clusters. The policy reaches the optimal resource configuration settings
by the end of the Refine phase and enters the Idle phase. The Idle phase implies that no additional
resource optimization maneuvers are feasible. Although a shift in the workload scenario can make
resource reallocation possible; However, this automatically transitions the policy out of the Idle
phase to the Profile phase. Alternatively, when a currently running application terminates (or
migrates between clusters), the policy transitions into the decide state for re-allocating resources
freed up by the terminated/migrated application.
Profile. The policy enters the profile state upon encountering a workload variation event, viz.,
entry of a new application, or migration of a currently running application between clusters. The
goal of the profile state is to measure an initial baseline throughput of an application when executed
on a specific number of cores on a selected cluster. This profiling information will be used in the
decide state for estimating the performance of the same application under potentially different
resource configurations. The profiling activity lasts for a specific number of control periods to
obtain a stable throughput measure. Newly arriving applications are initially mapped on the LITTLE
cluster by default to minimize sharp rises in power consumption with an unknown workload. If
no applications are currently running on the selected cluster and the frequency level is at the
lowest (from the Idle state), DVFS is actuated to set a pre-defined profiling frequency level. When
all the cores of the LITTLE cluster are already occupied by some applications at full CPU Quota,
the new application is mapped on the big cluster. When no core(s) is available on both LITTLE
and big clusters, the policy de-allocates one core of a currently running parallel application and

, Vol. 1, No. 1, Article . Publication date: March 2025.



12 Zain et al.

allocates it for profiling the new application. A similar de/re-allocation of core(s) is used during the
migration of an application between clusters, specifically when the target cluster is fully busy. Also,
migrating an application between clusters may not require profiling, provided that the application
was already profiled on a given cluster upon its entry.
Decide. The policy enters the decide state when: i) a new application has arrived and been profiled,
transitioning from the profile state, ii) a running application ends, transitioning from the idle state,
or iii) a previously selected resource configuration violates either the power budget or performance
requirement(s), transitioning from the refine state. The goal of the decide state is to determine a
resource configuration that can maintain/restore the system’s stable condition, i.e., performance
requirements met and power budget honored. The policy determines this resource configuration
through a heuristic algorithm (detailed in Section 4.3), which jointly actuates application-to-core
mapping, per-cluster DVFS, application migration between the two clusters, per-application CPU
Quota assignment, per-application DoP, and per-application approximation.
Intuitively, the policy enters the decide state when an application performance requirements

are not met or when the power budget is violated. The heuristic algorithm initially attempts to
tune traditional power/performance knobs to recover the stable condition of the system. When
the traditional knobs have reached their limitation (i.e., performance requirements cannot be
met without potential power violation, or power budget cannot be honored without performance
degradation), the algorithm opportunistically invokes run-time approximation. The run-time
approximation knob is invoked as a last resort when all the traditional knobs are exhausted.
We have designed the policy to quickly recover an application from approximation to avoid
further accuracy loss. The decision strategy uses power/performance models (presented in detail in
Section 4.4) to estimate the resultant throughput and power consumption of a selected resource
configuration. Power/performance estimation models are commonly adopted in the literature
(e.g., [2]) to prune resource configuration space in a single control period – for evaluating other
possible alternative knob settings without physically enforcing them. The power/performance
models take instantaneous power consumption, per-application throughput (measured during
the profile state), and an arbitrary resource configuration as inputs and return the estimated
performance and power consumption with the selected resource configuration. The heuristic
algorithm determines a suitable resource configuration by iteratively tuning the knob settings using
the estimation models. The policy finally enforces the selected resource configuration knob settings.
Moreover, each cluster that is not running any application is put to its minimum frequency level
to reduce static power consumption. If the updated resource configuration includes a migrating
application not profiled previously on the target cluster, the policy transitions to the profile state –
to iterate on the throughput measurement and decision process. Otherwise, the policy transitions
to the refine state to fine-tune the selected resource configuration.
Refine. The working configuration identified during the decide state has been defined in a coarse-
grained way by using estimation models. The goal of the refine state is, therefore, to perform a
fine-grained tuning of such a configuration in a closed-loop fashion by exploiting the available
performance sensors and throughput monitors. This state deals with individual performance
over/under-compensation of the running applications. We use CPU Quota and approximation as
the actuation knobs for fine-tuning. The policy mitigates performance over/under-compensation
by scaling the CPU Quota proportionally to the performance requirements. If the application is
already running at 100% CPU utilization, the policy invokes run-time approximation to meet the
performance requirements. The precedence of CPU Quota followed by the approximation knob is
implicitly aimed at minimizing the possible overall accuracy loss. The approximation level is scaled
at the granularity of a step that is specifically defined within an application, while CPU Quota can
be scaled in steps of 1%. If the power budget is violated during the tuning, the policy returns to the

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 13

Decide state to identify a new working configuration. Finally, the policy moves to the Idle state
when all performance requirements are met without exceeding the overall power budget.

As a final note, we assume a single application to enter or leave the system at a time, and a
subsequent event to occur only after the policy is returned to the idle state. Nonetheless, the
proposed approach can handle subsequent event “overlaps”. If a new application arrives and is still
servicing a previous application, theworkflow restarts from the profile state, while the termination of
another application requires to re-perform the decision state. The policy executed the applications in
isolation and each application thread is mapped on a single core to exploit the full compute power of
the multicore architecture and to avoid incurring performance penalties due to resource contention.
Allocating one core to multiple application threads causes additional scheduling overhead without
ensuring any performance gain [35]. Moreover, we consider the system as overloaded when a new
application arrives and all the processing resources are preoccupied. In such cases, our policy does
not reject the new application and allocates the busy cores to multiple applications, which may
degrade the performance of all the running applications.

4.3 The Decision Strategy
The algorithmic flow of determining and enforcing knob actuation settings in the Decide phase of
the policy is presented in Algorithm 1. The algorithm initially calculates the required performance
perfreq of an application as the average of the target performance range, based on the specified
target performance range [tp_min and tp_max], as mentioned in Section 3 (Lines 1–2). Then, the
decision strategy modularly handles system-wide power violations (Lines 3–15) and per-application
performance violations (Lines 17–50). Decisions are taken by exploiting the power and performance
estimation models later discussed in Section 4.4.
Power Violation. In case of a power violation, the policy prioritizes recovery actions on the big
cluster, contributing significantly to the overall power consumption. The policy initially considers
TaskMigration of an application from the big cluster to the LITTLE cluster, subject to the avail-
ability of free cores on the LITTLE cluster (Lines 4–9). We define a heuristic parameter MIG_LOSS,
which represents the threshold of performance degradation when an application is migrated from
big to the LITTLE cluster. MIG_LOSS is a design variable that we set based on the performance gain
ceiling of the considered applications at the LITTLE cluster using approximation (in our case we
set MIG_LOSS threshold as 10%). Hence, we ensure that the performance loss due to migration to
LITTLE cluster can be minimized using approximation. Among the currently running applications,
the policy calculates the performance loss with task migration perf_Loss as the ratio of maximum
performance on the LITTLE cluster (recorded during Profile phase) to the required performance
perfreq. The policy then chooses an application whose performance loss upon task migration
is less than the MIG_LOSS threshold (Line 6). The policy proactively approximates the migrating
application (joint actuation of TM+APX) to compensate for the potential performance loss incurred
in migrating from big to LITTLE cluster. The policy sets the approximation level of the application
as proportional to the calculated performance loss (Line 7). Finally, the policy enforces the knob
actuation settings and transitions to the Profile state to record the application performance on the
LITTLE cluster (Lines 8–9).
"When a new application arrives and the LITTLE cluster is busy, the policy cannot profile its

