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Abstract—Compound AI (cAI) systems chain multiple AI models
to solve complex problems. cAI systems are typically composed of
deep neural networks (DNNs), transformers, and large language models
(LLMs), exhibiting a high degree of computational diversity and dynamic
workload variation. Deploying cAI services on mobile edge platforms
poses a significant challenge in scheduling concurrent DNN-transformer
inference tasks, which arrive dynamically in an unknown sequence.
Existing mobile edge AI inference strategies manage multi-DNN or
transformer-only workloads, relying on design-time profiling, and cannot
handle concurrent inference of DNNs and transformers required by cAI
systems. In this work, we address the challenge of scheduling cAI systems
on heterogeneous mobile edge platforms. We present Twill, a run-time
framework to handle concurrent inference requests of cAI workloads
through task affinity-aware cluster mapping and migration, priority-
aware task freezing/unfreezing, and Dynamic Voltage/Frequency Scaling
(DVFS), while minimizing inference latency within power budgets. We
implement and deploy our Twill framework on the Nvidia Jetson Orin
NX platform. We evaluate Twill against state-of-the-art edge AI inference
techniques over contemporary DNNs and LLMs, reducing inference
latency by 54% on average, while honoring power budgets.

Index Terms—Deep Neural Networks, transformers, Large Language
Models, Inference and Compound AI

I. INTRODUCTION

AI applications are rapidly evolving from monolithic models
towards Compound Artificial Intelligence (cAI) systems, which inte-
grate multiple task-specific models and components to solve complex
problems [1]–[3]. Emerging cAI systems combine Large Language
Models (LLMs) with Deep Neural Networks (DNNs) for providing
novel services such as conversational language agents [2]–[5], aug-
mented and virtual reality (AR/VR) gear, and interactive autonomous
vehicles [6]. cAI systems offer compositional flexibility by selectively
chaining multiple transformer (both encoder and generative) and
DNN models at run-time [7], [8]. Figure 1(a) shows a conceptual
example of a cAI workload designed as a task graph for generating a
maintenance report from the input images and text given by the user.
In this example, DNN models (D1: VGG-19 and D2: ResNet-152)
are used for image classification, and object detection, transformer
models (T1: Bert-base and T2: Bert-large) are used for
text summarizing and classification, and generative transformers (T3:
OPT-350M and LLM: Deepseek-R1) are used for reasoning and re-
port generation. Each model is responsible for extracting key features
from the given input and sending the output to the subsequent models
to perform collaborative tasks. T1, D1, and D2 are exclusive inference
tasks that can run simultaneously, while T2, T3, and LLM are
dependent on the outputs of other models. We deployed the exemplar
cAI system on the Nvidia Jetson Orin NX platform. Figure 1(b) shows
performance demands (in GFlops) of the exemplar cAI system. In this
example, cAI system requires concurrent execution of (i) multiple
DNN and a transformer (t = 0s - 0.9s), (ii) multiple DNN and a
generative transformer (t = 0.9s - 1.2s), and (iii) multiple generative
transformers (t = 1.2s - 1.5s). This demonstrates a high degree

Fig. 1. Exemplar cAI system. (a) Task graph for cAI system chaining multiple
models, (b) Run-time workload variation and compute diversity.

of computational diversity and dynamic workload variation with
cAI systems. Thus, the primary requirement for implementing cAI
systems is concurrent execution of transformers and DNN models,
where inference requests are computationally diverse and variable at
run-time based on user requirements [7], [8]. On the other hand, there
is an increasing demand to deploy cAI inference services on user-
end mobile and edge platforms to address the latency, bandwidth,
and privacy challenges of the cloud infrastructure [9]. However,
running cAI workloads on heterogeneous mobile edge platforms
poses significant challenges in scheduling concurrent execution of
transformers and DNNs while reducing inference latency within the
power constraints [10].

Despite being extremely resource-constrained, mobile edge plat-
forms support AI inference services through powerful mobile GPUs
and domain-specific Deep Learning Accelerators (DLAs) [9]–[11].
For example, smart phones [12], smart glasses (e.g. Ray-ban
Meta [13]) and AR gear (e.g. Apple Vision Pro [14]) etc., integrate
GPUs and DLAs, such as Neural Processing Units (NPUs) or
Tensor Processing Units (TPUs) [15]. Existing edge AI orchestration
techniques have optimized scheduling of multi-DNN workloads [11],
[16]–[19] and transformer models [20], [21] on mobile platforms with
GPUs and DLAs. Some of these techniques do not consider trans-
former models and/or DLAs [16]–[19], [22]. Using these techniques
for cAI systems results in significantly higher latency and power
consumption, suffering from shared resource contention by mapping
both DNN and transformer models on the GPU cluster. Techniques
that consider transformer models and DLAs [10], [21], [23] ignore the
lack of operation-level support for transformers on DLAs. Existing
DLAs are optimized specifically for DNNs and do not support the
majority of key operations required for transformer inference [24],
[25]. Executing a transformer inference on DLAs leads to frequent
GPU fallbacks, i.e., moving the execution of operations that are
unsupported on the DLA to the GPU. This causes heavy memory
access overhead and results in significantly higher inference latency.
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With a lack of operator support on DLA, existing techniques execute
transformer models inevitably on the GPU [21], [23]. Running
transformers on the GPU is a fair choice, as long as a standalone
transformer model inference is required. However, cAI workloads
require concurrent execution of multiple DNNs and transformers. A
trivial solution is to map DNNs on DLA and transformers on GPU;
however, this approach is suitable only when the order of inference
requests is known at design time. For example, consider a scenario
where a transformer inference request arrives when a DNN is already
running on the GPU. In this case, the transformer inference request
is either queued until the DNN inference task is completed, or both
DNN and transformer run concurrently on the GPU, suffering shared
resource contention. With no consideration on operator-level support
and the need for concurrent DNN-transformer execution, existing
edge AI inference techniques are not adaptable for cAI workloads.

