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Abstract

We discuss a bunch of ideas of modern geometric
function theory. The notion of a metric space has
a central role. In particular, we study hyperbolic
type metrics, such as the quasihyperbolic metric, in
subdomains of the Euclidean n-dimensional space.
“Metric-preserving maps” such as bilipschitz and
quasiconformal maps are natural objects of study in
this context. Our aim is to keep this talk as self-
contained and elementary as possible.
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1 Introduction

1.1 Topological space (X,τ )

τ ⊂ P(X ) is a topology if
(a) Aj ∈ τ =⇒ ∪Aj ∈ τ
(b) A1, . . . ,An ∈ τ =⇒ ∩n

j=1Aj ∈ τ
(c) ∅,X ∈ τ

The sets in τ are called open sets. Closed sets are of the form
X \ A,A ∈ τ . The closure of a set A is denoted by A or clos(A) and
it is defined as A = ∩A⊂C,C closedC . The interior intA of A is the
complement of the closure of A . The boundary ∂A of A is
clos(A) \ intA .

1.2 Continuous mapping

Let (X , τ1) and (Y , τ2) be topological spaces. A map
f : (X , τ1)→ (Y , τ2) is continuous if A ∈ τ2 implies f−1A ∈ τ1 .
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1.3 Topological mapping (=homeomorphism)

Let f : (X , τ1)→ (Y , τ2) be a bijection such that both f and f−1 are
continuous. Then f is a homeomorphism.

1.4 Remark

Topological maps f preserve “topological properties”:
1 connectedness;
2 number of components;
3 fA ∈ τ2 if and only if A ∈ τ1

4 a disk {z ∈ C : |z| < 1} cannot be mapped onto an annulus
{z ∈ C : 1 < |z| < c} but can be mapped onto C

A metric space is usually equipped with the topology defined by
the metric.

Matti Vuorinen (University of Turku) CHIFIN2012 August 23, 2012 4 / 150



1.5 Metric space (X ,d)

Let d : X × X → [0,∞) satisfy
(a) d(x , y) = d(y , x), ∀x , y
(b) d(x , y) ≤ d(x , z) + d(z, y),∀x , y , z
(c) d(x , y) ≥ 0 and d(x , y) = 0 ⇐⇒ x = y

1.6 Examples

1 (Rn, | · |) is a metric space
2 The Möbius space (Rn

,q),Rn = Rn ∪ {∞} is a metric space.
The chordal metric q is defined with the help of the
stereographic projection (cf. below).

3 Taxi cab metric also called Manhattan metric.
4 Chennai metric: Three wheeler taxi must avoid the obstacles

(gaps, stones, rough surface of the road)
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The metrics (3) and (4) are determined by their geodesics, i.e.
shortest curves, that will be defined soon. The picture is
self-explaining

Manhattan
metric

Chennai
metric
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1.7 Remarks

1 For a fixed A ⊂ X the function
f : X → [0,∞), f (x) = d(x ,A) = sup{d(x , z) : z ∈ A} satisfies
|f (x)− f (y)| ≤ d(x , y) i.e. f is Lip-continuous with constant 1
(see below).

2 If (X ,d) is a metric space, then also (X ,da) is a metric space
for all a ∈ (0,1] .

3 More generally, if h : [0,∞)→ [0,∞) is an increasing
homeomorphism with h(0) = 0 such that h(t)/t is decreasing,
then (X ,h ◦ d) is a metric space.
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1.8 Uniform continuity

Let (Xj ,dj), j = 1,2, be metric spaces and f : (X1,d1)→ (X2,d2) be a
cont. map. Then f is uniformly continuous (u.c.) if there exists a
cont. injection ω : [0, t0)→ [0,∞) such that ω(0) = 0 and

d2(f (x), f (y)) ≤ ω(d1(x , y)) ,∀x , y ∈ X1 with d1(x , y) < t0.

1.9 Remarks

1 This definition is equivalent to the usual (ε, δ)-definition.
2 If ω(t) = Lt for t ∈ (0, t0), then f is L-Lipschitz (abbr. L-Lip)
3 If ω(t) = Lta for some a > 0 and all t ∈ (0, t0), then f is Hölder.
4 If f : X1 → X2 is a bijection and f and f−1 are L-Lip then f is

L-bilip.
5 A 1-bilip map is an isometry.
6 The map f : (X , | · |)→ (X , | · |), f (x) = 1/x ,X = (0,∞), is not

uniformly continuous. With σ(x , y) = | log(x/y)| f is u.c. as a
map f : (X , σ)→ (X , σ) .