performance on the LITTLE cluster. For each new application, we initialize the default value of
MIG_LOSS to 100. This high value of MIG_LOSS ensures that Task Migration fails for any application
without profiling data on the LITTLE cluster. When Task Migration fails in the absence of an ideal
candidate, and the policy jointly actuates DVFS and application approximation to reduce power
violations." The policy actuates DVFS by scaling down the current CPU frequency fcurr of the big
cluster as proportional to the available power headroom TDP

P . Actuating DVFS on the big cluster

, Vol. 1, No. 1, Article . Publication date: March 2025.



14 Zain et al.

Algorithm 1 Decide phase workflow.
Inputs: Apps: List of currently running applications
Variables: U: Total utilization of all the cores, P: Power consumption
Constants: TDP: Power budget limit, MIG_LOSS: Task migration performance loss threshold
Body:
1: for (appi ∈ Apps) do
2: appi .perfreq ←

appi.tpmin+appi.tpmax
2

3: if (P ≥ TDP) then
4: for appi in Apps ∈ big do
5: perf_Loss← appi .perf_LITTLE

appi .perfreq
6: if (perf_Loss ≤ MIG_LOSS) then
7: set_APX(appi , perf_Loss)
8: decide_TaskMigration(appi , LITTLE)
9: enforce_knobs_and_exit(Profile); //Exit current decision phase
10: ftemp ← TDP

P * fcurr
11: decide_DVFS(ftemp , big)
12: for (appi in Apps ∈ big) do
13: appi .perfest ← estimate_Perf(Ftemp , appi .Q)
14: if (appi .perfest < tpmin) then
15: set_APX(appi,

appi .perfest
appi .perfreq

)
16: else
17: Apps.sort (perfcurr/Q)
18: dvfs_Done← false
19: for (appi ∈ Apps) do
20: fest ←

appi .perfreq
appi .perfcurr

* fcurr
21: if (appi .perf < appi .tpmin) then
22: if (appi .is_Parallel && (appi .cluster.free_Cores > 0)) then
23: decide_DoP(appi .cluster.free_Cores)
24: else if (estimate_Power(fest ) < TDP && !dvfs_Done) then
25: decide_DVFS(fest , appi .cluster)
26: dvfs_Done← true
27: for (appj ∈ appi .cluster) do
28: appj .perfest ← estimate_Perf(fest , appj .Q)

29: appj .perfgap ←
appj .perfest
appj .perfreq

30: if (appj .perfest < appj .tpmin ) then
31: if (appj .Q < 1) then
32: set_CPUQuota(appj , appj .perfgap)
33: else
34: set_APX(appj , appj .perfgap)
35: else if (appj .perfest > appj .tpmax ) then
36: if (appj .curr_Apx_Level > 0) then
37: set_APX(appj , appj .perfgap)
38: else
39: set_CPUQuota(appj , appj .perfgap)
40: else if ((appi ∈ LITTLE) && (free_Cores_Big>0)) then
41: if (estimate_Power( TDPP * fcurr , appi .Q) < TDP) then
42: decide_TaskMigration(appi , big)
43: enforce_knobs_and_exit(Profile);
44: else
45: set_APX(appi,

appi .perfcurr
appi .perfreq

)

46: else if (appi .perfcurr > appi .tpmax) then
47: if (appi .curr_Apx_Level > 0) then
48: set_APX(appi ,

appi .perfcurr
appi .perfreq

)
49: else
50: set_CPUQuota(appi ,

appi .perfcurr
appi .perfreq

51: enforce_knobs_and_exit(Refine);

based on one application can impact the performance of the other applications running on the same
cluster. Hence, the policy estimates the possible performance degradation of all the applications
running on the big cluster through the performance estimation model from Equation 3 (Lines

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 15

12–13). If the estimated performance perfest of an application with the updated frequency levels
is lower than tpmin, the policy approximates the application as proportional to the ratio of the
estimated performance perfest to the required performance perfreq (Lines 14–15). Finally, the policy
enforces the updated DVFS settings on the big cluster and exits the current decision cycle to enter
the Refine phase (Line 51).
We empirically observe that power consumption on the chosen embedded platforms (Asus

Tinker R and Odroid-XU3) is largely a function of cluster and frequency level (as also discussed
in [2, 22]). Further, application-specific knobs viz., CPUQuota result in relatively higher performance
degradation with power actuation (also shown in Figure 1), while Approximation incurs accuracy
loss. Hence, in case of power violations, our strategy sets the knob actuation precedence in the
order of TM, DVFS, DoP, CPU Quota, and approximation.
Performance Violation. When there is no power violation, the policy exclusively handles ap-
plications’ performance. The policy sorts applications in ascending order of utilization, i.e., the
performance achieved per CPU Quota allocated (Line 17). The target cluster frequency fest is
determined (Line 20) based on the application with worst-case utilization, Apps[0]. Indeed, tuning
the cluster frequency based on the application with the worst utilization minimizes overall power
consumption. The policy sets the dvfs_Done flag as false at the start of the decision cycle, indicating
that no DVFS actuation has yet been applied (Line 18).

Within the sorted list, the policy first handles the under-performing applications, i.e., applications
with measured performance appi.perf below the required performance tpmin (Line 21). For parallel
applications, the policy finds free cores on the given application’s cluster to increase the application’s
DoP (Lines 22–23). We do not use any prediction model for DOP as it shows non-linear performance
behavior against the allocated CPU cores and has application-specific power and performance
characteristics [12]. The policy invokes the DoP knob to allocate free cores to the application and
transitions to the Refine phase (Line 51). If no free cores are available, the policy actuates the DVFS
knob to address the performance gap. Before actuating DVFS, the policy determines the potential
power consumption with the estimated frequency fest settings, using the power estimation model
from Equation 1 (Line 24). If the estimated power is less than TDP and DVFS knob has not been
invoked in the current decision cycle, the policy decides to actuate the DVFS knob and sets the
dvfs_Done flag as true (Lines 25–26). DVFS is a cluster-wide knob which affects the performance
of all the applications that are running on a given cluster. Therefore, the policy estimates the
performance perfest (from Equation 3) of all the applications running on the cluster with the
updated frequency settings (Lines 27–39).
For each application, the policy calculates the performance gap perfgap as a ratio of the esti-

mated performance perfest to the required performance perfreq. For applications with estimated
performance perfest less than the required performance perfreq, the policy first invokes the CPU
Quota knob to increase the quota Q proportional to the estimated performance gap perfgap (Lines
31–32). If actuating CPU Quota is not feasible (i.e., Q is already 100% or increasing Q results in TDP
violation), the policy invokes the approximation knob. The policy refers to the approximation
look-up table (Figure 6) to select the least possible approximation level which provides enough
performance to address the performance gap perfgap (Line 34). For applications with estimated
performance perfest greater than the required performance perfreq (Line 35), the policy scales
down resources to provide performance precisely within the requirements. In this case, the policy
prioritizes recovering from approximation, followed by lowering CPU Quota as proportional to the
performance gap perfgap (Lines 36–39).