Orchestrating cAI workloads requires a run-time adaptive schedul-
ing strategy that considers dynamic inference requests and mi-
grates diverse inference tasks among GPU and DLA clusters to
minimize overall inference latency. In this work, we address the
challenge of scheduling cAI workloads through model affinity and
priority-aware task-to-cluster mapping and migration. We present
Twill, a novel framework for run-time partitioning, distribution,
and scheduling of cAI workloads for heterogeneous mobile edge
platforms. We analyze each inference request to determine the
affinity of a model towards a cluster and schedule concurrent
inference requests on feasible clusters to minimize latency. Our
approach adaptively migrates inference requests among feasible
clusters and/or freezes inference requests based on priority to ac-
commodate other concurrently running inference tasks. Further, we
monitor the run-time power consumption and actuate Dynamic Volt-
age/Frequency Scaling (DVFS) to honor Thermal Design Power
(TDP) constraint. We implemented and deployed the Twill framework
on the Jetson Orin NX embedded platform and evaluated over
contemporary cAI workloads comprising of widely used DNNs
(VGG-19, ResNet-152, and EfficientNet-b4), transformer
(Bert-base, Bert-large, ViT-base, and ViT-large)
models, and LLMs (Deepseek-R1, Gemma-3). Our novel con-
tributions are:

• Twill, a run-time framework for partitioning, distribution, and
scheduling of cAI workloads on heterogeneous mobile edge
platforms.

• Online heuristic model for profiling DNN, transformer, and LLM
inference requests to determine affinity of the inference task
towards a compute cluster (GPU/DLA).

• Inference task-to-cluster mapping and migration, and priority-
aware task freezing for concurrent execution of DNN, trans-
former, and LLM inference requests, and DVFS actuation for
power capping.

• Evaluation of Twill on commercial edge AI platform Jetson Orin
NX using contemporary cAI workloads.

Manuscript Organization: Section II provides background and moti-
vation for our proposed approach, Section III presents an overview
of our run-time management framework infrastructure, Section IV
presents an evaluation of our proposed solution against other relevant
strategies, followed by conclusions in Section V.

II. BACKGROUND AND MOTIVATION

A. Impact of scheduling on cAI workloads

Figure 2 presents a realistic cAI workload example of a multi-
linguistic translation application on a Virtual Reality (VR) gear

Fig. 2. Inference latency of cAI system across different execution strategies

platform that uses the VGG-19 [26] model to detect the text and
Bert-large transformer [27] for translation to a required language.
For simplicity of demonstration, we chose cAI workload with two
models that have no dependencies; in general, cAI workloads can
be composed of several diverse models with data dependencies. In
this example, the user generates run-time inference requests based
on his/her activity, and the arrival time of these requests is unknown
to the baseline platforms at design time. In Figure 2, we compare
three workload scheduling strategies for inferring VGG-19 and
Bert-large on the Nvidia Jetson Orin NX platform [28] that
includes CPU, GPU, and DLA clusters. In this example, we set
the batch size of VGG-19 model to 32 images, the input sequence
length of Bert-large to 128 tokens, and the minimum inference
latency to 400ms, representing a real-world scenario. Strategy-1 is
representative of existing multi-DNN scheduling strategies [16]–[18]
that map both applications on GPU. Here, Bert-large has to
wait for the execution of VGG-19 to use the GPU resources ex-
ceeding the minimum latency requirement. Strategy-2 maps VGG-19
to DLA and Bert-large to GPU while increasing the GPU
frequency. Here, Bert-large meets the latency requirements while
VGG-19 is lagging due to the low performance of DLA. Strategy-
2 is representative of state-of-the-art edge AI inference techniques
that handle transformer models [10], [22], [23]. Finally, Strategy-3
(representative of proposed Twill approach) successfully meets the
latency requirements by (i) partitioning and mapping VGG-19 on
DLA, (ii) mapping Bert-large on GPU, and (iii) re-allocating the
GPU resources to VGG-19 once Bert-large finishes execution.
It should be noted that the scheduling strategies primarily map the
inference requests to GPU and DLA clusters, since CPUs have
extremely high latency for such computationally-intensive workloads.