7 A Lip map h : [a,b]→ R has a derivative a.e.
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1.10 Exercise∗

Fix 0 < a ≤ 1 ≤ b . Let g : Rn → Rn be defined by
g(x) = |x |a−1x , |x | < 1, and g(x) = |x |b−1x , |x | ≥ 1 . Does there
exist a constant c, with c → 1, when a→ 1,b → 1 such that
|g(x)− g(y)| ≤ c|g(x)− g(z)| for all
x , y ,0 < |x | ≤ |y |, z = (|x |+ |x − y |)x/|x |?

1.11 Balls

Write Bd (x0, r) = {x ∈ X : d(x0, x) < r} and
Bd (x0, r) = {x ∈ X : d(x0, x) ≤ r}.
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1.12 Problems ([Vu-IWQCMA05])

Suppose that X is locally convex.
1 Are balls convex (radius t > 0)?
2 Are balls convex for a small radius t?
3 Are the boundaries nice/smooth?

1.13 Ball inclusion problem

Suppose that (X ,dj), j = 1,2, determine the same (e.g. euclidean)
topology. Then

Bd2(x0, r) ⊂ Bd1(x0, s) ⊂ Bd2(x0, t)

for some r , s, t > 0 . For a fixed r > 0, find the best radii s and t .
(Naturally, we could replace d2 e.g. by the euclidean metric.)
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1.14 Theorem

τ = {Bd (x , r) : x ∈ X , r > 0} ∪ ∅ ∪ X defines a topology.

1.15 Remarks

1 This is the natural topology of a metric space.
2 Bd (x0, r) is closed.
3 (Z,d),d(x , y) = |x − y | is a metric space.

Bd (0,1) = {0}, Bd (0,1) = {−1,0,1}. Hence clos(Bd (x0, r)) need
not be Bd (x0, r) . Also

diam(Bd (0,1)) = 0 < diam(Bd (0,1)) = 2 .

4 Balls need not be connected (cf. below).
5 It is possible that Bd (x0, r) is connected but clos(Bd (x0, r)) is

not. The closure may contain isolated points.
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1.16 Euclidean balls

In Rn: balls are Bn(x , r), spheres ∂Bn(x , r) = Sn−1(x , r)

1.17 Paths

A continuous map γ : ∆→ X ,∆ ⊂ R , is called a path. The length
of γ, `(γ) , is

`(γ) = sup

{
n∑

i=1

d(γ(xi−1), γ(xi)) : {x0, , ..., xn} is a subdivision of ∆

}

We say a path is rectifiable if `(γ) <∞ . A rectifiable path
γ : ∆→ X has a parameterization in terms of arc length
γo : [0, `(γ)]→ X .

1.18 Exercise

`([0,1]) =∞ if d(x , y) = |x − y |1/2 .
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1.19 Definition

G is connected if for all x , y ∈ G there exists a path γ : [0,1]→ G
such that γ(0) = x , γ(1) = y . We write Γxy for the set of all paths
joining x with y in G . A domain is an open connected set.

1.20 Inner metric of a connected set G ⊂ X

d(x , y) = inf{`(γ) : γ ∈ Γxy} , x , y ∈ G.

1.21 Geodesics

A path γ : [0,1]→ G where G is a domain, is a geodesic joining
γ(0) and γ(1) if `(γ) = d(γ(0), γ(t)) + d(γ(t), γ(1)) for all t ∈ [0,1].

1.22 Remarks

1 In (Rn, | · |) the segment
[x , y ] = {z ∈ Rn : z = λx + (1− λ)y , λ ∈ [0,1]} is a geodesic

2 Let G = B2 \ {0} and d be the inner metric of G . There is no
geodesics joining −1/2 and 1/2 in (G,d) .
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1.23 Path integrals

For a locally rectifiable path γ : ∆→ X and a continuous
f : γ∆→ R the path integral is defined in two steps.

[I ] If γ is rectifiable, we set∫
γ

f ds =

∫ `(γ)

0
f (γo(t))|(γo)′(t)|dt .

[II ] If γ is locally rectifiable, we set∫
γ

f ds = sup
{∫

β
f ds : `(β) <∞ , β ⊂ γ

}
.
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1.24 Weighted length

Let G ⊂ X be a domain and w : G→ (0,∞) continuous. Define

dw (x , y) = inf{`w (γ) : γ ∈ Γxy , `(γ) <∞}, `w (γ) =

∫
γ

w(γ(z)) |dz| .

