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In a domain D triangular ratio metric is defined as

sD(x , y) = sup
z∈∂D

|x − y |
|x − z| + |y − z| ,

where x and y are points inside domain D, and z is an
edge point of D.

In all domains D the inequality 0 ≤ sD(x , y) ≤ 1 holds.
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For example, in an upper half plane

x
y

z

sup
z∈∂D

|x − y |
|x − z| + |y − z| ,
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For x ∈ D we define a metric ball Bs(x , r), where r ∈ [0, 1],
as

Bs(x , r) = {y ∈ D|sD(x , y) < r}
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Let us first focus on the domain D = R
n \ {z}, where z ∈ R

n.

Nonconvex balls

If x ∈ D, the metric ball Bs(x , r) is nonconvex for all r >
1
2 .

Convex balls

If x ∈ D, the metric ball Bs(x , r) is convex for all r ≤ 1
2 .

In both proofs it is sufficient to consider only the cases
n = 2,z = 0 and x = 2.
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By the definition we can write

|x − y |
|x − z| + |y − z| =

|2 − y |
2 + t

= r ⇔ |2 − y | = r(2 + t).

By the law of cosines we can write

|2 − y | =
√

t2 + 4 + 4t cos α.
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By combining these two we can solve t with respect of α

t(α) =
2
(

r2+cos α±

√
(1+cos α)(cos α+2r2−1)

)

1−r2 .

Minus part

Plus part
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When proving nonconvexity for r >
1
2 we are only

interested in the minus part.

It is enough to consider only the upper part of the axis,
because it is mirrored to the lower part of the axis.
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We need to count the slope of the tangent of the Bs(x , r)
contour.

This can be obtained by the formula

m(α) =
t(α) + tan α t ′(α)

−t(α) tan α + t ′(α)

α

αm( )
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When r >
1
2 and α is sufficiently small(0 < α <

π

3 ),
m(α) < 0.

Therefore Bs(x , r) is nonconvex for r >
1
2 .
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Next we need to show that Bs(x , r) is convex for r ≤ 1
2 .

For that recall one previously obtained formula.

t(α) =
2
(

r2+cos α±

√
(1+cos α)(cos α+2r2−1)

)

1−r2 .

To prove this we need both plus and minus part.
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Let us first select the minus part

tminus(α) =
2
(

r2+cos α−

√
(1+cos α)(cos α+2r2−1)

)

1−r2 .

Following green arch is determined by this minus part
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Previously we counted the slope of the tangent by

mminus(α) =
tminus(α) + tan α t ′minus(α)

−tminus(α) tan α + t ′minus(α)

It can be shown that mminus(0) > 0 for all r <
1
2 and

mminus(0) → ∞ when r → 1
2 .

This part of theorem is proven by showing that
m′

minus(α) ≤ 0 for all α ∈ (0, arccos(1 − 2r2)), where
r ∈ (0,

1
2 ].

If m′
minus(α) > 0 for some α ∈ (0, arccos(1 − 2r2)), then

slope of the tangent would increase in this angle and ball
Bs(x , r) would not be convex.
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Let us now select the plus part

tplus(α) =
2
(

r2+cos α+
√

(1+cos α)(cos α+2r2−1)
)

1−r2 .

Following green arch is determined by this plus part
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We count the slope of the tangent as before

mplus(α) =
tplus(α) + tan α t ′plus(α)

−tplus(α) tan α + t ′plus(α)

It can be shown that mplus(α) → −∞ when α → 0.

To prove the theorem it is sufficient to show that
m′

plus(α) ≥ 0 for all α ∈ (0, arccos(1 − 2r2)).

If m′
plus(α) < 0 for some α ∈ (0, arccos(1 − 2r2)), slope of

the tangent would decrease for that α and ball Bs(x , r)
would not be convex.
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Figure: Contours of the metric ball Bs(x , r) in R
2 \ {0} where x = 2

and r = 0.2, 0.4, 0.5 and 0.65.

Sami Hokuni Local convexity properties in triangular ratio metric 16/25



The next domain is the upper half plane.

Convexity of balls in the upper half plane

Let x ∈ H
n. Then balls Bs(x , r) are Euclidean balls for all

r ∈ (0, 1) and therefore convex.

It is sufficient to consider only the case n = 2 and
x = (0, a) where a > 0.
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x

w

q

First we select points q and w such that satisfy the
condition s

H2(x , q) = s
H2(x , w) = r , where r ∈ (0, 1).

Real part of points q and w is zero.
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x

w

q

Then we count a circle that goes through points w and q.

c =
w2 + q2

2
, R =

w2 − q2

2
,

where w2 and q2 are imaginary parts of points w and q.

y is an arbitrary point from the circle.
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y can be expressed by using polar coordinates

y = (R cos t , c + R sin t),

where t ∈ [0, 2π].

It can be shown that s
H2(x , y) = r for all t ∈ [0, 2π], what

proves the theorem.

Sami Hokuni Local convexity properties in triangular ratio metric 20/25



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0.20.4

0.4

0.5
0.

5

0.5

0.
6

0.6

0.6

0.6

Figure: Contours of the metric ball Bs(x , r) in H
2 where x = (0, 1) and

r = 0.2, 0.4, 0.5 and 0.6.
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Previous results can be combined to obtain a following
corollary

Convexity in the punctured half space

Let x ∈ H
n \ {z} where z ∈ H

n. Then balls Bs(x , r) are convex
for all r ∈ (0,

1
2).

However, in a general case this is not an strict upper
bound.
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Figure: Contours of the metric ball Bs(x , r) in H
2 \ {z} where

z = (0, 1), x = (1,
1
10 ) and r = {0.8, 0.9}
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Figure: Contours of the metric ball Bs(x , r) in H
2 \ {z} where

z = (0, 1), x = (4,
5
4 ) and r = {0.75, 0.9}
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In some special cases the better upper bound can be
achieved.

Following result is proven by R.Klén.

Convexity in the punctured half space

Let x = (x1, x2) ∈ H
2 \ {en}, where x2 < |x1| and

r ∈



0,

√

x2
1 + x2

2 −
√

2x2

|x1| + x2



 .

Then the ball Bs(x , r) is convex.
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