B. Dynamics of scheduling DNN-Transformer concurrently

Scheduling DNN and transformer models concurrently requires
joint actuation of cluster migration, run-time task freezing/unfreezing,
and DVFS. We demonstrate the efficacy of each knob actuation setting
under different workload scenarios and scheduling strategies. We use
DNNs ResNet-152 and VGG-19, and transformer Bert-base,
which are run on the Jetson Orin NX platform.
Scenario-1. Figure 3(a) shows workload scenario where a DNN
model ResNet-152 is running on GPU and inference request
for transformer Bert-base arrives at t = 0.4s. The SoA ap-
proaches [10], [17], [22], [23] lack affinity awareness, and map
the incoming Bert-base on the available DLA cluster. How-
ever, Bert-base falls back to the GPU due to a lack of oper-
ator support. At this point, if GPU memory is insufficient to run
both ResNet-152 and Bert-base, Bert-base is queued until
ResNet-152 finishes execution. This results in higher inference
latency of Bert-base. If sufficient GPU memory is available,



Fig. 3. Various knob actuation scenarios, highlighting lack of priority and
affinity adjustments at runtime in SoA strategies.

both inference tasks will run on the GPU; however, this still leads
to higher inference latency of both tasks due to shared resource
contention. In contrast, our proposed strategy considers the affinity of
Bert-base towards GPU upon on arrival of the inference request.
Consequently, (i) ResNet-152 is migrated to DLA to accommodate
the transformer model on GPU, (ii) Bert-base is mapped onto the
GPU, (iii) ResNet-152 is migrated to GPU once Bert-base
finishes the execution at t = 0.71s, freeing up the GPU cluster. This
approach minimizes the overall inference latency and waiting time in
the execution queue, while maximizing resource utilization.
Scenario-2. Figure 3(b) shows workload scenario where two DNN
models viz., ResNet-152 on GPU and VGG-19 on DLA are con-
currently running, and inference request for transformer Bert-base
arrives at t = 0.4s. In this scenario, both GPU and DLA clusters
are busy, and memory utilization is relatively higher. Under this
workload, SoA approaches [18], [22], [23], without dynamic map-
ping/migration capabilities, queue Bert-base until Resnet-152
completes execution on GPU. Inevitably, this leads to higher waiting
time in the execution queue and inference latency of Bert-base. In
this case, our proposed strategy considers both affinity and priority
of the Bert-base model. We prioritize inference of transformer
models that operate on a single contextual text prompt over DNNs
that operate on batches of input images. Upon on arrival of the infer-
ence request, affinity of Bert-base is towards GPU and priority of
Bert-base is higher. Unlike Scenario-1, Resnet-152 cannot be
migrated to DLA, since DLA is occupied by VGG-19. Hence, our
approach (i) freezes the execution of ResNet-152 to accommodate
Bert-base on GPU, (ii) Bert-base is mapped onto the GPU,
(iii) ResNet-152 is unfreezed and resumes execution on GPU once
Bert-base finishes the execution at t = 0.71s, (iv) Frequency of
GPU is scaled up within the power constraints to address the perfor-
mance loss of ResNet-152 during task freezing. Our approach thus
handles dynamic workload variation while minimizing the overall
inference latency within the power constraints.

TABLE I
COMPARISON OF RUNTIME TECHNIQUES

Related Work [21] [18] [17] [16] [23] [22] Twill

Unknown app arrival ✗ ✗ ✗ ✓ ✗ ✗ ✓

Run-time exploration ✓ ✓ ✗ ✓ ✗ ✗ ✓

DLA clusters ✗ ✗ ✗ ✗ ✓ ✓ ✓

Task freezing ✗ ✗ ✗ ✗ ✗ ✗ ✓

Model partitioning ✗ ✗ ✗ ✗ ✓ ✓ ✓

Cluster migration ✗ ✗ ✗ ✗ ✗ ✗ ✓

DVFS tuning ✗ ✓ ✗ ✓ ✓ ✓ ✓

Encoder Transformer ✓ ✗ ✗ ✗ ✓ ✗ ✓

LLMs ✗ ✗ ✗ ✗ ✗ ✗ ✓

DNN workloads ✗ ✓ ✓ ✓ ✓ ✓ ✓

C. Related Work

Widely used strategy for multi-DNN inference on heterogeneous mo-
bile platforms is to partition DNN into convolution blocks and execute
them in a pipelined manner among different clusters [19]. A similar
approach has also been employed to pipeline transformer models [21],
by splitting transformer encoder blocks across different clusters to
maximize throughput. However, both these approaches [19], [21] are
confined to asymmetric CPUs and do not consider GPUs or DLAs.
Edge AI inference techniques such as Omniboost [17] extend pipelin-
ing across CPU and GPU clusters, while MOC [18] proposes a multi-
objective deep reinforcement learning agent that controls CPU cores
and CPU/GPU frequencies. Tango [16] also uses a PPO-based RL
agent for multi-DNN workloads to explore accuracy-performance-
energy trade-offs to minimize inference latency. Moreover, Band [10]
demonstrated DNN partitioning across CPU, GPU, and NPU by
generating subgraphs for DNNs. However, it only considers basic
operators’ support for DNNs, overlooking advanced operator support
for transformers on DLA. Kim et al. [29] enhance multi-DNN
workload scheduling by incorporating ML-based contention predic-
tion, whereas RankMap [30] demonstrates a priority-aware multi-
DNN manager that prevents DNN starvation under heavy execution
loads. The aforementioned strategies primarily target CPU-GPU
architectures, focusing on workload partitioning between different
clusters. Advanced edge AI inference techniques have used domain-
specific accelerators such as DLAs, TPUs, and NPUs. Kim et al. [31]
explore CPU, GPU, and NPU resource allocation under varying
latency constraints at runtime while minimizing energy consumption
of the system. Axonn [32] focuses on distributing DNN layers based
on energy and performance trade-offs across GPU-DLA clusters.
HaX-CoN [22] introduces shared memory contention-aware layer
grouping and modeling inter-DSA layer transitions using a processor-
centric slowdown model, to predict performance degradation. Map-
Former [23] extends this by incorporating CPU, GPU, and DLA to
support multi-DNN workloads, including transformer-based through-
put and power estimation with DVFS. Aforementioned multi-DNN
scheduling strategies focus on: (i) unimodal DNN workloads for ho-
mogeneous tasks such as image classification and text classification,
(ii) solutions tailored for fixed design-time systems, and (iii) do not
consider run-time arrival of DNNs/Transformers/LLMs workloads.
Twill addresses these limitations through run-time adaptive scheduling
of cAI systems with (i) affinity-aware cluster migration between
GPU/DLA, (ii) priority-aware task freezing, and (iii) adaptive DVFS
for power capping.