If DoP and DVFS have reached their limitations and the under-performing application is running
on the LITTLE cluster, the policy considers TaskMigration to the big cluster (Lines 40–43). The
policy estimates the power headroom available for migration using the power estimation model

, Vol. 1, No. 1, Article . Publication date: March 2025.



16 Zain et al.

from Equation 1 (Line 41) and migrates the application to the big cluster (Lines 42–43). The policy
transitions to the Profile phase to record the performance of the migrated application with the
updated mapping configuration (Line 43). If all the power knobs have reached their limitations, the
under-performing application is approximated proportional to the ratio of the current performance
perfcurr to the required performance perfreq (Line 45).

For over-performing applications, the policy actuates either approximation or CPU Quota to scale
down the performance to the required level. It follows the precedence of invoking approximation (to
minimize the accuracy loss), followed by CPU Quota downscaling (Lines 47–48). For an application
that is already approximated, it sets the accuracy level proportional to the ratio of the current
performance perfcurr to the required performance perfreq (Line 48). In case the application is
not approximated, the policy scales down the CPU Quota proportional to the ratio of the current
performance perfcurr to the required one perfreq (Line 50). Finally, the policy moves into the
Refine phase (Line 51).

4.4 Power and Performance Models
The policy adopts analytical power and performance models to estimate system-wide power con-
sumption and per-application performance. The models used here have been borrowed from the
literature (e.g., [2, 22, 37]) and experimentally tuned on the selected target architecture. These esti-
mation models enable the policy to predict the potential impact of a selected resource configuration
without actually enforcing the decision. This allows the policy to pro-actively fine-tune resource
allocation decisions, avoiding the penalty of reactively oscillating between resource over/under-
provisioning. Some of the existing strategies focus exclusively on accurately predicting the power
and performance values using pre-trained ML models [15, 30]; however, achieving such prediction
accuracy is not our focus in this work. We considered heuristics-based estimation models for
predicting power and performance, given their lower design and run-time overheads than ML
based solutions. It should be particularly noted that the estimation models are not our policy’s
decisions; rather our RTM policy uses the estimation models only as intermediate heuristics to
fine-tune the actual RTM decisions towards optimality.
Power estimation. It computes the power consumption of each cluster 𝑖 as a function of the con-
figured frequency level, 𝑓𝑖 (and corresponding voltage level set by the OS), and the CPU utilization
with the applications that are mapped on that cluster,𝑈𝑖 . Estimated power is expressed as:

𝑃𝑖 = 𝑎(𝑓𝑖 ) ·𝑈𝑖 + 𝑏 (𝑓𝑖 ) (1)

where 𝑎() and 𝑏 () are two tabulated functions defining for each frequency level of cluster 𝑖 a pair of
corresponding empirically derived coefficients. Moreover, since the CPU utilization of the cluster is
also unknown in advance, it is estimated as the sum of the CPU Quota (𝑄 𝑗 ) that will be set to each
one of the 𝑛𝑖 applications we aim at running on cluster 𝑖 . Estimated utilization is expressed as:

𝑈𝑖 =

𝑛𝑖∑︁
𝑗=0

𝑄 𝑗 (2)

It is worth noting that the CPU Quota assigned of the single application 𝑄 𝑗 intrinsically captures
also the information on how many cores the application is using; in fact, 𝑄 𝑗 = 1 represents a single
core completely used, while larger values represent the assignment of multiple cores. The overall
power is estimated as the sum of individual per-cluster power consumption.
Performance estimation.A rough performance model generally used in the literature for iterative
closed-loop approaches, as the one here presented, considers the application throughput to be a
linear function of the assigned CPU Quota and cores’ frequency; as discussed above, the number of
cores used by the application is included in the CPU Quota. Thus, for a given application 𝑗 running

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 17

at given cores’ frequency 𝑓𝑗_𝑜𝑙𝑑 and CPU Quota 𝑄 𝑗_𝑜𝑙𝑑 and having a measured throughput equal to
𝑡𝑝 𝑗_𝑜𝑙𝑑 , we can estimate the new performance value 𝑡𝑝 𝑗_𝑛𝑒𝑤 when varying the frequency to 𝑓𝑗_𝑛𝑒𝑤
and CPU Quota to 𝑄 𝑗_𝑛𝑒𝑤 as:

𝑡𝑝 𝑗_𝑛𝑒𝑤 =
𝑓𝑗_𝑛𝑒𝑤 ·𝑄 𝑗_𝑛𝑒𝑤

𝑓𝑗_𝑜𝑙𝑑 ·𝑄 𝑗_𝑜𝑙𝑑
· 𝑡𝑝 𝑗_𝑜𝑙𝑑 (3)

In previous work [2], this model is also extended with a factor to estimate the performance variation
when migrating the application to a different cluster. We do not adopt such an approach since it
presents a quite low accuracy; we rather prefer to rerun the profiling after application migration.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
Controller prototype. We have implemented the proposed RTM framework as a middleware
in C++, with modular blocks of the run-time controller, resource allocation policy, monitors, and
OS interface. The RTM framework runs as a user-space process in a Linux OS environment. It
uses Linux drivers to access onboard power sensors and set DVFS levels, and the CGroups library
to enforce task/thread-to-core mapping and CPU Quota assignment. We enhance applications
with the HeartBeat library for expressing high-level performance requirements and measuring
run-time performance and integrate the HeartBeats API with the controller. The framework uses
a Linux-shared memory mechanism to enable communication between the controller and each
running application. This enables the controller to read applications’ performance requirements
and approximation lookup table, measure run-time performance, and set approximation and DoP
levels of the application at run-time. The controller runs in a continuous loop and is invoked over
a configurable control period. For experimentation, we set the control period to 1s and the number
of iterations for the profile state to 5s. Finally, it is worth noting that the programming logic of the
proposed RTM controller is portable; to deploy on a target board it requires only minor changes to
the strings containing the names and paths of the files referring to the specific hardware drivers.
Platforms. We evaluate the proposed controller on two widely used embedded platforms viz.,
Odroid XU3 [18] and Tinker Edge R [5]. Both these platforms expose diverse sets of core-level
heterogeneity and power/performance characteristics, allowing rigorous evaluation of our proposed
RTM strategy. The Odroid XU3 [18] board hosts Samsung Exynos 5422 SoC, integrating an ARM
big.LITTLE processor with 4 ARM A7 cores (LITTLE cluster) and 4 ARM A15 cores (big cluster).
The big and LITTLE clusters operate over frequency levels of 200MHz - 2000MHz and 200MHz -
1400MHz, respectively, with the possibility of setting frequency levels in steps of 100MHz. To avoid
thermal violations, we set the TDP to 5𝑊 [33]. As for the operating system, we used Linux Ubuntu
20.04. The Tinker Edge R board hosts a Rockchip RK3399Pro SoC with hexacore ARM big.LITTLE
architecture, which includes 4 ARM A53 cores (LITTLE cluster) and 2 ARM A72 cores (big cluster).
The big and LITTLE clusters allow a 200MHz step frequency settings with respective frequency
levels of 400MHz - 1400MHz and 400MHz - 1800MHz. We also set the TDP of 5W for the Tinker
board. We used Linux Debian 10 as the operating system, which is the latest distribution supported
by Tinker. We deployed our proposed RTM framework on both the aforementioned platforms.
We measured the standalone computational overhead of the run-time controller as 1.43% on one
LITTLE core of Odroid XU-3 and 1.82% on one LITTLE core of Asus Tinker Edge R platforms.
Workloads.We selected data-intensive micro-kernels that are widely used in machine learning
pipelines and signal/image processing as workloads for evaluation. These include: (i) Least Squares
(lesq) [10], (ii) K-Nearest-Neighbours (knn) [10], (iii) kMeans (kM) [8], (iv) Linear Regression (lr) [8],
(v) Feature Extraction (FE) [38], and (vi) Total Harmonic Distortions (THD) [4]. We adapted and

