Local convexity properties in triangular ratio metric

Sami Hokuni samhok@utu.fi University of Turku

Workshop on Modern Trends in Classical Analysis and Applications

The First Chinese-Finnish Seminar

August 17, 2012, Turku, Finland

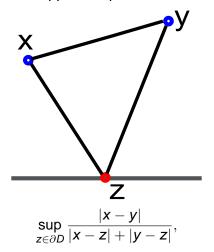
In a domain D triangular ratio metric is defined as

$$s_D(x,y) = \sup_{z \in \partial D} \frac{|x-y|}{|x-z| + |y-z|},$$

where x and y are points inside domain D, and z is an edge point of D.

• In all domains *D* the inequality $0 \le s_D(x, y) \le 1$ holds.

• For example, in an upper half plane



• For $x \in D$ we define a metric ball $B_s(x, r)$, where $r \in [0, 1]$, as

$$B_{s}(x,r) = \{y \in D | s_{D}(x,y) < r\}$$

Let us first focus on the domain $D = \mathbb{R}^n \setminus \{z\}$, where $z \in \mathbb{R}^n$.

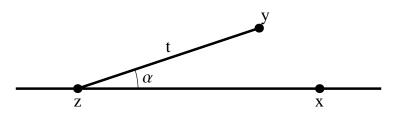
Nonconvex balls

If $x \in D$, the metric ball $B_s(x, r)$ is nonconvex for all $r > \frac{1}{2}$.

Convex balls

If $x \in D$, the metric ball $B_s(x, r)$ is convex for all $r \leq \frac{1}{2}$.

In both proofs it is sufficient to consider only the cases n = 2, z = 0 and x = 2.



By the definition we can write

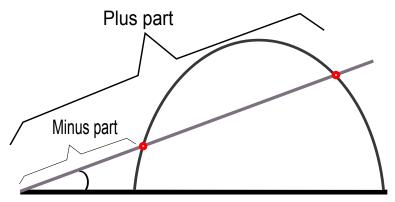
$$\frac{|x-y|}{|x-z|+|y-z|}=\frac{|2-y|}{2+t}=r\Leftrightarrow |2-y|=r(2+t).$$

By the law of cosines we can write

$$|2-y|=\sqrt{t^2+4+4t\cos\alpha}.$$

ullet By combining these two we can solve t with respect of α

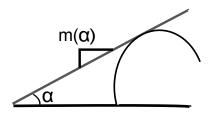
•
$$t(\alpha) = \frac{2(r^2 + \cos\alpha \pm \sqrt{(1 + \cos\alpha)(\cos\alpha + 2r^2 - 1)})}{1 - r^2}$$



- When proving nonconvexity for $r > \frac{1}{2}$ we are only interested in the minus part.
- It is enough to consider only the upper part of the axis, because it is mirrored to the lower part of the axis.

- We need to count the slope of the tangent of the $B_s(x, r)$ contour.
- This can be obtained by the formula

$$m(\alpha) = \frac{t(\alpha) + \tan \alpha \ t'(\alpha)}{-t(\alpha) \tan \alpha + t'(\alpha)}$$



- When $r > \frac{1}{2}$ and α is sufficiently small($0 < \alpha < \frac{\pi}{3}$), $m(\alpha) < 0$.
- Therefore $B_s(x, r)$ is nonconvex for $r > \frac{1}{2}$.

- Next we need to show that $B_s(x, r)$ is convex for $r \leq \frac{1}{2}$.
- For that recall one previously obtained formula.

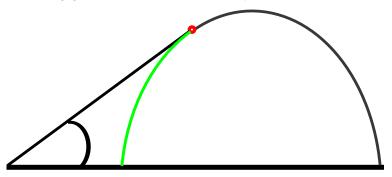
•
$$t(\alpha) = \frac{2(r^2 + \cos \alpha \pm \sqrt{(1 + \cos \alpha)(\cos \alpha + 2r^2 - 1)})}{1 - r^2}$$
.

To prove this we need both plus and minus part.

Let us first select the minus part

$$\bullet t_{\mathsf{minus}}(\alpha) = \frac{2\left(r^2 + \cos \alpha - \sqrt{(1 + \cos \alpha)(\cos \alpha + 2r^2 - 1)}\right)}{1 - r^2}$$

• Following green arch is determined by this minus part



Previously we counted the slope of the tangent by

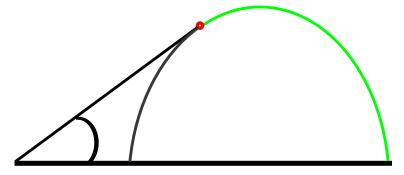
$$m_{\mathsf{minus}}(\alpha) = \frac{t_{\mathsf{minus}}(\alpha) + \tan \alpha \ t'_{\mathsf{minus}}(\alpha)}{-t_{\mathsf{minus}}(\alpha) \tan \alpha + t'_{\mathsf{minus}}(\alpha)}$$

- It can be shown that $m_{\text{minus}}(0) > 0$ for all $r < \frac{1}{2}$ and $m_{\text{minus}}(0) \to \infty$ when $r \to \frac{1}{2}$.
- This part of theorem is proven by showing that $m'_{\text{minus}}(\alpha) \leq 0$ for all $\alpha \in (0, \arccos(1 2r^2))$, where $r \in (0, \frac{1}{2}]$.
- If $m'_{\text{minus}}(\alpha) > 0$ for some $\alpha \in (0, \arccos(1 2r^2))$, then slope of the tangent would increase in this angle and ball $B_s(x, r)$ would not be convex.

