Properties of hyperbolic type balls

Riku Klén

riku.klen@utu.fi

University of Turku

Workshop on Modern Trends in Classical Analysis and Applications The First Chinese-Finnish Seminar Turku August 17-18, 2012

Hyperbolic metric

- well-known in \mathbb{B}^n and \mathbb{H}^n
- **•** has many applications in mathematics and physics
- \bullet in the case $n = 2$ can be generalized by the Riemann mapping theorem
- \bullet in the case $n > 2$?
	- \triangle No useful counterpart for the Riemann mapping theorem exists
	- **4** SOLUTION: hyperbolic type metrics

Hyperbolic type metrics

- k the quasihyperbolic metric
- j the distance ratio metric (j -metric)
- α the Apollonian metric
- δ the Seittenranta's metric
- o etc.

Notation

- A domain $G \subsetneq \mathbb{R}^n$ is starlike w.r.t. $x \in G$ if for all $y \in G$ the line segment $[x, y]$ is contained in G and G is strictly starlike w.r.t. x if each half-line from the point x meets ∂G at exactly one point.
- **•** For a distance d in G we define the metric ball for $x \in G$ and $r > 0$ by $B_d(x, r) = \{y \in G : d(x, y) < r\}.$
- The Euclidean balls, spheres: $B^n(x, r)$ and $S^{n-1}(x, r)$.
- We denote the unit ball $B^n(0, 1)$ by \mathbb{B}^n and the upper half-space by $\mathbb{H}^n = \{ z \in \mathbb{R}^n : z_n > 0 \}.$
- **•** The hyperbolic distances are denoted by $\rho_{\mathbb{B}^n}$ and $\rho_{\mathbb{H}^n}$.

Definitions

Distances k and j

Let $G \subsetneq \mathbb{R}^n$ be a domain. We define

• the quasihyperbolic distance for x, y ∈ G by

$$
k_G(x,y)=\inf_{\alpha\in\Gamma_{xy}}\int_{\alpha}\frac{|dz|}{d(z)},
$$

where $d(z) = d(z, \partial G)$ and Γ_{xy} is the collection of all rectifiable curves in G joining x and y .

• the *j-distance* for *x*, *y* ∈ *G* by

$$
j_G(x,y) = \log\left(1 + \frac{|x-y|}{\min\{d(x),d(y)\}}\right)
$$

Note that $k_{\mathbb{H}^n} = \rho_{\mathbb{H}^n}$ and $j_G \leq k_G$ for all G.

.

Definitions

Distance α

The cross-ratio |a, b, c, d| for a, b, c, d ∈ Rⁿ is defined by

$$
|a, b, c, d| = \frac{|a - c||b - d|}{|a - b||c - d|}.
$$

Let G be a proper subdomain of \mathbb{R}^n . The Apollonian distance is defined for $x, y \in G$ by

$$
\alpha_G(x,y)=\sup_{a,b\in\partial G} \log |a,x,y,b|=\sup_{a,b\in\partial G} \log \frac{|a-y||x-b|}{|a-x||y-b|}.
$$

Note that α_G is a metric if and only if the complement of G is not contained in a sphere in $\overline{\mathbb{R}^n}$, [\[Beardon '98,](#page-26-0) Theorem 1.1].

Distance δ

The Seittenranta's distance is defined for x, y **∈** G **⊂** Rⁿ with card $G \geq 2$ by

$$
\delta_G(x,y) = \sup_{a,b \in \partial G} \log(1+|a,x,b,y|)
$$

=
$$
\sup_{a,b \in \partial G} \log \left(1+\frac{|a-b||x-y|}{|a-x||y-b|}\right).
$$

 \circ δ _G is always a metric [\[Seittenranta '99,](#page-27-1) Thm 3.3].

 \bullet α_G and δ_G are Möbius invariant.

•
$$
\alpha_{\mathbb{B}^n} = \delta_{\mathbb{B}^n} = \rho_{\mathbb{B}^n}
$$
 and $\delta_G = j_G$ for $G = \mathbb{R}^n \setminus \{0\}$.

lunın vlionisti

Motivation for this research comes from open problem posed by M. Vuorinen in 2007 [\[Vuorinen '07,](#page-27-2) 8.1]:

Open problem 1

Does the exists r_0 such that $B_m(x, r)$ is convex for r ∈ (0, r_0)?