, Vol. 1, No. 1, Article . Publication date: March 2025.



18 Zain et al.

Table 2. Characteristics of the selected benchmark applications

Application Exec.
model Input Approximation

technique
Odroid XU3 Tinker Edge R

TPmin
(hb/s)

TPmax
(hb/s)

TPmin
(hb/s)

TPmax
(hb/s)

knn Parallel 25k points/25 test cases loop perf. and task skip 2 4 6 8
fe Parallel 204k points loop perf. 11 15 9 10
thd Serial 204k points loop perf. 3 7 5 7
kM Parallel 50k points/3 clusters relaxed conv. 2 4 4 6
lesq Parallel 1M pairs loop perf. 3 5 4 5
lr Serial 1M points relaxed conv. 3 6 4 5

re-implemented the original source of the benchmark applications to support configurable run-
time approximation, and thread-level parallel execution using pthreads. We consider streaming
applications that repeat their execution in a brief cycle, and their execution phase variations
are collected during the Profile phase. We set the profiling duration to 5 seconds, sufficient to
capture the applications’ power and performance metrics. Table 2 summarizes the characteristics
of the benchmark applications, and approximation techniques used for each application. The
approximation table of each application is defined once at compiled time after offline profiling of
the error percentage against the performance gain. Performance measured in terms of hb/s is often
prone to minor fluctuations, leading to a misrepresented enumeration of performance being met
versus not met. To avoid making unnecessary reactive decisions on performance, we define the
target performance as a range between minimum throughput 𝑇𝑃𝑚𝑖𝑛 and maximum throughput
𝑇𝑃𝑚𝑎𝑥 . The policy parses the required performance as the average of 𝑇𝑃𝑚𝑖𝑛 and 𝑇𝑃𝑚𝑎𝑥 ; this avoids
any possible false positive triggers on performance being met or not met. 𝑇𝑃𝑚𝑖𝑛 is determined by
running the application standalone on the big cluster at 80% of the max frequency and 𝑇𝑃𝑚𝑎𝑥 at
the max frequency. We ran 3-4 applications simultaneously to mimic the scenario of a practical
mobile workload use case. In real-world use cases, the number of foreground high-performance
user-space applications is not more than 3-4 applications.
Evaluation metrics. We consider, for each application: (i) rate of performance requirements being
met, i.e., percentage volume of time during which the throughput is in the [𝑇𝑃𝑚𝑖𝑛 , 𝑇𝑃𝑚𝑎𝑥 ] range
w.r.t. the overall execution time, (ii) average power consumption, and (iii) accuracy loss, i.e., average
accuracy degradation accumulated during its execution.
Comparison w.r.t. state-of-the-art approaches.We compare our proposed approach against
two state-of-the-art resource management strategies for HMP viz., AdaMD [6] and DAgger [26].
Both AdaMD and DAgger are highly relevant for comparison since they encompass: run-time
adaptability for unknown workloads, optimal DVFS and DoP configuration, and meeting perfor-
mance requirements within power and/or energy constraints. AdaMD and DAgger collect extensive
offline profiling data to train machine learning models to predict DVFS and DoP settings while
considering performance and energy metrics. We adapted AdaMD and DAgger to our proposed
framework by (i) enhancing their implementation with Heartbeats API, (ii) configuring the policies
to meet performance requirements within an acceptable range, and (iii) considering potential
TDP violations. We performed extensive offline profiling to collect each application’s power and
performance numbers at different resource configurations to gather the training data for the state-
of-the-art strategies. Linux versions on both Odroid XU-3 and Tinker boards provide access to
standard governors including Performance, Powersave, Ondemand, Conservative, and Interactive.
We compare our approach against the most relevant Ondemand (HMP_O) and Interactive (HMP_I )
Linux governors as a standard baseline. These governors monitor CPU usage statistics over a given

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 19

Fig. 8. Comparison of the performance violations, performance met, and accuracy loss for all 5 strategies
when 2 applications are running concurrently in 8 different combinations.

window to scale CPU frequency proportionally, with Ondemand governor reacting to CPU busy
time and Interactive governor being driven by load intensity.

5.2 Experimental Results
We evaluate our approach against the aforementioned strategies over different dynamic workload
scenarios, selecting kernels from the benchmark applications in Table 2. For practical feasibility,
our experiments include (a) running 2 applications concurrently and (b) running 3 applications
concurrently. In both cases, we use a combinatorial mix of serial and parallel workloads to create
diverse workload variations. Finally, we also experiment with (c) an ensemble run, i.e., running mul-
tiple (ranging between 1-6) randomly selected applications concurrently. We run the experiments
on both platforms including Odroid XU3 board and Tinker Edge R board.

5.2.1 Experiments on Odroid XU3 board. We performed different experiments by running two,
three, and multiple concurrent applications. The three experiments are discussed in the following.
(a) Running 2 applications concurrently. In this scenario, the second application dynamically
arrives 20 seconds after initializing the first application. We experiment with eight different work-
load combinations, covering a mix of serial and/or parallel applications (viz., 2 serial apps, 2 parallel
apps, 1 serial and 1 parallel apps) running concurrently.
Figure 8 (a) shows the performance requirements met (%) for the mentioned eight workload

combinations and for all the chosen strategies. It should be noted that the proposed policy meets
performance requirements in all the workload combinations (shown in red horizontal dashed
line). In contrast, other relevant strategies fail to meet the performance requirements (either

, Vol. 1, No. 1, Article . Publication date: March 2025.



20 Zain et al.

Fig. 9. Comparison of the performance violations, performance met, and accuracy loss for all 5 strategies
when 3 applications are running concurrently in 8 different combinations.

over-compensate or under-compensate) when handling compute/power-intensive workload combi-
nations.