III. TWILL FRAMEWORK

We have designed Twill as an online scheduling framework to
deploy cAI inference workloads on heterogeneous multi-core plat-
forms hosting CPU, GPU, and DLA. The platform receives run-
time inference requests from the user, performs online heuristics



Fig. 4. Twill Framework including Model Interpreter to analyze the model-cluster affinity and Controller module performing run-time control knobs actuation.

exploration, and actuates the defined knobs to minimize the overall
latency while guaranteeing a given power budget. As shown in
Figure 4, the Twill framework includes two main modules, namely
Model Interpreter and Controller. The Model Interpreter performs
online profiling to characterize each inference request. The interpreter
includes a Model analyzer to extract information from the model files,
and a Compatibility matrix to check the compatibility of the model
layers with the available clusters. For each inference request, the
Model Interpreter extracts the characterization of the executed model
and creates a Signature map required for making actuation decisions.
The Controller monitors the Signature maps, and the system status to
make actuation decisions based on a set of defined actuation knobs
and a heuristic algorithm. Then, the Controller applies the workload
and system configuration based on the actuation decision and contin-
ues monitoring the workload performance. Different modules of the
Twill framework are detailed in the following.

A. Platform

We consider heterogeneous hardware platforms for edge/embedded
computing, including multiple computing clusters; in particular, we
focus on the Nvidia Jetson device family hosting CPU, GPU, and
DLA. Each cluster is provided with a DVFS knob, with the only
exception of the DLA in the platform considered in our experimental
results, and the per-board power sensor. The platform runs a standard
Operating System (OS) as Linux, providing communication between
the software modules to send and receive data and system commands.
Specifically, the OS exposes interfaces for hardware control and
application execution on various clusters. Platform-specific run-time
frameworks are provided for executing applications on GPU and
DLA. We restrict the platform’s power consumption to the TDP limit,
avoiding any physical damage to the board at a high temperature.

B. Workloads

Twill targets the execution of cAI workloads representing a diverse
set of DNN and transformer models collaborating to compute a global
output. These models execute different cognitive image and text
processing tasks, including classification, detection, and generation.
Moreover, the inference tasks may be (i) continuous inferences on
streaming input data, such as sequences of images taken from a
camera, (ii) single generation requests, e.g., of text outputs, or (iii)
hybrid. Models in a single cAI workload may have data/precedence
dependencies among each other that can be represented as a task
graph; in fact, inference of some models is possibly triggered based
on the outputs of a preceding model. Even if the overall task
graph of the cAI workload is known at design time, the actual
execution presents several aspects that are dependent on the specific
workload run and are unpredictable beforehand. In particular, the
actual inference request to each model is specified at run-time based

Fig. 5. Supported operations on GPU and DLA clusters of Orin NX platform.

on the user requests or the results of the previous models in the task
graph. This means that the execution time of each executed model
is highly variable, for instance, based on the length of the input data
stream to be processed by a DNN or on the complexity of a generative
request. As a consequence, the timing of all dependent models is
affected. Therefore, the system experiences an unknown workload
composed of multiple running models mixing DNNs, transformers,
and LLMs, each one arriving asynchronously.

C. Model Interpretation

We design a model interpretation strategy as an online application
profiling mechanism that creates a Signature map of the given
inference requests for the Controller to schedule the cAI workload.
Model analyzer. We use a Model analyzer that parses the input
ONNX file describing the deep learning model using the ONNX-
runtime library [33] to extract the layer information and metadata
of the model. The Model Analyzer also receives a user-defined appli-
cation priority, enabling the Controller to select suitable candidates
for making scheduling decisions while facing resource contention
scenarios. Application priority is a user-defined parameter that can
be configured based on cAI workload requirements. For example,
typical cAI systems prioritize user-driven prompt-based LLMs and
transformers over DNNs that run on streaming batches of inputs. We
designed the Twill framework to maneuver the workload scheduling
decisions based on the changing application priorities. The Model
analyzer formulates an application profiling table (App_profile)
including the extracted model information and application priority.
The App_profile table includes elaborate model information,
including model 1) name, 2) total parameters, 3) total layers, 4) total
floating point operations, 5) layer types, 6) layer operation types, 7)
layer-level input and 8) output sizes, and 9) activation functions.
Comparability Matrix. We formulate a DLA compatibility matrix
(dla_matrix) from the official reference manual of Jetson Orin



NX [25]. The matrix includes information about the supported
and unsupported operations, precision level, layer types, spatial
dimension, batch size, kernel size, and padding and stride ranges.
Twill requires the cluster compatibility information because the
available cluster can have dedicated support for a limited number
of model operations. We demonstrate the compatibility of inferring
DNN and transformer models on the DLA cluster of Jetson Orin
NX in Figure 5. We separately ran inferences of 2 DNN models
(ResNet50 and VGG-19) and 2 transformer models (Bert-base
and ViT-base) on the DLA cluster. Figure 5 presents layer-wise
operators supported by the DLA and GPU fallback instances for
unsupported operators. Most DNN inference operations of VGG-19
and ResNet-50 are supported on DLA. For transformer models
Bert-base and ViT-base, DLA supports only the pre-processing
and convolution operations, while most of the operations fallback to
the GPU cluster. Therefore, the DLA cluster is more suitable to run
DNN workloads as compared to the transformers.