The problem has recently been studied by various authors [\[R.K. '08a,](#page-26-1) [R.K. '08b,](#page-26-2) [R.K. '09,](#page-26-3) [R.K. '10,](#page-26-4) [R.K.-Rasila-Talponen '10,](#page-26-5) [Martio-Väisälä '11,](#page-26-6) [Rasila-Talponen '12,](#page-27-3) [Väisälä '07,](#page-27-4) [Väisälä '09\]](#page-27-5).

Diversity of shapes, fixed radius $r = 1.2$.

Turun vliopisto University of Turkı

Influence on radius, fixed center $x = -3/2 + i$.

Turun vliopisto Jniversity of Turku

Known results

- quasihyperbolic metric in convex domains, n **≥** 2 [\[Martio-Väisälä '11\]](#page-26-6)
- quasihyperbolic metric in R ⁿ **** {0}, n **≥** 2 [\[R.K. '08a\]](#page-26-1)
- *j*-metric general domain [\[R.K. '08b\]](#page-26-2)
- **•** quasihyperbolic metric in general domain $n = 2$ [\[Väisälä '09\]](#page-27-5)
- **•** quasihyperbolic and *j*-metric in banach spaces [\[Rasila-Talponen '12\]](#page-27-3)

This talk considers the Apollonian and Seittenranta's metrics and it is based on [\[R.K. '12\]](#page-26-7).

Apollonian balls

For $x, y \in \mathbb{R}^n$ and $r > 0$ we define the Apollonian ball and sphere, respectively, to be

$$
B_{x,y}^r = \{ z \in \mathbb{R}^n : r |x - z| < |y - z| \},
$$

$$
S_{x,y}^r = \{ z \in \mathbb{R}^n : r | x - z | = | y - z | \}.
$$

For x, $y \in \mathbb{R}^2$ and $c > 0$, $c \neq 1$, we have [\[Krzyz '71,](#page-26-8) p.5, Exercise 1.1.25]

$$
S_{x,y}^c = S^{n-1} \left(\frac{y - c^2 x}{1 - c^2}, \frac{c|x - y|}{|1 - c^2|} \right). \tag{1}
$$

In the case $c = 1$ the Apollonian ball is a half-space.

While University of T

Apollonian circle

Lemma 1

Let $G = \mathbb{R}^n \setminus \{-e_1, e_1\}$, $x \in G$ and $r > 0$. We denote

$$
B_c = B^n \left(e_1 \frac{1+c^2}{c^2-1}, \frac{2c}{|c^2-1|} \right), B_d = B^n \left(e_1 \frac{1+d^2}{1-d^2}, \frac{2d}{|1-d^2|} \right)
$$

 \int for $c = e^{r} |x + e_1|/|x - e_1|$ and $d = e^{r} |x - e_1|/|x + e_1|$. Then

$$
B_{\alpha}(x,r) = \begin{cases} B_c \setminus \overline{B_d}, & \text{if } c < 1 \text{ and } d \ge 1, \\ \mathbb{R}^n \setminus (\overline{B_c} \cup \overline{B_d}), & \text{if } c > 1 \text{ and } d > 1, \\ B_d \setminus \overline{B_c}, & \text{if } c \ge 1 \text{ and } d < 1. \end{cases}
$$

Moreover, the complement of $B_{\alpha}(x, r)$ is always disconnected.

Tunın vlionistr

Remark

Lemma [1](#page-13-0) can be generalized for any twice punctured space:

Let y, $z \in \mathbb{R}^n$ with $y \neq z$, $G = \mathbb{R}^n \setminus \{y, z\}$, $x \in G$ and $r > 0$. We denote

$$
B_c = B^n \left(\frac{z - y c^2}{1 - c^2}, \frac{|y - z|}{|1 - c^2|} \right), \quad B_d = B^n \left(\frac{y - z d^2}{1 - d^2}, \frac{|y - z| d}{|1 - d^2|} \right)
$$

 \int for $c = e^{r} |x - z|/|x - y|$ and $d = e^{r} |x - y|/|x - z|$. Then

$$
B_{\alpha}(x,r) = \begin{cases} B_c \setminus \overline{B_d}, & \text{if } c < 1 \text{ and } d \ge 1, \\ \mathbb{R}^n \setminus (\overline{B_c} \cup \overline{B_d}), & \text{if } c > 1 \text{ and } d > 1, \\ B_d \setminus \overline{B_c}, & \text{if } c \ge 1 \text{ and } d < 1. \end{cases}
$$