AdaMD fails to meet the performance requirements of application(s), particularly in the workload
combinations of thd+lr, thd+lesq, lr+kM, fe+kM. In the first two cases AdaMD allocates cores
on big cluster based on offline profiled data, indicating that big cluster is optimal for thd, lr,
and lesq applications when running standalone. AdaMD thus maps all the applications on the
same cluster, thus leading to resource contention, particularly with the compute-intensive thd
application affecting the performance of other applications running on the same cluster. In this
scenario, scaling DVFS and DoP to cater to the under-performing application is not feasible with
power constraints, resulting in performance violations. DAgger meets the performance constraints
of the applications in most workload combinations. However, in thd+lr and thd+lesq workload
combinations, DAgger meets the performance requirements of thd only for 5% of the total execution
time. In both these combinations, DAgger maps thd to the big cluster to meet its high-performance
requirements. However, it applies DVFS settings as per lr to achieve energy conservation, which
leads to performance violations of thd.
Both the standard governors aggressively scale the CPU frequency and reactively update the

mapping configuration to meet the performance requirements. This results in performance over-
compensation in most workload combinations, as shown in Figure 8 (b). However, the performance
is below the requirements with power-hungry workloads such as thd+lr and thd+lesq. In these cases,
aggressive DVFS is warranted by TDP constraint, demonstrating the limitations of exclusively
using traditional power knobs.
In the aforementioned intensive workload combinations, our proposed strategy can meet the

performance of thd by reducing the frequency level to avoid power violations and by approximating

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 21

thd at a 6% accuracy loss. The effectiveness is further demonstrated in Figure 8 (b), showing the
performance violations (performance below𝑇𝑃𝑚𝑖𝑛 and above𝑇𝑃𝑚𝑎𝑥 ) achieved with other strategies
versus accuracy loss due to approximation with the proposed strategy. Our policy opportunistically
trades off accuracy at a minimal level, coordinating power/performance decisions to prevent
performance violations.
Figure 8 (c) shows the average power consumption with different strategies for the selected

workload combinations. Both AdaMD and DAgger have relatively lower power consumption
in general due to conservative resource allocation based on the first arriving application. Both
governors have relatively higher power consumption with reactive frequency scaling to meet the
performance requirements. Our strategy has relatively higher power consumption since it exploits
the available power budget to meet the performance requirements within the TDP limit.

For example,AdaMD andDAgger incur lower power consumption for thd+lr and thd+lesq, causing
though significant performance violations. In the same workload combinations, the proposed
approach is characterized by relatively higher power consumption, still within the TDP constraint,
while meeting the performance requirements. In other workload combinations such as fe+kM,
AdaMD has higher power consumption by running both the applications on the same cluster,
while both the governors also have higher power consumption by increasing the frequency to
compensate for the performance. In this case, the proposed approach combines task migration and
approximation on kM, meeting performance requirements while minimizing power consumption.
(b) Running 3-applications concurrently. In this scenario, the first application starts at t=0,
the second and third ones arrive at t=20s, and t=40s, respectively. We experiment with eight
different workload combinations (viz., 2 serial and 1 parallel app, 2 parallel, and 1 serial app)
running concurrently, creating diverse workload scenarios of variable power and performance
demands. Figure 9 (a) shows the performance requirements met (%) for individual applications in
each workload combination with different strategies. Our proposed policy meets the performance
requirements in all of the combinations (shown in red dashed line). In contrast, the other strategies
can only meet the performance constraints of two combinations viz., fe+knn+lr and lr+lesq+kM.
Both AdaMD and DAgger are unable to meet the performance of multiple applications in the
workload combinations knn+thd+lesq, fe+thd+lesq, fe+thd+kM, fe+kM+lr, and fe+lr+lesq. Also, the
standard governors fail to meet the performance requirements of at least 1 application in most
workload combinations. It should be noted that the governors typically over-compensate for one
application on an arbitrary cluster while inevitably degrading the performance of the application(s)
on the other cardinal cluster due to TDP constraints. With AdaMD and DAgger, the first arriving
parallel application is mapped on the big cluster, while the second and third ones are mapped
on the LITTLE cluster. This generally leads to performance degradation of subsequently arriving
application(s). Specifically, the subsequently arriving thd application suffers (e.g., knn+thd+lesq,
fe+thd+lesq, and fe+thd+kM), since the LITTLE cluster is inadequate in meeting its performance
requirements. In this scenario, the proposed policy (i) maps thd application on LITTLE cluster and
approximates 3-6% to cater the performance requirements, (ii) migrates it to the big cluster when
free cores are available and restores accuracy levels, and (iii) actuates DVFS to ensure that thd
performance is met under the power budget.

With an intensive workload of 3 concurrent applications, our approach exploits accuracy trade-
offs tomeet performance requirements under power constraints, while the other strategies inevitably
degrade the performance of one or more applications. Figure 9 (b) shows for each workload
combination the performance violations (%) for the different strategies versus accuracy loss for
the proposed approach. Figure 9 (c) shows the power consumption of each strategy. The proposed
approach efficiently uses the available power budget to meet the performance requirements without
causing any violation. BothAdaMD andDAgger have relatively lower power consumption guided by

, Vol. 1, No. 1, Article . Publication date: March 2025.



22 Zain et al.

Table 3. Efficiency of the proposed strategy against state-of-the-art for benchmark applications.

Strategy Averge power (W) Power Viol. (%) Performance viol. (%) Accuracy loss (%)

knn fe thd kM lesq lr knn fe thd kM lesq lr
AdaMD 3.7 1.14 0 34 37 0 14 49 0 0 0 0 0 0
DAgger 3.2 0.25 0 100 5 0 100 0 0 0 0 0 0 0
HMP_O 3.86 13.94 30 100 0 0 0 0 0 0 0 0 0 0
HMP_I 4.03 11.52 100 25 0 0 0 0 0 0 0 0 0 0
Proposed 4.05 0 0 0 0 0 0 0 0 0 6 7 0 0

offline profiling, however, resulting in significant performance violations. The standard governors,
on the other hand, have a higher power consumption with reactive DVFS scaling, yet resulting in
both performance over- and under-compensation.
(c) Running multiple concurrent applications. In this scenario, we created a dynamic workload
by concurrently running 1-6 randomly selected applications. Figure 10 (a) shows the run-time
performance of each application with different strategies, along with the minimum and maximum
performance requirements (red dashed lines). For the proposed strategy, the execution period where
the approximation is dynamically invoked is also highlighted.