1.25 Exercise

Show that dw defines a metric on G .
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1.26 Examples

1 If G ⊂ X is a domain, set w(z) = 1/d(z, ∂G). The
quasihyperbolic metric is a special case of the weighted
metric,

kG(x , y) = inf{`w (γ) : `w (γ) =

∫
γ

w(γ(z)) |dz| } .

2 If G = Hn = {x ∈ Rn : xn > 0} then the quasihyperbolic metric
coincides with the usual hyperbolic metric. Often the
notation ρHn is used.

3 The hyperbolic metric of the unit ball Bn is a weighted metric
with the weight function w(x) = 2/(1− |x |2) . Often the
notation ρBn is used.

All these three metrics have geodesics.
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1.27 Special cases

1 (1) ρHn (sen, ten) = | log(s/t)| , s, t > 0,
2 (2) ρn (0, sen) =

∫ s
0

2 dt
1−t2 = log 1+s

1−s = 2arths s ∈ (0,1)

3 (3) kn (0, sen) =
∫ s

0
dt

1−t = log 1
1−s s ∈ (0,1)
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1.28 Conformal mapping

If G1,G2 ⊂ Rn are domains and f : G1 → G2 is a diffeomorphism
with |f ′(x)h| = |f ′(x)|︸ ︷︷ ︸

operator n.

|h|︸︷︷︸
vector n.

we call f a conformal map. We use

this definition also in the case G1,G2 ⊂ Rn by excluding the two
points {∞, f−1(∞)}.
1.29 Linear dilatation

x

r
r

f

l r f(x )

L
r

r

For a homeomorphism f : (X ,d1)→ (Y ,d2) and x0 ∈ X define

H(x0, f , r) =
Lr

lr
; H(x0, f ) = lim sup

r→0
H(x0, f , r)
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1.30 Quasiconformal (qc) maps

A homeomorphism f : G→ G′,G,G′ ⊂ Rn is qc if there exists a
constant K (f ) ≥ 1 such that ∀x0 ∈ G H(x0, f ) ≤ K .
N.B. Observe that for a conformal map K (f ) = 1 .

1.31 The Möbius group GM(Rn)

The group of Möbius transformations in Rn is generated by
transformations of two types

1 inversions in Sn−1(a, r) = {z ∈ Rn : |a− z| = r}

x 7→ a +
r2(x − a)

|x − a|2 ,

2 reflections in hyperplane P(a, t) = {x ∈ Rn : x · a = t}

x 7→ x − 2(x · a− t)
a
|a|2 .

If G ⊂ Rn we denote by GM(G) the group of all Möbius
transformations with fG = G.
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1.32 Plane versus space

1 For n = 2 Möbius transformations are of the form
az+b
cz+d ,ad − bc 6= 0 .

2 Recall that for n = 2 there are many conformal maps
(Riemann mapping Theorem., Schwarz-Christoffel formula).
For the case n ≥ 3 conformal maps are Möbius
transformations, by Liouville’s theorem (suitable smoothness
required).

3 Therefore conformal invariance for the case n ≥ 3 is very
different from the plane case n = 2.

The stereographic projection π : Rn → Sn((1/2)en+1,1/2) is
defined by a Möbius transformation:

π(x) = en+1 +
x − en+1

|x − en+1|2
, x ∈ Rn, π(∞) = en+1 .
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1.33 Absolute (cross) ratio

For distinct points a,b, c,d ∈ Rn the absolute ratio is

|a,b, c,d | =
q(a, c)q(b,d)

q(a,b)q(c,d)
, q(x , y) =

|x − y |√
1 + |x |2

√
1 + |y |2

.

The most important property is Möbius invariance:
f Möbius⇒ |fa, fb, fc, fd | = |a,b, c,d |.
(Permutations of a,b, c,d lead to 6 different values of the absolute
ratio. Sometimes in the literature these other values are used.)
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1.34 Examples

In most examples below, the metric spaces will have additional
structure. In particular, we will study metric spaces (X ,d) where
the group Γ of automorphisms of X acts transitively (i.e. given
x , y ∈ X there exists h ∈ Γ such that hx = y . We say that the metric
d is quasiinvariant under the action of Γ if there exists C ∈ [1,∞)
such that d(hx ,hy)/d(x , y) ∈ [1/C,C] for all x , y ∈ X , x 6= y , and all
h ∈ Γ . If C = 1, then we say that d is invariant.

