Two properties of John domains in real Banach spaces

Yaxiang Li yaxiangli@163.com Department of Mathematics, Hunan Normal University, China.

Workshop on Modern Trends in Classical Analysis and Applications

The First Chinese-Finnish Seminar

August 17, 2012, Turku, Finland

Based on paper:

Y. Li, M. Vuorinen and X. Wang, Two properties of John domains in real Banach spaces.

 $) \alpha$

◀┌;ッ▶ ◀ ≞

Notations and preliminaries

Notations

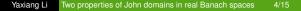
E denotes real Banach space with dimension at least 2. $D \subset E$ is a domain. The distance from *z* to the boundary ∂D of *D* is denoted by $d_D(z)$.

Comparison with the case $E = R^n$, See [1]

(1) The space *E* is not locally compact, and its one-point extension $\dot{E} = E \cup \{\infty\}$ is not compact. Normal family arguments are not valid in *E*, and many extremal problems have no solution.

Reference

[1] J. VÄISÄLÄ, The free quasiworld: freely quasiconformal and related maps in Banach spaces. *Quasiconformal geometry and dynamics (Lublin 1996), Banach Center Publications,* Vol. 48, Polish Academy of Science, Warsaw. 1999, 55-118.



(2) Several topological properties of R^n are not valid in E. For example, a ball B in the Hilbert space I_2 is homeomorphic to the domain A between two concentric spheres. But there is no freely quasiconformal map of B onto A.

(3) There is no Lebesgue measure in E. Balls have no volume. The method of moduli of path family is useless.

(4) There is no Whitney decomposition in E and packing arguments fail in E.

Notations and preliminaries

John domains,See [2], [3].

A domain *D* in *E* is called a *c*-John domain provided there exists a constant *c* such that for each pair of points z_1, z_2 in *D* can be joined by a rectifiable arc α in *D* satisfying for all $z \in \alpha$,

*)
$$\min\{\ell(\alpha[z_1,z]), \ \ell(\alpha[z_2,z])\} \leq c d_D(z).$$

References

[2] O. MARTIO AND J. SARVAS, Injectivity theorems in plane and space, *Ann. Acad. Sci. Fenn. Ser. A I Math.*, (1978), 383–401.
[3] R. NÄKKI AND J. VÄISÄLÄ, John disks, *Expo. Math.* 1991, 3–43.

isto,

Notations and preliminaries

Comparison with the case $E = R^n$

If we replace the arclength $\ell(\alpha[\cdot])$ in (\star) by diameter $d(\alpha[\cdot])$ or distance $|\cdot|$, we get concepts which in the case $E = R^n$ is *n*-quantitatively equivalent to *c*-John domains[2, 3]. But in Banach spaces, this lead to different properties. For example, the broken tube considered by J. Väisälä [4] can join points by arcs satisfying the diameter condition (distance condition), but it is not a John domain.

Reference

[4] J. VÄISÄLÄ, *Broken tubes in Hilbert spaces.* Preprint 390. 2004.

university of Turku

Notations and preliminaries

quasihyperbolic length and quasihyperbolic distance

The *quasihyperbolic length* of a rectifiable arc or a path α in the norm metric in *D* is the number:

$$\ell_k(\alpha) = \int_{\alpha} \frac{|dz|}{d_D(z)}.$$

For each pair of points z_1 , z_2 in *D*, the *quasihyperbolic distance* $k_D(z_1, z_2)$ between z_1 and z_2 is defined in the usual way:

$$k_D(z_1, z_2) = \inf \ell_k(\alpha),$$

where the infimum is taken over all rectifiable arcs α joining z_1 to z_2 in D.

isto of Turku

Main results

Theorem. [5]

A domain $D \subset \mathbb{R}^n$ is a John domain if and only if $G = D \setminus P$ is also a John domain, where $P = \{p_1, p_2, \cdots, p_m\} \subset D$.

In general, when *P* is an infinite set in *D*, $D \setminus P$ may not be a John domain.

Reference

[5] M. HUANG, S. PONNUSAMY AND X. WANG, FrDecomposition and removability properties of John domains, *Proc. Indian Acad. Sci. (Math. Sci.)*, **118**(2008),357^{°°}C370.

University of Turku

For a domain D in E, let

$$P_D = \{x_i \in D : k_D(x_i, x_j) \ge \frac{1}{2} \text{ for } i \ne j\}.$$

Obviously, P_D contains at least two points.

Result 1

A domain $D \subset E$ is a *c*-John domain if and only if $G = D \setminus P_D$ is a c_1 -John domain, where *c* and c_1 depend only on each other.

iversity of Turki

proof

The sufficient part is easy to prove. The main idea of the proof of the necessary part is to construct an arc in $D \setminus P_D$ satisfying the condition (*).

key point one

For all $w \in D$, there exists at most one point x_i of P_D such that $x_i \in B(w, \frac{1}{6}d_D(w))$.

key point two

Every pair of points x, y in $B(w, \frac{1}{16}r) \setminus \{x_i\}$ can be joined by an arc in $D \setminus P_D$ satisfying (*).

University of Turku

inner uniform domain

A domain $D \subset E$ is said to be an inner *c*-uniform domain if for every $x, y \in D$, there exist a rectifiable arc γ joining x and ysatisfying the condition (\star) and $\ell(\gamma) \leq c \inf_{\beta[x,y] \in D} \ell(\beta)$.

Remark

If replace $\inf_{\beta[x,y]\in D} \ell(\beta)$ by |x - y|, then we get the concept for *c*-uniform domain.

Application of Result 1

A domain $D \subset E$ is an inner *c*-uniform domain if and only if $G = D \setminus P_D$ is an inner c_1 -uniform domain, where *c* and c_1 depend only on each other.

MIN University of Turku

Theorem (see [6]

A *c*-John domain $D \subset \mathbb{R}^n$ can be written as the union of domains D_1, D_2, \ldots such that for each *j*, (1) \overline{D}_j is compact in D_{j+1} , and (2) D_j is a c_1 -John domain with $c_1 = c_1(c, n)$.

Remark

Note that here the constant c_1 depends on the dimension n.

Reference

[6],J. VÄISÄLÄ, Exhaustions of John domains. *Ann. Acad. Sci. Fenn. Ser. A I Math.*, **19**1994, 47-57.

University of Turku

Result 2

A *c*-John domain $D \subset E$ can be written as the union of domains D_1, D_2, \ldots such that for each *j*, (1) \overline{D}_j is contained in D_{j+1} , and (2) D_j is a *c*₁-John domain with $c_1 = c_1(c)$.

lurun yliopisto Iniversity of Turkı

THANK YOU

Yaxiang Li Two properties of John domains in real Banach spaces 15/15

▶ ◀ 듣