The workload begins at t=0s with the entry of knn application, which is mapped on the big cluster
by all strategies based on performance demands. At t=45s, fe arrives, and all strategies map it on
the LITTLE cluster with free cores. While the other strategies violate the performance requirements
of fe on the LITTLE clusters, the proposed strategy proactively approximates fe (shown in the
pink shaded box in Figure 10 (a)) to meet the performance requirements. At t=60s, knn finishes
execution, freeing up resources on the big cluster. At this point, the proposed strategy migrates
fe to the big cluster and recovers fe from approximation to restore accurate execution. Similarly,
AdaMD maps fe on the big cluster to achieve performance, while fe continues under-performing on
the LITTLE cluster for DAgger because it does not support task migration. At t=80s, thd arrives; the
proposed strategy and AdaMD map it on the LITTLE cluster, while DAgger maps it on the big. The
proposed policy once again invokes approximation to meet the performance requirements of thd,
while AdaMD violates the performance requirements. At t=105s, fe completes execution with the
proposed and AdaMD strategies, freeing up the big cluster. Both strategies migrate thd to the big
cluster to meet its performance, while the proposed policy also recovers from approximation. At
t=190s, kMeans arrives; the proposed strategy maps it on four free cores of LITTLE, while DAgger
and AdaMD maps it on 3 cores of big cluster. Since both thd and kMeans are running on big cluster
with AdaMD and DAgger, a load unbalance is created due to unequal performance requirements.
Thus high CPU frequency to compensate the performance of power-intensive thd overcompensates
the performance of kMeans. At t=220s, thd finishes executing the proposed strategy, while lesq
arrives into the system. The proposed strategy maps lesq on the free cores of the big cluster, while
DAgger and AdaMD map lesq on free cores of LITTLE where the application under-performs. At
t=190s, thd and kMeans finish execution with AdaMD, and it migrates lesq to the big cluster to
meet its performance. Finally, lr arrives at t=255s, the proposed policy: (i) reduces the DoP of lesq
to three big cores to make room for the lesq, (ii) increases CPU frequency of big, (iii) adjusts CPU
quota of both applications and (iv) maps lr on the free core on the big cluster. AdaMD maps lr on a
free core of LITTLE and waits for lesq to finish execution on the big cluster to migrate lr to big.
Finally, kMeans finishes executing with DAgger, and it maps lr on the free big core. The governors
map the applications on both clusters and increase the CPU frequencies aggressively to meet the

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 23

Fig. 10. Per-application performance with different strategies under dynamic workload combination on
Odroid XU3.

, Vol. 1, No. 1, Article . Publication date: March 2025.



24 Zain et al.

Fig. 11. Comparison of the performance violations, performance met, and accuracy loss for all 5 strategies
when 2 applications run concurrently in 8 different combinations on Tinker board. Note that applications
with 0% performance met rate in (a) have 100% violations in (b)

applications’ performance requirements. For HMP_O, fe is mapped on LITTLE cluster where its
performance suffers throughout the execution. HMP_I maps knn on the LITTLE, also leading to
performance violations.

Table 3 shows performance violations and accuracy loss of all the applications with each strategy.
The average performance violation with other strategies is around 32.5% for knn, 64.75% for fe,
10.5% for thd, 28.5% for lesq, 12.25% for lr, and overall average performance violation of 24.75%. Our
strategy meets the performance requirements in all cases with a minimal overall average accuracy
loss of 2.2% per application across the entire workload (accuracy loss of 6% and 7% for fe and thd
respectively). Figure 10 (b) shows the run-time power consumption for each strategy, with the TDP
set to 5W. The proposed strategy,AdaMD, andDAgger do not incur any power violations, while both
governors result in numerous power violations. DAgger has relatively lower power consumption
with conservative resource allocation but results in significant performance violations. AdaMD
proportionally scales DVFS settings for power actuation, inevitably sacrificing performance under
intensive workload scenarios. Both HMP_O and HMP_I have high power consumption, yet resulting
in frequent performance violations of both over- and under-compensation. The power consumption
of the proposed approach is relatively lower, which is reflected in performance requirements being
met in all scenarios at a minimal accuracy loss.

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 25

Fig. 12. Comparison of the performance violations, performance met, and accuracy loss for all 5 strategies
when 3 applications run concurrently in 8 different combinations on Tinker board. Note that applications
with 0% performance met rate in (a) have 100% violations in (b)

5.2.2 Experiments on Tinker Egde R board. Similar to the previous evaluation, we performed
different experiments by running two, three, and multiple concurrent applications. The three
experiments are discussed in the following.
Running 2-applications concurrently.We repeated the same experiments of the eight combi-
nations of two concurrently running applications on the Tinker Edge R board. Figure 11 shows
the power and performance of the five strategies including performance met (%) in Figure Figure
11 (a), performance violations in Figure 11 (b), and power consumption for each combination in
Figure 11 (c). In most combinations where an application is under-performing, all state-of-the-art
strategies map both the applications on big cluster causing DVFS high enough to violate the TDP.
These strategies scale down the DVFS to avoid the power violations leading to the performance of
either application. Since, there are only two big cores available in the Tinker Edge R board, the
state-of-the-art strategies are unable to exploit DoP to gain performance.

The proposed strategy takes advantage of the CPU quota and approximation to meet the perfor-
mance constraints at a cost of 1/3.5% accuracy loss.
Running 3-applications concurrently.We evaluated the same combinations of the three concur-
rently running applications on the Tinker Edge R board. The performance met of each combination
is shown in Figure 12 (a), the performance violations are shown in Figure 12 (b), and the power
consumption is shown in Figure 12 (c). Typically, the state-of-the-art strategies map the first two

, Vol. 1, No. 1, Article . Publication date: March 2025.



26 Zain et al.

Table 4. Efficiency of the proposed strategy against state-of-the-art for benchmark applications.

Strategy Average power
(W)

Power Viol.
(%)

Performance viol. (%) Accuracy loss (%)

knn fe thd kM lesq lr knn fe thd kM lesq lr
AdaMD 3.63 1.03 18.18 14.29 61.19 0 79.52 100 0 0 0 0 0 0
DAgger 3.0 0.14 6.45 3.63 53.22 0 75.75 100 0 0 0 0 0 0
HMP_O 3.59 0 0 0 83.82 1.23 0 100 0 0 0 0 0 0
HMP_I 3.61 0 0 3.42 92.85 0 0 100 0 0 0 0 0 0
Proposed 3.32 0.0 0 0 0 0 0 0 0 0 4 0 0 3.75

applications on the big cluster to gain performance and map the third application on the LITTLE
cluster. AdaMD and DAgger leverage the DoP of the third application to meet the performance on
LITTLE given that the application is parallel. However, AdaMD is a run-time strategy and actuates
DVFS by continuously monitoring the performance of the applications. However, running three
applications on the Tinker board leads to very high power consumption and these state-of-the-art
strategies reduce the DVFS to avoid the violations. The governors report the highest power con-
sumption for each combination. However, the proposed strategy (i) balances the load by adjusting
the CPU quota of the applications at the big clusters, (ii) increases the DoP of the application at the
LITTLE cluster, and (iii) approximates the application on the LITTLE cluster if the application is
unable to meet the performance. The overall accuracy loss in the proposed strategy varies between
1-3.75% on average.
Running multiple concurrent applications.We evaluated the concurrently running application
experiment on the Tinker board for each strategy. Figure 13 (a) shows the performance of each
application, Figure 13 (b) shows the power consumption of each strategy and Table 4 shows the
summary of power-performance violation and accuracy loss of each strategy. AdaMD maps the
first arriving knn and thd applications on the big cluster, and fe on 4 LITTLE cores. This mapping
configuration causes performance lag of fe. When fe completes execution, kMeans arrives and
occupies the free LITTLE cores. While lesq arrives and gets one big core. When kMeans completes
its execution, knn arrives and gets the free LITTLE core leading to under-performance. Eventually,
lesq, thd, and lr suffer performance loss due to resource constraints. DAgger maps knn on 1B, fe on
4L, and thd on 1B, where thd under-performs. Later, after these applications complete execution,
lesq gets 1B, kMeans gets 3L, and lr gets 1L where lr under-performs. The proposed strategy maps
knn, thd on the big clusters, fe on the LITTLE cluster. thd is approximated with 4% accuracy loss.
KMeans gets 4L, lesq and lr are mapped on the big cluster. lr is approximated at 3.75% accuracy loss
to meet the performance.