1 The Euclidean space Rn equipped with the usual metric
|x − y | = (

∑n
j=1(xj − yj)

2)1/2, Γ is the group of translations.
2 The unit sphere Sn = {z ∈ Rn+1 : |z| = 1} equipped with the

metric of Rn+1 and Γ is the set of rotations of Sn .
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3 Let G ⊂ Rn,G 6= Rn , for x , y ∈ G set

jG(x , y) = log
(

1 +
|x − y |

min{d(x , ∂G),d(y , ∂G)}

)
.

Then one can prove that jG is a quasiinvariant metric under
the Möbius selfmaps of G , see e.g. [Se-99]. In fact, there
exists a constant C > 1 such that for the unit ball B of Rn

1/C ≤ ρB(x , y)/jB(x , y) ≤ C

for all x , y ∈ B . Here ρB is the hyperbolic metric of B .
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1.35 F.Klein’s Erlangen Program (KEP) 1872 for geometry

use isometries ("rigid motions") to study geometry
Γ is the group of isometries
two configurations are considered equivalent if they can be
mapped onto each other by an element of Γ
the basic "models" of geometry are

(a) Euclidean geometry of Rn

(b) hyperbolic geometry of the unit ball Bn in Rn

(c) spherical geometry (Riemann sphere)
The main examples of Γ are subgroups of Möbius transformations
of Rn

= Rn ∪ {∞}. KEP had a profound influence not only on
geometry but also on Geometric Function Theory (GFT).

3

1

2

(X,d)
h isometry

h : X ® X

hÎG

(X,d)

1’

3’

2’
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1.36 Example: Rigid motions and invariant metrics in GFT

X Γ metric
G M(G) ρG hyperbolic metric,G = Bn,Hn

Rn Iso(Rn
) q chordal metric

Rn transl. | · |Euclidean metric
D conf.autom. hD hyp.metric of D ⊂ C
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1.37 Beyond Erlangen, dictionary of the new world

We wish to study mappings in subdomains of Rn. We must go
beyond KEP in order to get a rich class of mappings. We are
searching for a new kind of GFT.

Conformal map → ”Quasiconformal”
Conformal map → ”Metric-preserving maps”

Analytic → ”Quasiregular”
Invariance → ”Quasi-invariance”

Unit ball → ”Classes of domains”
Metric → ”Deformed metric”
World → ”Quasiworld”

Smooth → "Nonsmooth"
Hyperbolic → "Neohyperbolic"

A neohyperbolic metric is also called a hyperbolic type metric.
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1.38 Metrics in particular domains: uniform, quasidisks

Sometimes inequalities between hyperbolic type metrics are used
to characterize several subdomains in Rn such as uniform
domains, quasidisks (images of B2 under a qc map of R2),
ϕ-uniform domains, etc. For instance,

1 [GO-79] A domain G  Rn is uniform if and only if there exist
constants c,d > 0 such that

kG(x , y) ≤ c jG(x , y) + d for allx , y ∈ G .

It was shown in [Vu-85] that we can replace (c,d) with (c2,0) .
2 [Ge-99] A simply connected domain D is a quasidisk if and

only if there is a constant c > 0 such that

hD(z1, z2) ≤ c jD(z1, z2) for all z1, z2 ∈ D .

3 Later in 2000, Gehring and Hag [GH-00] obtained the following
simple characterization: A simply connected domain D is a
quasidisk if and only if there is a constant c such that

hD(z1, z2) ≤ c aD(z1, z2) for all z1, z2 ∈ D .
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1.39 Open problem

For which pairs of metrics (d1,d2) the condition: ∃C ≥ 1 such that
∀x , y ∈ G

d2(x , y) ≤ Cd1(x , y) or ≤ ω(d1(x , y))

leads to a nice class of domains (ω is a function)? Usually we are
interested in “hyperbolic-type metrics”.

1.40 Non-uniform domains

Shrinking bottleneck domain. Rooms and corridors example.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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1.41 Some non-smooth domains
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2 Classical geometries

2.1 Weighted metric, geodesics and examples

1 Let G ⊂ Rn be a domain and w : G→ (0,∞) a function such
that for every rectifiable curve γ in G the integral

`w (γ) =

∫
γ

w ds

is defined. We call `w (γ) the w-length of γ.
2 Fix a,b ∈ G and consider Γab, the collection of all rectifiable

curves in G joining a and b. The w-length minimizing property

mw (a,b) = inf
γ∈Γab

`w (γ),

defines the weighted metric in G. If a length minimizing curve
exists, it is called a geodesic segment.