The DLA supports fixed-function layers required for DNN infer-
ence, including convolution, pooling, activation, and fully connected
layers. The DLA does not support the majority of computational
operations in transformers, including multi-head attention, layer nor-
malization, and advanced activation such as Gelu (Gaussian Error
Linear Unit) [34] [24], [25]. For a model inference, DLAs executes
only the supported operators, and fallbacks to the GPU for running
unsupported operations.
Model Interpreter. The Model Interpreter finds the model-cluster
affinity based on the knowledge extracted from the application profile
and the comparability matrix. The Model Interpreter checks the layer-
to-cluster affinity of each model through a mechanism shown in
Algorithm 1. The algorithm takes as input the application signature
(App_profile) and DLA compatibility profile (dla_matrix).
At the start, the Model Interpreter extracts the layer information from
the application signature table (Line 2) and initializes a compatibility
map (Line 3). The algorithm assigns GPU compatibility by default
(Line 5) for each layer since GPUs can execute all operation types.
The DLACompatible function (Lines 6–8) determines if a layer
can also execute on DLA by checking three key conditions, (i) the
model’s precision must match DLA-supported precisions (Lines 11–
13), (ii) the operation type must not be in the unsupported layer list
(Lines 14–15), and (iii) for convolution and fully-connected layers,
additional parameter constraints must be satisfied including kernel
size, stride, and padding ranges (Lines 15-19). Finally, the Model
Interpreter creates a Signature map for each model, including the per-
layer cluster affinity, layer type, number of floating point operations,
precision, and input-output shapes.

D. Controller

The Twill Controller is the central scheduling mechanism that
monitors the workload and system status, makes actuation decisions
on various system-wide settings, and executes the model inferences.
Conceptually, the controller is a middleware between the running
workload and the hardware architecture. It accesses OS interfaces to
monitor system status, in particular the power consumption and the
current status of the various clusters. Then, it exploits the heartbeats
sent by each running model to monitor their progress.
Control knobs. We defined an advanced set of actuation knobs to
allow the controller to regulate workload deployment and execution;
they are obtained by acting on the OS interface, opportunistically
exploited to override the default OS scheduling and DVFS governors.
The knobs include Affinity-cluster mapping, Cluster migration, Task
freezing, and DVFS. Affinity-cluster mapping is used to bind the

Algorithm 1 Layer-Cluster Affinity Mapping
1: function GETAPPSIGNATURE(App profile, dla matrix)
2: layers← GetLayers(App profile)
3: map← {}
4: for all l ∈ layers do
5: map[l]← {”GPU”} ▷ GPU compatible
6: if DLACompatible(l, dla matrix) then
7: map[l]← map[l] ∪ {”DLA”}
8: return Signature map

9: function DLACOMPATIBLE(l, dla matrix)
10: type← GetType(l)
11: prec← GetPrec(App profile)
12: if prec /∈ dla matrix.SupportedPrecs then
13: return False
14: if type ∈ dla matrix.UnsupportedOps then
15: return False
16: if type = ”Conv2D” ∨ type = ”FC” then
17: if ¬CheckLimits(l, dla matrix) then
18: return False
19: return True

Algorithm 2 Scheduling Policy for Decide phase
1: function DECIDE(event)
2: Pprec ← get power()
3: done← false
4: if event = new appl then
5: appl← get new appl()
6: prio← get appl priority(appl)
7: clusters list← get affinity order(appl)
8: else
9: if freezed queue ̸= ∅ then

10: appl← get max priority appl(freezed queue)
11: prio← get appl priority(appl)
12: clusters list← get affinity order(appl)
13: else
14: cluster ← get freed cluster()
15: running appls← get running appl()
16: appl← get highest affinity app(running appls, cluster)
17: if appl ̸= None then
18: remap(appl, cluster)
19: done← true
20: while !done and clusters list ̸= ∅ do
21: cluster ← pop(clusters list)
22: if is free(cluster) = true then
23: map(appl, cluster)
24: done← true
25: else
26: appl2 ← get appl running on(cluster)
27: prio2 ← get appl priority(appl2)
28: cluster2 ← get subsequent best cluster(appl2)
29: if is free(cluster2) = true then
30: remap(appl2, cluster2)
31: map(appl, cluster)
32: done← true
33: else if prio2 < prio then
34: freeze(appl2, freeze queue)
35: map(appl, cluster)
36: done← true
37: if !done then
38: freeze(appl, freeze queue)
39: else
40: Pcurr ← get power()
41: freqnew ←

TDP−Pprec

Pcurr−Pprec
· get freq(cluster)