6 CONCLUSIONS
We presented a run-time resource management strategy for handling dynamic workloads on em-
bedded HMP architectures. Our approach coordinates power/performance decisions by integrating
run-time approximation with traditional power knobs. We evaluated our RTM strategy against
other relevant strategies using real hardware testbeds of the Odroid XU3, and Tinker Edge R over
dynamic workloads. Our approach ensures performance guarantees and honors the power budget
within an average accuracy loss of 2.2% over diverse workload scenarios, outperforming the other
state-of-the-art solutions. Future work will focus on extending the proposed approach to consider,
(i) advanced heterogeneous multi-core architectures supported hardware accelerators including

, Vol. 1, No. 1, Article . Publication date: March 2025.



Exploiting Approximation for Run-time Resource Management of Embedded HMPs 27

Fig. 13. On Tinker board (a). Per-application performance with different strategies under dynamic workload
combination. (b). Run-time power consumption with different strategies under dynamic workload combination

, Vol. 1, No. 1, Article . Publication date: March 2025.



28 Zain et al.

Graphics Processing Units, GPUs, and Neural Processing Units, NPU, (ii) diverse workload applica-
tions supported by DNN and transformer inference (iii) online design space exploration through
reinforcement learning, (iv) and multi-objective policy-based resource scheduling.

7 ACKNOWLEDGMENTS
This work is supported by the European Union’s Horizon 2020 Research and Innovation Programme
under the Marie Skłodowska Curie grant No. 956090 (APROPOS)

REFERENCES
[1] A. Aalsaud, R. Shafik, A. Rafiev, F. Xia, S. Yang, and A. Yakovlev. Power–Aware Performance Adaptation of Concurrent

Applications in Heterogeneous Many-Core Systems. In Proc. of Intl. Symp. on Low Power Electronics and Design (ISLPED),
pages 368–373, 2016.

[2] D. Angioletti, F. Bertani, B. Bolchini, F. Cerizzi, and A. Miele. A Runtime Resource Management Policy for OpenCL
Workloads on Heterogeneous Multicores. In Proc. of Design, Automation & Test in Europe Conf. & Exhibition (DATE),
pages 1385–1390, 2019.

[3] ARM. Global Task Scheduling. https://developer.arm.com/documentation/den0013/d/big-LITTLE/Software-execution-
models-in-big-LITTLE/Global-Task-Scheduling, 2013. (Accessed on 02/16/2023).

[4] A. Arranz-Gimon, A. Zorita-Lamadrid, D. Morinigo-Sotelo, and O. Duque-Perez. A Review of Total Harmonic Distortion
Factors for the Measurement of Harmonic and Interharmonic Pollution in Modern Power Systems. Energies, 14(20),
2021.

[5] ASUS. Tinker edge r. https://tinker-board.asus.com/series/tinker-edge-r.html, 2024.
[6] K. R. Basireddy, A. K. Singh, B. M. Al-Hashimi, and G. V. Merrett. AdaMD: Adaptive Mapping and DVFS for

Energy-Efficient Heterogeneous Multicores. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
39(10):2206–2217, 2020.

[7] S. Chakraborty, S. Saha, M. Själander, and K. Mcdonald-Maier. Prepare: Power Aware Approximate Real-time Task
Scheduling for Energy-Adaptive QoS Maximization. ACM Trans. on Embedded Computing Systems (TECS), 20(5s):1–25,
2021.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In Proc. of IEEE Intl. Symposium on Workload Characterization (IISWC), pages 44–54, 2009.

[9] S. Conoci, P. Di Sanzo, B. Ciciani, and F. Quaglia. Adaptive Performance Optimization Under Power Constraint in
Multi-thread Applications with Diverse Scalability. In Proc. of ACM/SPEC Intl. Conf. on Performance Engineering (ICPE),
pages 16–27, 2018.

[10] R. R. Curtin et al. MLPACK: A scalable C++ machine learning library. Journal of Machine Learning Research, 14(1):801–
805, 2013.

[11] E. Del Sozzo, G. C. Durelli, E. M. G. Trainiti, A. Miele, M. D. Santambrogio, and C. Bolchini. Workload-aware Power
Optimization Strategy for Asymmetric Multiprocessors. In Proc. of Conf. on Design, Automation & Test in Europe
(DATE), pages 531–534, 2016.

[12] Emanuele Del Sozzo, Gianluca C Durelli, EMG Trainiti, Antonio Miele, Marco D Santambrogio, and Cristiana Bolchini.
Workload-aware power optimization strategy for asymmetric multiprocessors. In 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 531–534. IEEE, 2016.

[13] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt. SPARTA: Runtime task allocation for energy efficient heterogeneous
manycores. In Proc. of Intl. Conf. on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2016.

[14] W. El-Harouni, S. Rehman, B. S. Prabakaran, A. Kumar, R. Hafiz, and M. Shafique. Embracing approximate computing
for energy-efficient motion estimation in high efficiency video coding. In Proc. Design, Automation & Test in Europe
Conf. & Exhibition (DATE), pages 1384–1389, 2017.

[15] U. Gupta, M. Babu, R. Ayoub, M. Kishinevsky, F. Paterna, and U. Y. Ogras. STAFF: online learning with stabilized
adaptive forgetting factor and feature selection algorithm. In Proc. of Design Automation Conf. (DAC), 2018.

[16] U. Gupta, C. A. Patil, G. Bhat, P. Mishra, and U. Y. Ogras. DyPO: Dynamic Pareto-Optimal Configuration Selection for
Heterogeneous MpSoCs. ACM Trans. on Embedded Computing Systems, 16(5s), 2017.

[17] Ujjwal Gupta, Manoj Babu, Raid Ayoub, Michael Kishinevsky, Francesco Paterna, and Umit Y Ogras. Staff: Online
learning with stabilized adaptive forgetting factor and feature selection algorithm. In Proceedings of the 55th Annual
Design Automation Conference, pages 1–6, 2018.