Moreover, the complement of $B_{\alpha}(x, r)$ is always disconnected.

iisto of Turki

Apollonian metric disks in R ² **** {1 + i, **−**i}

Lemma 2

Let $x, y \in \mathbb{R}^n$ with $x \neq y$ and $r \in (0, 1)$. Then

$$
\bigcup_{t\in(0,1]}B_{x,z}^r = A\cup B_{x,y'}^r
$$

where $z = x + t(y - x)$ and

$$
A = \left\{ a \in \mathbb{R}^n : \measuredangle(a, x, y) < \arcsin r, |a| < \frac{|x - y|}{\sqrt{1 - r^2}} \right\}.
$$

Turun vliopisto Iniversity of Turk

Ice cream cone lemma

$$
\bigcup_{t \in (0,1]} B_{x,z}^r = A \cup B_{x,y}^r
$$

Theorem 3

Let G ⊊ \mathbb{R}^n be a starlike domain with respect to x <mark>∈</mark> G such that the complement of G is not contained in any $(n - 1)$ -dimensional sphere and $r > 0$. Then $B_{\alpha}(x, r)$ is strictly starlike with respect to x.

Proof.

Let us assume that $B_{\alpha}(x, r)$ is not starlike with respect to x. Then there exists $y, z \in G$ such that y is contained in the line segment (x, z) , $\alpha_G(x, z) < r$ and $\alpha_G(x, y) = r' \geq r$. Now $B_r^{r'}$ $C^{r'}_{x,y} \subset G$ and $S^r_{x,y}$ $\sigma_{x,z}^r$ contains a point on ∂G. By Lemma [2](#page-16-0) this is a contradiction.

Turun vlionisti

Lemma 4

Let $G = \mathbb{R}^n \setminus \{-e_1, e_1\}$, $x \in G$ and $r > 0$. Then for $B_c = B_c^c$ $\frac{c}{-e_1}$ and $B_d = B_e^d$ ^d we have $B_{\delta}(x, r) =$ $\sqrt{ }$ \int \vert $B_c \cap B_d$, if $c \leq 1$ and $d \leq 1$, $B_c \setminus \overline{B_d}$, if $c \le 1$ and $d > 1$, $B_d \setminus \overline{B_c}$, if $c > 1$ and $d \leq 1$, $\mathbb{R}^n \setminus (\overline{B_c} \cup \overline{B_d})$, if $c > 1$ and $d > 1$, $where c = |x - e_1|(e^r - 1)/2$ and $d = |x + e_1|(e^r - 1)/2$.

Theorem 5

Let G = R ⁿ **** {**−**e1, e1}, x **∈** G and $r_0 = \log(1 + 2/\max\{|x - e_1|, |x + e_1|\})$. Then $B_\delta(x, r)$ is convex for all $r \in (0, r_0]$ and is not convex for $r > r_0$.

Proof.

By Lemma [4](#page-19-0) the metric ball $B_{\delta}(x, r)$ is convex if and only $c \le 1$ and $d \le 1$, which is equivalent to

$$
r\leq \min\left\{\log\left(1+\frac{2}{|x-e_1|}\right),\log\left(1+\frac{2}{|x+e_1|}\right)\right\}
$$

and the assertion follows.

Remark

(1) Theorem [5](#page-20-0) is true for any domain $G = \mathbb{R}^n \setminus \{y, z\}$ with y, $z \in \mathbb{R}^n$ and $a \neq b$, if we replace r₀ by

$$
r_1 = \log\left(1 + \frac{|y-z|}{\max\{|x-y|, |x-z|\}}\right)
$$

(2) In Theorem [5](#page-20-0) (and the above generalization) the radius r_0 (r_1) is sharp in the sense that for $r \in (0, r_0)$ $(r \in (0, r_1))$ the metric balls $B_\delta(x, r)$ are strictly convex. (3) Note that $B_\delta(x, r)$ is not starlike for $r > r_0(r_1)$ in Theorem [5](#page-20-0) (in the above remark (2)).

.

Seittenranta's metric disks in R ² **** {1, **−**1}

K

Turun vliopisto University of Turkı

Theorem 6

Let $G = \mathbb{B}^n \setminus \{0\}$, $x \in G$ and $r_0 = \log(1 + 1/(1 - |x|))$. Then $B_{\delta}(x, r)$ is convex for all $r \in (r, r_0]$ and is not convex for $r > r_0$.