3 When w ≡ 1 is the Euclidean distance in a convex subdomain
G ⊂ Rn. The geodesics are the Euclidean segments.
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4 In the special case when w ≡ 1 in the non-convex set
G = B2 \ [0,1) geodesics do not exist (consider the points
a = 1

2 + i
10 and b = a)

5 If w(x) = 1/d(x , ∂G), then mw is the quasihyperbolic metric.
Now geodesics exist (Gehring-Osgood 1979).
Note: w(x) = 1/d(x , ∂G) is like a "penalty-function", the
geodesic segments try to keep away from the boundary.

6 If G = Hn = {x ∈ Rn : xn > 0} and w(x) = 1/xn then mw is the
usual hyperbolic metric.
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7 If (X ,d) is a metric space and h : [0,∞)→ [0,∞) is a
homeomorphism such that h(t)/t is decreasing then (X ,h ◦ d)
is also a metric space.

8 Stereographic projection defines the chordal distance by

q(x , y) = |πx − πy | =
|x − y |√

1 + |x |2
√

1 + |y |2

for x , y ∈ Rn
= Rn ∪ {∞}

x

y

_
n

0

π(x)

π(y)

en+1
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2.2 Comparison of metric balls (ball inclusion problem)

For r , s > 0 we obtain the formula

ρ(ren, sen) =
∣∣∣ ∫ r

s

dt
t

∣∣∣ =
∣∣∣ log

r
s

∣∣∣ . (I)

For f ∈ GM(Hn) we have the invariance property:

ρ(x , y) = ρ(f (x), f (y)) ∀x , y ∈ Hn. (II)

For a ∈ Hn and M > 0 the hyperbolic ball { x ∈ Hn : ρ(a, x) < M } is
denoted by D(a,M). It is well known that D(a,M) = Bn(z, r) for
some z and r (this also follows from (II)! ).
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Figure:The hyperbolic ball D(ten,M) ⊂ Hn as a Euclidean ball.

This fact together with the observation that
λten, (t/λ)en ∈ ∂D(ten,M), λ = eM (cf. (I)), yields

D(ten,M) = Bn((t cosh M)en, t sinh M
)
,

Bn(ten, rt) ⊂ D(ten,M) ⊂ Bn(ten,Rt) ,
r = 1− e−M , R = eM − 1 .

(III)
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Consider now the balls D(z,M) of (B, ρ) . As in the case of Hn we
have D(z,M) = Bn(y , r) for some y ∈ B and r > 0. Making use of
this fact, we shall find y and r . Let Lz be a Euclidean line through
0 and z and {z1, z2} = Lz ∩ ∂D(z,M), |z1| ≤ |z2|. We may assume
that z 6= 0 since with obvious changes the following argument
works for z = 0 as well. Let e = z/|z| and z1 = se, z2 = ue,
u ∈ (0,1), s ∈ (−u,u). Then it follows that
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ρ(z1, z) = log
(1 + |z|

1− |z| ·
1− s
1 + s

)
= M ,

ρ(z2, z) = log
(1 + u

1− u
· 1− |z|

1 + |z|
)

= M

Solving these for s and u and using the fact that

D(z,M) = Bn(1
2(z1 + z2), 1

2 |u − s|
)

one obtains the following formulae:
D(x ,M) = Bn(y , r)

y =
x(1− t2)

1− |x |2t2 , r =
(1− |x |2)t
1− |x |2t2 , t = tanh 1

2M ,

(IV)
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and 
Bn(x , a(1− |x |)

)
⊂ D(x ,M) ⊂ Bn(x , A(1− |x |)

)
,

a =
t(1 + |x |)
1 + |x |t , A =

t(1 + |x |)
1− |x |t , t = tanh 1

2M .

A special case of (IV):

D(0,M) = Bρ(0,M) = Bn(tanh
1
2

M) .
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2.3 Hyperbolic metric of the unit ball Bn

Four definitions of the hyperbolic metric ρBn

1 ρBn = mw , w(x) = 2
1−|x |2 ,

2 sinh2 ρBn (x ,y)
2 = |x−y |2

(1−|x |2)(1−|y |2)
, ([Be-82]),

3 ρBn (x , y) = sup{log |a, x , y ,d | : a,d ∈ ∂Bn},
4 ρBn (x , y) = log |x∗, x , y , y∗|.

N.B. Invariance under GM(Bn).