42: set freq(cluster, freqnew)

inference request to a selected cluster; we map at most one model
per cluster per time. In Cluster migration, the controller splits the
model layers and allocates the partitioned workload to a new cluster.
Task freezing suspends the execution of a running application to
free resources for another application. DVFS enables frequency level
setting on a selected cluster.
Controller Policy. We designed the Controller as a feedback loop
that runs in three steps, including Analyze, Decide, and Deploy phases



at every control cycle. In the Analyze phase, the Controller waits
for the events of new inference requests or release of a cluster due
to termination or remapping of previously running inferences. The
Controller receives the Signature map of each inference request from
the Model Interpreter and reads the current status of the available
clusters. In the Decide phase, the Controller creates a mapping
configuration for the given workload following a Scheduling policy.
Finally, in the Deploy state, the workload is mapped to the clusters
based on the configuration received from the Decide state.
Analyze. In this phase, the controller waits for an inference request
and transitions to the Decide phase when a new request arrives or
a previously running application completes execution. In case of
a new inference request, the controller receives the Signature map
of each application from Model Interpreter, and the system status,
including cluster availability and GPU frequency level. If a previously
running application completes execution, the controller reads the
system status and transitions to the Decide phase to update the system
configuration. The same event is notified in case an application is
remapped in the previous control cycle.
Decide. In this phase, the Controller decides on the knobs actuation
settings to achieve the minimum latency under a power budget. We
consider TDP as the power budget of the given platform. We have
demonstrated the decision strategy of the Controller in Algorithm 2.
When a new application arrives, the Controller extracts the applica-
tion priority and the list of preferred clusters from the application
signature maps acquired from the Model Interpreter (Lines 4–7).
Otherwise, if the event occurred due to a freed cluster, the Controller
first checks if any high-priority applications are waiting in the freeze
queue and, if so, it gets the application data (Lines 9–12). If the queue
is empty, the system evaluates whether an already-running application
has higher affinity for the freed cluster (Lines 13–16); if so, such an
application is remapped accordingly (Lines 17-19). Finally, if the
algorithm entered the last branch since no application entered and
the freeze queue is empty, the Decide phase is completed.

After identifying the application and its preferred clusters, the
Controller iterates over the cluster list to attempt application-to-
cluster mapping (Line 20–21). If a suitable cluster is available, the
Controller maps the application and exits the Decide phase (Lines 22–
24). If the preferred cluster is occupied, the Controller checks if the
currently-running application can be remapped on a more suitable
free cluster (Lines 26–27), and if this condition is true, the latter
application is remapped and the newly arrived application is mapped
on the freed cluster (Lines 29–32). Alternatively, the Controller
freezes the currently running lower priority application, and puts
it in the freezing queue while making room for the new higher
priority application (Lines 33–36). Finally, if no suitable mapping
has been found, the Controller freezes the new application (Lines 37–
38). After successful application-to-cluster mapping, the Controller
adjusts the frequency of the units provided with DVFS (GPU in our
case), accordingly to maximize the power utilization while avoiding
TDP violations (Lines 39–42). In particular, power measures are
taken before application start (i.e., at the previous control cycle, Line
2) and after the application start (Line 40); then, based to a linear
model exploiting the available power budget and the measured power
variation the new frequency is computed (Lines 41–42). Do note that
in case we also have a remapped appl2, the available power budget
is split among the two handled models.
Deploy. Finally, in the Deploy phase, the Controller deploys the
scheduling configuration with knobs actuation decided in the Decide
phase. The Controller enforces the configuration and transitions to
the Analyze phase, waiting for a new event.

IV. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of our
proposed Twill framework in comparison with state-of-the-art edge
AI inference strategies over relevant cAI workloads.

A. Experimental Setup

Controller prototype. We have implemented the proposed Twill
framework in the Python programming language. The framework runs
as a user-space process in a Linux OS environment. The controller
monitors the run-time power using onboard power sensors.
Platform and middleware. For evaluation, we use the Nvidia Jetson
Orin NX [28] platform, which is composed of an Ampere GPU, an
NVDLA (Nvidia’s DLA), and hexa-core ARM A78 CPUs, along with
8 GB of RAM and GPU memory. The platform has onboard power
sensors for collecting run-time power consumption of CPU, GPU,
and DLA clusters. The platform hosts Linux-20.04 OS with CUDA
support to enable GPU operations, and allows run-time actuation of
GPU DVFS. We enable the default Performance scheduling governor
for the GPU cluster to run our experiments. For our experimentation,
we set TDP as 10W [28]. The average overhead of running the Twill
framework is 15ms on 100% utilization of 1 CPU core of the Orin
NX platform.
Workloads. For experiments, we considered AI models that can
perform image classification, text classification, and text generation
tasks, which can be chained to form widely used cAI systems. We
use the LangChain [7] tool for orchestrating the cAI workload design.
For vision applications, we consider DNNs – VGG-19, ResNet-50,
and EfficientNet-B4 [26], [35], [36] and vision transformer
models – ViT-base, and ViT-large [37]. For text classification,
we consider encoder-based transformer models of Bert-base and
Bert-large [27]. For LLMs, we consider DeepSeek R1 [38] with
1.5 billion parameters and Gemma 3 with 1 billion parameters. We
implement the inference mechanism using the PyTorch [39] frame-
work and torchvision [40]. For transformers, we use the Hugging
Face [41] library, and for LLM inference, we use Ollama [42].
Comparison w.r.t. state-of-the-art approaches. We consider three
State-of-the-Art (SoA) edge AI inference strategies for heterogeneous
platforms, including MapFormer [23], Tango [16], and Band [10].
MapFormer considers multi-DNN workloads for partitioning and
allocating a suitable cluster between GPU and DLA while scaling
the DVFS to manage power and throughput. This strategy makes
design-time mapping decisions, assuming all inference requests arrive
simultaneously. We implemented a transformer-based estimator of
MapFormer that predicts throughput and power consumption dis-
tributions for multi-DNN workloads. Tango is a run-time multi-
DNN workload management strategy on CPU and GPU clusters
using reinforcement learning based exploration. We used Gymnasium
library [43] to implement Tango’s latency estimation model. Band
partitions the multi-DNN workload into subgraphs at design-time,
and maps the subgraphs based on the supported DNN operations on
GPU and NPU clusters. We implemented the Band’s model analyzer
to generate the subgraphs for cluster mapping based on the DNN
operations and FLOP counts.
Evaluation metrics. We measure per-application inference latency,
throughput of the entire workload mix, and the platform’s power
consumption for our experimentation. For DNNs, we measure the
latency as the time required to infer a batch of input images. For
transformers, we measure the latency as the inference of a text
prompt for a classification task. For LLMs, the inference latency
varies depending on the number of generated output tokens against
a text prompt. We measure throughput as the number of inferences