Lemma 7

Let $x \in \mathbb{B}^n \setminus \{0\}$ and $r > 0$. Then the set

$$
A = \{ y \in \mathbb{B}^n \setminus \{0\} : \log(1 + |x - y| / (|y|(1 - |x|))) < r \}
$$

is convex for r ∈ (0, log($1 + 1/(1 - |x|)$)] and not convex for r > $log(1 + 1/(1 − |x|))$, and the set

$$
B = \{ y \in \mathbb{B}^n \setminus \{0\} : \log(1|x - y|/(|x|(1 - |y|))) < r \}
$$

is strictly convex.

University of Turk

An example of Theorem [6](#page-23-0)

Figure: Disks $B_{\delta}(x, r)$ of Seittenranta's metric in the domain B² \ {0} with *r* ∈ {*r*₀ − 1/3, *r*₀, *r*₀ + 1/3}, where $r_0 = \log(1 + 1/(1 - |x|))$. The black dot is the origin, the black circle is the unit circle and the gray dot is the point x.

lunın vlionisti

Open problem 2

Let $G = \mathbb{B}^n \setminus \{0\}$ and $x \in G$. Does there exists $r_0 = r_0(|x|) > 0$ such that $B_\alpha(x, r)$ is convex for all r ∈ (0, r_0)?

Open problem 3

(1) If $G \subsetneq \mathbb{R}^n$ is a convex domain and $x \in G$, is $B_\delta(x, r)$ convex for all $r > 0$? (2) If $G \subsetneq \mathbb{R}^n$ is starlike domain with respect to $x \in G$, is

 $B_{\delta}(x, r)$ starlike with respect to x for all $r > 0$?

Turun vlionisti

References I

A.F. Beardon: The Apollonian metric of a domain in \mathbb{R}^n , in: P. Duren, J. Heinonen, B. Osgood and B. Palka (eds.), Quasiconformal mappings and analysis, Springer-Verlag, New York, 1998, 91–108.

R. Klén: Local convexity properties of j-metric balls. Ann. Acad. Sci. Fenn. Math. 33 (2008), 281–293.

R. Klén: Local convexity properties of quasihyperbolic balls in punctured space. J. Math. Anal. Appl. 342 (2008) 192–201.

R. Klén: On hyperbolic type metrics. Dissertation, University of Turku, Helsinki, 2009. Ann. Acad. Sci. Fenn. Math. Diss. No. 152 (2009), 49 pp.

R. Klén: Close-to-convexity of Quasihyperbolic and j-metric Balls. Ann. Acad. Sci. Fenn. Math. 25 (2010), 493–501.

R. Klén: Local convexity properties of Apollonian and Seittenranta's metric balls. Manuscript 2012, arXiv:1204.0329.

R. Klén, A. Rasila, J. Talponen: Quasihyperbolic geometry in Euclidean and Banach spaces. J. Anal. 18 (2010), 261–278.

J. G. Krzyz: ˙ Problems in complex variable theory. Translation of the 1962 Polish original. Modern

Analytic and Computational Methods in Science and Mathematics, No. 36. American Elsevier Publishing Co., Inc., New York; PWN—Polish Scientific Publishers, Warsaw, 1971. xvii+283 pp.

O. Martio, J. Väisälä: Quasihyperbolic geodesics in convex domains II. Pure Appl. Math. Q. 7 (2011), 379–393.

P. Seittenranta: Möbius-invariant metrics, Math. Proc. Cambridge Philos. Soc. 125 (1999), 511-533.

A. Rasila, J. Talponen: Convexity properties of quasihyperbolic balls on banach spaces. Ann. Acad. Sci. Fenn. Math. 37 (2012), 215Ű-228.

F

J. Väisälä: Quasihyperbolic geometry of domains in Hilbert spaces. Ann. Acad. Sci. Fenn. Math. 32 (2007), 559–578.

J. Väisälä: Quasihyperbolic geometry of planar domains. Ann. Acad. Sci. Fenn. Math. 34 (2009), 447–473.

M. Vuorinen: Metrics and quasiregular mappings. Proc. Int. Workshop on Quasiconformal Mappings and their Applications, IIT Madras, Dec 27, 2005 - Jan 1, 2006, ed. by S. Ponnusamy, T. Sugawa and M. Vuorinen, Quasiconformal Mappings and their Applications, Narosa Publishing House, New Delhi, India, 291–325, 2007.