Let us now select the plus part

$$\bullet \ t_{\mathsf{plus}}(\alpha) = \frac{2 \left(r^2 + \cos \alpha + \sqrt{(1 + \cos \alpha)(\cos \alpha + 2r^2 - 1)} \right)}{1 - r^2}$$

Following green arch is determined by this plus part



We count the slope of the tangent as before

$$m_{\mathsf{plus}}(\alpha) = \frac{t_{\mathsf{plus}}(\alpha) + \tan \alpha \ t'_{\mathsf{plus}}(\alpha)}{-t_{\mathsf{plus}}(\alpha) \tan \alpha + t'_{\mathsf{plus}}(\alpha)}$$

- It can be shown that $m_{\text{plus}}(\alpha) \to -\infty$ when $\alpha \to 0$.
- To prove the theorem it is sufficient to show that $m'_{\text{plus}}(\alpha) \ge 0$ for all $\alpha \in (0, \arccos(1 2r^2))$.
- If $m'_{\text{plus}}(\alpha) < 0$ for some $\alpha \in (0, \arccos(1 2r^2))$, slope of the tangent would decrease for that α and ball $B_s(x, r)$ would not be convex.

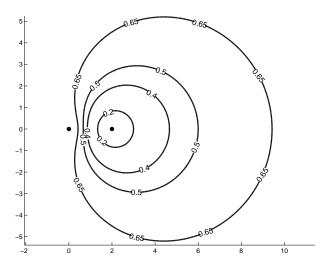


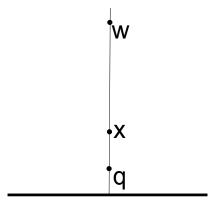
Figure: Contours of the metric ball $B_s(x, r)$ in $\mathbb{R}^2 \setminus \{0\}$ where x = 2 and r = 0.2, 0.4, 0.5 and 0.65.

• The next domain is the upper half plane.

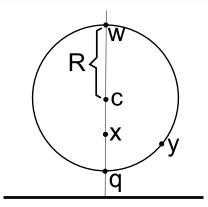
Convexity of balls in the upper half plane

Let $x \in \mathbb{H}^n$. Then balls $B_s(x, r)$ are Euclidean balls for all $r \in (0, 1)$ and therefore convex.

It is sufficient to consider only the case n = 2 and x = (0, a) where a > 0.



- First we select points q and w such that satisfy the condition $s_{\mathbb{H}^2}(x,q)=s_{\mathbb{H}^2}(x,w)=r$, where $r\in(0,1)$.
- Real part of points q and w is zero.



• Then we count a circle that goes through points w and q.

$$c=rac{w_2+q_2}{2}, R=rac{w_2-q_2}{2},$$

where w_2 and q_2 are imaginary parts of points w and q.

• y is an arbitrary point from the circle.

y can be expressed by using polar coordinates

$$y = (R \cos t, c + R \sin t),$$

where $t \in [0, 2\pi]$.

• It can be shown that $s_{\mathbb{H}^2}(x,y)=r$ for all $t\in[0,2\pi]$, what proves the theorem.

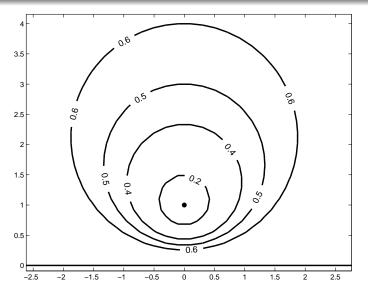


Figure: Contours of the metric ball $B_s(x, r)$ in \mathbb{H}^2 where x = (0, 1) and r = 0.2, 0.4, 0.5 and 0.6.

Previous results can be combined to obtain a following corollary

Convexity in the punctured half space

Let $x \in \mathbb{H}^n \setminus \{z\}$ where $z \in \mathbb{H}^n$. Then balls $B_s(x, r)$ are convex for all $r \in (0, \frac{1}{2})$.

 However, in a general case this is not an strict upper bound.

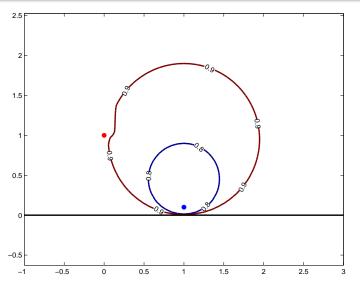


Figure: Contours of the metric ball $B_s(x,r)$ in $\mathbb{H}^2 \setminus \{z\}$ where $z = (0,1), x = (1,\frac{1}{10})$ and $r = \{0.8,0.9\}$

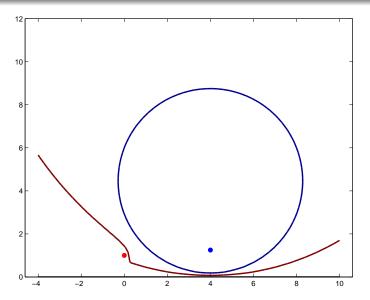


Figure: Contours of the metric ball $B_s(x,r)$ in $\mathbb{H}^2\setminus\{z\}$ where $z=(0,1), x=(4,\frac{5}{4})$ and $r=\{0.75,0.9\}$

- In some special cases the better upper bound can be achieved.
- Following result is proven by R.Klén.

Convexity in the punctured half space

Let $x = (x_1, x_2) \in \mathbb{H}^2 \setminus \{e_n\}$, where $x_2 < |x_1|$ and

$$r \in \left(0, rac{\sqrt{x_1^2 + x_2^2} - \sqrt{2}x_2}{|x_1| + x_2}
ight].$$

Then the ball $B_s(x, r)$ is convex.