2.4 The hyperbolic line through x , y

The hyperbolic geodesics between x , y in the unit ball are
subarcs of the circular arcs joining x and y orthogonal to ∂Bn.

x

y

x´

y´
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2.5 Hyperbolic metric of G = f (Bn), f conformal
f conformal

-1f (y)

x
y

-1f (x)

ρ(x , y) = ρBn (f−1(x), f−1(y)).

The case Gk = fk (Bn) when fk is conformal.
Let h : G1 → G2 be conformal. Then ρG1(x , y) = ρG2(hx ,hy).

h

y
h (x)

x h (y)

For n = 2 one can generalize the hyperbolic metric, using
covering transformations, to a domain G ⊂ R2 with
card(R2 \G) ≥ 3 [KL-07].
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2.6 Spherical metric

w(x) =
1

1 + |x |2 , x , y ∈ Rn
.

The length minimizing property defines the spherical metric
σ(x , y). This spherical metric is equivalent to the chordal metric q.
In fact, the two relationships

σ(x , y) = 2 arcsin q(x , y) and 1 ≤ σ(x , y)

q(x , y)
≤ π = 4 arctan 1

hold for all distinct x , y ∈ Rn.
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2.7 Spherical geodesics

A spherical geodesic joining x and y is the smallest circular arc of
the greatest circle joining x and y on the Riemann sphere.
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2.8 Quasihyperbolic geodesics [GO-79],[Mar-85]

(1) Since kHn = ρHn , quasihyperbolic geodesics are hyperbolic
geodesics in half-spaces.
(2) Sectorial (angular) domains [Lin-05]������� ������ ����	�
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(3) Infinite strip: Quasihyperbolic balls centered on "the middle
line" have smooth boundaries.

(4) For every domain G, the quasihyperbolic geodesics are
smooth [Mar-85].
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3 Hyperbolic type geometries

3.1 The distance ratio metric jG
For x , y ∈ G the distance ratio metric jG is defined [Vu-85] by

jG(x , y) = log
(

1 +
|x − y |

min{d(x),d(y)}

)
.

In a slightly different form, this metric was studied in [GO-79].
We collect the following well-known facts:

1 Inner metric of the jG metric is the quasihyperbolic metric kG.
2 kG(x , y) ≥ jG(x , y),∀x , y ∈ G
3 kG(x , y) ≤ 2jG(x , y) when jG(x , y) < log(3/2) .

4 Both kG and jG define Euclidean topology.
5 jG is not geodesic; the balls Bj(z,M) = {x ∈ G : jG(z, x) < M}

may be disconnected for large M . The closure of Bj(z,M) may
contain an isolated point.
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3.2 Apollonian metric of G  Rn

αG(x , y) = sup{log |a, x , y ,b| : a,b ∈ ∂G}.

 x
 y b

 a

αG agrees with ρG, if G equals Bn and Hn.
αhG(hx ,hy) = αG(x , y) for h ∈ GM(Rn)
αG is a pseudometric if ∂G is ”degenerate”
The new history of αG begins with Beardon 1998 and
continues with P. Seittenranta 1998, Z. Ibragimov 2002, P.
Hästö 2003, S. Sahoo 2008.
The old history: D. Barbilian 1934.
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Facts

1 The well-known sharp relations αG ≤ 2jG and αG ≤ 2kG are
due to Beardon [Be-98].

2 αG is not geodesic.
3 Inner metric of the Apollonian metric is called the Apollonian

inner metric and it is denoted by α̃G (see
[Ha-03, Ha-04, HPS-06]).

4 We have αG ≤ α̃G ≤ 2kG.
5 α̃G-geodesic exists between any pair of points in G  Rn if Gc

is not contained in a hyperplane [Ha-04].
6 α̃G can be expressed as a weighted integral [Ha-04].
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3.3 Seittenranta’s metric δG

For x , y ∈ G  Rn, Seittenranta’s metric [Se-99] is defined by

δG(x , y) = sup
a,b∈∂G

log{1 + |a, x ,b, y |} .

Facts
1 The function δG is a metric.
2 δG agrees with ρG, if G equals Bn or Hn.
3 The inequality jG ≤ δG ≤ j̃G ≤ 2jG holds for every open set

G  Rn, where the metric j̃G is a metric defined by

j̃G(x , y) = log
(

1 +
|x − y |
d(x)

)(
1 +
|x − y |
d(y)

)
.