[18] Hardkernel co. ODROID. http://www.hardkernel.com, 2015. Accessed: 2022-09-01.
[19] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agarwal. Application Heartbeats: A Generic Interface

for Specifying Program Performance and Goals in Autonomous Computing Environments. In Proc. of Intl. Conf. on

, Vol. 1, No. 1, Article . Publication date: March 2025.

https://developer.arm.com/documentation/den0013/d/big-LITTLE/Software-execution-models-in-big-LITTLE/Global-Task-Scheduling
https://developer.arm.com/documentation/den0013/d/big-LITTLE/Software-execution-models-in-big-LITTLE/Global-Task-Scheduling
https://tinker-board.asus.com/series/tinker-edge-r.html
http://www.hardkernel.com


Exploiting Approximation for Run-time Resource Management of Embedded HMPs 29

Autonomic Computing (CAC), pages 79–88, 2010.
[20] A. Kanduri, M.-H. Haghbayan, A. M. Rahmani, P. Liljeberg, A. Jantsch, H. Tenhunen, and N. Dutt. Approximation

knob: Power Capping meets energy efficiency. In Proc. of ACM/IEEE Intl. Conf. on Computer-Aided Design (ICCAD),
pages 1–8, 2016.

[21] A. Kanduri, M.-H. Haghbayan, A. M. Rahmani, P. Liljeberg, A. Jantsch, H. Tenhunen, and N. Dutt. Accuracy-Aware
Power Management for Many-Core Systems Running Error-Resilient Applications. IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, 25(10):2749–2762, 2017.

[22] A. Kanduri, A. Miele, A. M. Rahmani, P. Liljeberg, C. Bolchini, and N. Dutt. Approximation-aware Coordinated
Power/Performance Management for Heterogeneous Multi-cores. In Proc. of Design Automation Conf. (DAC), pages
68:1–68:6, 2018.

[23] A. Karatzas and I. Anagnostopoulos. OmniBoost: Boosting Throughput of Heterogeneous Embedded Devices under
Multi-DNN Workload. In Proc. of ACM/IEEE Design Automation Conf. (DAC), pages 1–6, 2023.

[24] H. Khdr, S. Pagani, E. Sousa, V. Lari, A. Pathania, F. Hannig, M. Shafique, J. Teich, and J. Henkel. Power Density-Aware
Resource Management for Heterogeneous Tiled Multicores. IEEE Trans. on Computers, 66(3):488–501, 2017.

[25] X. Li, L. Mo, A. Kritikakou, and O. Sentieys. Approximation-Aware Task Deployment on Heterogeneous Multicore
Platforms With DVFS. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 42(7):2108–2121, 2023.

[26] S. K. Mandal, G. Bhat, C. A. Patil, J. R. Doppa, P. P. Pande, and U. Y. Ogras. Dynamic Resource Management of
Heterogeneous Mobile Platforms via Imitation Learning. IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
27(12):2842–2854, 2019.

[27] A. Miele, A. Kanduri, K. Moazzemi, D. J., A.-M. Rahmani, N. D. Dutt, P. Liljeberg, and A. Jantsch. On-chip dynamic
resource management. Foundations and Trends® in Electronic Des. Automation, 13(1-2):1–144, 2019.

[28] P. Greenhalgh, ARM. Big.LITTLE Processing with ARM Cortex™-A15 & Cortex-A7 – white paper, 2011.
[29] D. Palomino, M. Shafique, A. Susin, and J. Henkel. Thermal optimization using adaptive approximate computing for

video coding. In Proc. Design, Automation & Test in Europe Conf. & Exhibition (DATE), pages 1207–1212, 2016.
[30] M. Rapp, M. Bakr Sikal, H. Khdr, and J. Henkel. SmartBoost: Lightweight ML-Driven Boosting for Thermally-

Constrained Many-Core Processors. In Proc. of ACM/IEEE Design Automation Conf. (DAC), pages 265–270, 2021.
[31] Martin Rapp, Anuj Pathania, Tulika Mitra, and Jörg Henkel. Neural network-based performance prediction for task

migration on s-nuca many-cores. IEEE Transactions on Computers, 70(10):1691–1704, 2020.
[32] Martin Rapp, Mohammed Bakr Sikal, Heba Khdr, and Jörg Henkel. Smartboost: Lightweight ml-driven boosting for

thermally-constrained many-core processors. In 2021 58th ACM/IEEE Design Automation Conference (DAC), pages
265–270. IEEE, 2021.

[33] E. Shamsa, A. Kanduri, P. Liljeberg, and A. M. Rahmani. Concurrent application bias scheduling for energy efficiency
of heterogeneous multi-core platforms. IEEE Trans. on Computers, 71(4):743–755, 2021.

[34] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard. Managing Performance vs. Accuracy Trade-Offs
with Loop Perforation. In Proc. of ACM Symp. and European Conf. on Foundations of Software Engineering (ESEC/FSE),
pages 124–134, 2011.

[35] A. K. Singh, A. Prakash, K. R. Basireddy, G. V. Merrett, and B. M. Al-Hashimi. Energy-Efficient Run-Time Mapping and
Thread Partitioning of Concurrent OpenCL Applications on CPU-GPU MPSoCs. ACM Trans. on Embedded Computing
Systems, 16(5s):147:1–147:22, 2017.

[36] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali. Proactive Control of Approximate Programs. In Proc. of Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 607–621, 2016.

[37] C. Tan, T. S. Muthukaruppan, T. Mitra, and L. Ju. Approximation-aware scheduling on heterogeneous multi-core
architectures. In Proc. of Asia and South Pacific Design Automation Conf. (ASP-DAC), pages 618–623, 2015.

[38] Z. Taufique, A. Kanduri, M. A. Bin Altaf, and P. Liljeberg. Approximate Feature Extraction for Low Power Epileptic
Seizure Prediction in Wearable Devices. In Proc. of IEEE Nordic Circuits and Systems Conf. (NorCAS), pages 1–7, 2021.

[39] Zain Taufique, Aman Vyas, Antonio Miele, Pasi Liljeberg, and Anil Kanduri. Tango: Low latency multi-dnn inference
on heterogeneous edge platforms. In 2024 IEEE 42nd International Conference on Computer Design (ICCD), pages
300–307, 2024.

[40] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and T. Mitra. High-Throughput CNN Inference on
Embedded ARM Big.LITTLE Multicore Processors. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 39(10):2254–2267, 2019.

[41] Y. Wu, Y. Gong, Z. Zhan, G. Yuan, Y. Li, Qi Wang, C. Wu, and Y. Wang. MOC: Multi-Objective Mobile CPU-GPU
Co-Optimization for Power-Efficient DNN Inference. In Proc. of ACM/IEEE Intl. Conf. on Computer Aided Design
(ICCAD), pages 1–10, 2023.

, Vol. 1, No. 1, Article . Publication date: March 2025.


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Knob Actuation Dynamics
	2.2 Error Resilience Considerations
	2.3 Example Scenarios
	2.4 Related Work

	3 Resource Management Framework
	4 The Proposed Policy
	4.1 Run-time Approximation Control
	4.2 Policy Workflow
	4.3 The Decision Strategy
	4.4 Power and Performance Models

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusions
	7 Acknowledgments
	References