Fig. 6. Inference latency and run-time power consumption of different workload mixes. The first row represents the application latency, and the second row
presents the power consumption of each strategy.

Fig. 7. Overall cAI system execution time for mix 1-5.

per second, reflecting the system’s capacity to handle dynamic cAI
workloads.

B. Experimental Results

For evaluation, we create different cAI workload combinations
(Mix 1-5), encompassing various degrees of composability using
multiple DNNs, transformers, and LLMs. Workload Mixes 1-3 are
based on DNN and transformer models, and the Mixes 4-5 are based
on DNNs, transformers, and LLM. Figure 7 shows the execution
time of different cAI workload mixes with Twill and three SoA edge
AI inference strategies. Our proposed Twill strategy has the lowest
execution time in comparison with other relevant strategies, achieving
up to 38%, 54%, 22%, 37%, and 31% lower execution time for
Mix-1 to Mix-5, respectively. Twill jointly tunes multiple actuation
knobs of affinity-cluster mapping, task freezing, cluster migration,
and DVFS to minimize the inference latency within the available
power budget. This coordinated joint actuation for run-time varying
cAI workloads results in significantly lower execution time. Other
strategies are confined to offline analysis of workload characteristics
and can only handle inference request arrivals that are known at
design time. Hence, they minimize the inference latency of the first
and/or second arriving applications, while resulting in significantly
higher overall inference latency as the number of concurrent inference
requests and compute diversity increases. On average, Twill has 20%,
19%, and 34% lower execution time than Tango, MapFormer, and
Band, respectively. Figure 8 shows the time each inference request
spent in the waiting queue due to shared resource contention. Twill
successfully avoids inference request queuing in Mix-1 and Mix-2.
For Mixes 3-5, Twill reports 83%, 87%, and 88% lesser waiting time
on average than other relevant strategies. Evaluation metrics of each
workload mix are detailed in the following.

Workload Mix-1. Mix-1 includes inference requests of Bert-base
and EfficientNet-b4 models with EfficientNet-b4 arriv-
ing 20ms after Bert-base. This creates a scenario of progressively
increasing workload with both DNN and transformer applications,
such that both applications run concurrently at t = 20ms. Figure 6(a)
shows the latency of both Bert-base and EfficientNet-b4
against different strategies. Tango does not support DLA execution,
and puts EfficientNet-b4 in the waiting queue while executing
Bert-base on GPU causing a waiting overhead for the DNN
model. Similarly, Mapformer first allocates GPU to Bert-base,
and DLA to EfficientNet once it arrives. This strategy decides
the workload allocation at an application arrival and does not sup-
port run-time configuration changes for applications with unknown
arrivals. Hence, EfficientNet continues executing on a lower
performing DLA even when GPU becomes available after the execu-
tion Bert-base. Finally, Band also allocates GPU to Bert-base, and
DLA to EfficientNet, without DVFS control. The strategy depends on
the default Linux governors for DVFS control and is constrained to
making workload partitioning decisions upon arrival. Finally, Twill
maps EfficientNet on DLA until Bert-base executes on the
GPU cluster. Twill migrates EfficientNet-b4 to GPU for faster
execution once Bert-base terminates, at t = 874ms. Moreover,
Twill scales the GPU frequency following the given workload to
maximize the power budget utilization for better performance. Hence,
Twill capitalizes on run-time knob actuation decisions for unknown
workloads scenarios, ensuring faster workload execution while stay-
ing within the available power budget. Figure 6(b) shows the power
consumption of each strategy during the workload execution. Tango
has lesser power consumption because it runs one application on
GPU for any given instance and does not involve DLA. Band does
not actively actuates the DVFS which reduces the overall power
consumption. Mapformer actively tunes DVFS shows TDP violations
for 48% of the entire execution time because it does not cater to the
power budget. Twill ensures the maximum utilization of the available
power budget to achieve minimum latency.