4 It follows from the definitions that δRn\{a} = jRn\{a} for all
a ∈ Rn.

5 αG ≤ δG ≤ log(eαG + 2) ≤ αG + 3. The first two inequalities are
best possible for δG in terms of αG only [Se-99].
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6 The inner metric of the metric δG is the so-called Ferrand
metric [Fe-88] and it is defined by the weighted integral

σG(x , y) = inf
γ∈Γxy

∫
γ

w(z) |dz| ,

where the weight function

w(z) = sup
a,b∈∂G

|a− b|
|z − a| |z − b| , z ∈ G \ {∞} .

7 σG is Möbius invariant.
8 σBn and σHn coincide with the hyperbolic metrics of Bn and Hn

respectively.
9 In a simply connected planar domain G, with at least two

boundary points, ρG ≤ σG ≤ 2ρG.
10 kG ≤ σG ≤ 2kG for every G  Rn.
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3.4 Comparisons in Bn

If we compare the density functions of the hyperbolic and the
quasihyperbolic metrics of Bn, we see that

ρBn (x , y)/2 ≤ kBn (x , y) ≤ ρBn (x , y)

for all x , y ∈ Bn . For the case of Bn we make use of an explicit
formula [Be-82], [Vu-book, (2.18)] to the effect that for x , y ∈ Bn

sinh
ρBn (x , y)

2
=
|x − y |

t
, t =

√
(1− |x |2)(1− |y |2) . (1)

The following proposition gathers together several basic
properties of the metrics kG and jG, see for instance
[GP-76, Vu-book].
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3.5 Proposition

1 For a domain G ⊂ Rn, x , y ∈ G, we have

kG(x , y) ≥ log
(

1 +
L

min{δ(x), δ(y)}

)
≥ jG(x , y) ,

where L = inf{`(γ) : γ ∈ Γ(x , y)} .
2 For x ∈ Bn we have

kBn (0, x) = jBn (0, x) = log
1

1− |x | .

3 Moreover, for b ∈ Sn−1 and 0 < r < s < 1 we have

kBn (br ,bs) = jBn (br ,bs) = log
1− r
1− s

.
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Proposition...

4 Let G  Rn be any domain and z0 ∈ G. Let z ∈ ∂G be such
that δ(z0) = |z0 − z|. Then for any u, v ∈ [z0, z] we have

kG(u, v) = jG(u, v) =

∣∣∣∣log
δ(z0)− |z0 − u|
δ(z0)− |z0 − v |

∣∣∣∣ =

∣∣∣∣log
δ(u)

δ(v)

∣∣∣∣ .
5 For x , y ∈ Bn we have

jBn (x , y) ≤ ρBn (x , y) ≤ 2jBn (x , y)

with equality on the right hand side when x = −y .
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Proof.
(1) Without loss of generality we may assume that δ(x) ≤ δ(y). Fix
γ ∈ Γ(x , y) with arc length parameterization
γ : [0,u]→ G, γ(0) = x , γ(u) = y

`k (γ) =

∫ u

0

|γ′(t)|dt
d(γ(t), ∂G)

≥
∫ u

0

dt
δ(x) + t

= log
δ(x) + u
δ(x)

≥ log
(

1 +
|x − y |
δ(x)

)
= jG(x , y) .

(2) We see by (1) that

jBn (0, x) = log
1

1− |x | ≤ kBn (0, x) ≤
∫

[0,x ]

|dz|
δ(z)

= log
1

1− |x |

and hence [0, x ] is the kBn -geodesic between 0 and x and the
equality in (2) holds.
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Proof (Continued...)
The proof of (3) follows from (2) because the quasihyperbolic
length is additive along a geodesic

kBn (0,bs) = kBn (0,br) + kBn (br ,bs) .

The proof of (4) follows from (3).
The proof of (5) is given in [AVV-book, Lemma 7.56].
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3.6 Lemma

1 For 0 < s < 1 and x , y ∈ Bn(s) we have

jBn (x , y) ≤ kBn (x , y) ≤ (1 + s) jBn (x , y).

2 Let G  Rn be a domain, w ∈ G , and
w0 ∈ (∂G) ∩ Sn−1(w , δ(w)) . If s ∈ (0,1) and x , y ∈ Bn(w , sδ(w))
are such that δ(x) = |x − w0| ≤ δ(y) , then we have

kG(x , y) ≤ (1 + s)jG(x , y) .