Workload Mix-2. For workload Mix-2, we introduce three inference
applications VGG-19, ViT-base, and ResNet-152, representing
a different scenario from Mix-1 in terms of dynamicity and com-
putational load (Figure 6(c)). VGG-19 arrives first and is mapped
to the GPU by Tango. At t = 20ms, ViT-base arrives with high



Fig. 8. Waiting time of applications in the execution queue across mixes.

Fig. 9. Inference latency and run-time power consumption of Mix-4
GPU affinity, but Tango cannot migrate VGG-19 to DLA, resulting in
high wait time. After VGG-19 finishes at t = 494ms, ViT-base
runs on the GPU until t = 1484ms. Meanwhile, ResNet-152
arrives at t = 1000ms and waits until the GPU is free. Mapformer
maps VGG-19 to GPU and queues ViT-base, later assigning
it to GPU and ResNet-152 to DLA. Band follows a similar
mapping but suffers from higher latency due to lacking DVFS control.
Twill minimizes total execution time by initially assigning VGG-19
and ViT-base to DLA, scaling GPU frequency, and mapping
ResNet-152 to GPU. Once ResNet-152 completes, VGG-19
is migrated to GPU. Figure 6(d) shows runtime power usage, where
Mapformer exceeds the TDP limit for 49% of the execution time.
Workload Mix-3. In this workload mix shown in Figure 6(e),
we progressively introduced four applications to the system, in-
cluding two DNNs (ResNet-152 and EfficientNet-b4), and
two transformer models (ViT-large, and Bert-large). At t=0,
ResNet-152 arrives and Tango maps it to the GPU cluster, while
ViT-base waits in a queue after arriving at t = 20ms. When
ViT-base is executing, EfficientNet-b4, Bert-large ar-
rive at t = 1000ms and t = 10020ms, respectively, and wait in
the queue for later execution. MapFormer executes ResNet-152,
and puts Vit-large in waiting queue. Later, it maps ResNet on
DLA, while Bert-large again waits in the queue for termination
of ViT-large. Band again has similar mapping as Mapformer
without DVFS scaling. Twill successfully runs ResNet-152, and
ViT-large in parallel by mapping them on DLA, and GPU
successfully. Later, it maps Bert-base on GPU, while freezing
ResNet because Bert-base has higher GPU affinity. Finally,
ResNet first runs on DLA after VGG-19 finishes execution and
migrates to GPU once Bert-base finishes execution. Figure 6(f)
shows the power consumption during the workload execution. Map-
former shows TDP violations for 7% of the entire execution.
Workload Mix-4. In Mix-4, we considered a highly heterogeneous
workload considering two DNNs (VGG-1, Efficientnet-b4),
one encoder transformer (ViT-base), and an LLM (Deepseek-R1)

Fig. 10. Inference latency and run-time power consumption of Mix-5

as shown in Figure 9(a). The generative model has a different number
of output tokens depending on the input prompt, and for a quantifiable
analysis of the output latency, we considered the latency of 100 output
tokens. VGG-19 arrives at t = 0 and Tango maps the application
to GPU, while ViT-base, arriving at t = 20ms, has to wait in
the queue for the prior application to finish its execution. Similarly,
EfficientNet arriving at t = 1000ms, and Deepseek arriving at
t = 1020ms, have to wait in a queue for their previous application
to finish execution. This long waiting overhead for each applica-
tion slows down the workload execution. Similarly, Mapformer and
Band also place ViT-base in the waiting queue while executing
VGG-19. Later, these strategies map EfficienNet on DLA, while
Deepseek starts execution after ViT-base terminates on GPU.
Twill maps VGG-19 on DLA, and ViT-base on GPU. Later,
DeepSeek is mapped on GPU having higher affinity to GPU cluster.
Efficientnet has to wait for VGG-19 for 110ms to terminate
on DLA. Later EfficientNet runs on DLA until Deepseek
finishes execution on GPU, and is migrated to GPU until execution.
Figure 9(b) shows that only Mapformer shows TDP violations for
7% of the entire execution time, while other strategies stay within
the available budget.
Workload Mix-5. In the final workload Mix-5 shown in Figure 10(a),
we considered four workload application including ResNet-152,
Bert-base, VGG-19, and Gemma-3 introduced at t = 0ms,
t = 20ms, t = 1000ms, and t = 1020ms progressively to
the system. Tango, maps each application on GPU, where each
application other than the first ResNet-152 has to wait in the queue for
execution. Mapformer, and Band map ResNet-152, Bert-base,
and Gemma on GPU and VGG-19 on DLA where Bert-base waits
in the queue while GPU is occupied by ResNet. Twill intelligently
migrates ResNet between DLA and GPU while making room for
Bert-base, and Gemma on the GPU cluster. VGG-19 is mapped
on DLA for parallel execution with Gemma. Figure 10(b) reports
6% TDP violations of Mapformer, while the other strategies remain
within the available power budget.

V. CONCLUSIONS

We presented Twill, an adaptive run-time framework for scheduling
cAI workloads on heterogeneous mobile edge platforms. Our pro-
posed approach uses affinity-aware mapping and migration, priority-
aware task freezing/unfreezing, and DVFS to handle concurrent
inference requests, while minimizing inference latency within power
budgets. Experimental evaluation of our strategy over contemporary



cAI workloads against relevant edge AI inference techniques demon-
strated up to 54% lower inference latency while honoring power
budgets. Orchestrating multi-LLM cAI systems on mobile platforms
is planned as our future work.
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