3 Let s ∈ (0,1),G = Rn \ {0}, x , y ,w ∈ G with |x | ≤ |y | and
|x − w | < sδ(w), |y − w | < sδ(w) . Then we have

kG(x , y) ≤ (1 + s)jG(x , y) .
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Proof
(1) Fix x , y ∈ Bn(s) and the geodesic γ of the hyperbolic metric
joining them. Then γ ⊂ Bn(s) and for all w ∈ Bn(s) we have

1
1− |w | <

1 + s
2

2
1− |w |2 .

Therefore by Proposition 3.5(5)

kBn (x , y) ≤
∫
γ

|dw |
1− |w | ≤

1 + s
2

∫
γ

2|dw |
1− |w |2

≤ 1 + s
2

ρBn (x , y) ≤ (1 + s)jBn (x , y) .

for x , y ∈ Bn(s). The first inequality follows from Proposition
3.5(1).
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Proof.
For the proof of (2) set B = Bn(w , δ(w)) . Then by part (1)

kG(x , y) ≤ kB(x , y) ≤ (1 + s)jB(x , y) = (1 + s)jG(x , y) .

The proof of (3) follows from the proof of (2).
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3.7 Remark

(1) Lemma 3.6 (1) and (3) improve [Vu-book, Lemma 3.7(2)] for the
cases of Bn and Rn \ {0}. We have been unable to prove a similar
statement for a general domain.
(2) The proof of Proposition 3.5 shows that the diameter
(−e,e),e ∈ Sn−1, of Bn is a geodesic of kBn and hence the
quasihyperbolic distance is additive on a diameter. At the same
time we see that the j metric is additive on a radius of the unit ball
but not on the full diameter because for x ∈ Bn \ {0}

jBn (−x , x) < jBn (−x ,0) + jBn (0, x) .

Our next goal is to compare the Euclidean and the
quasihyperbolic metric in a domain and we recall in the next
lemma a sharp inequality for the hyperbolic metric of the unit ball
proved in [Vu-book, (2.27)].
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Lemma 3.8

For x , y ∈ Bn let t be as in (1). Then

tanh2 ρBn (x , y)

2
=

|x − y |2
|x − y |2 + t2 ,

|x − y | 6 2 tanh
ρBn (x , y)

4
=

2|x − y |√
|x − y |2 + t2 + t

,

where equality holds for x = −y.

Earle and Harris [EH-09] provided several applications of this
inequality and extended this inequality to other metrics such as
the Carathéodory metric. Several remarks about Lemma 3.8 are in
order. Notice that Lemma 3.8 gives a sharp bound for the
modulus of continuity

id : (Bn, ρBn )→ (Bn, | · | ) .
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3.9 QC Schwarz lemma

If f : Bn → Bn is K -qc (NOT DEFINED!), then for all x , y ∈ Bn

ρBn (f (x), f (y)) ≤ 2arthϕK ,n(th
1
2
ρBn (x , y))

For n = 2 the result is sharp for each K ≥ 1, see [LV-book, p. 65
(3.6)]. The particular case K = 1 yields a classical Schwarz
lemma.
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As a preliminary step we record Jung’s Theorem [Ber-87,
Theorem 11.5.8] which gives a sharp bound for the radius of a
Euclidean ball containing a given bounded domain.

Lemma 3.10

Let G ⊂ Rn be a domain with diam G <∞. Then there exists z ∈ Rn

such that G ⊂ Bn(z, r), where r ≤
√

n/(2n + 2) diam G.

Matti Vuorinen (University of Turku) CHIFIN2012 August 23, 2012 60 / 150



Lemma 3.11

1 If x , y are on a diameter of Bn and w = |x − y |e1/2, then we have

kBn (x , y) ≥ kBn (−w ,w) = 2 kBn (0,w) = 2 log
2

2− |x − y | ≥ |x − y | ,

where the first inequality becomes equality when y = −x.

2 If x , y ∈ Bn are arbitrary and w = |x − y |e1/2, then

kBn (x , y) ≥ kBn (−w ,w) = 2 kBn (0,w) = 2 log
2

2− |x − y | ≥ |x − y | ,

where the first inequality becomes equality when y = −x.
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Lemma 3.12 (Continued...)

3 Let G  Rn be a domain with diam G <∞ and
r =

√
n/(2n + 2) diam G. Then we have

kG(x , y) ≥ 2 log
2

2− t
≥ t = |x − y |/r ,

for all distinct x , y ∈ G with equality in the first step when
G = Bn(z, r) and z = (x + y)/2.
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Proof
In the proof of (1) and (2), without loss of generality, we assume
that |x | ≥ |y |.

1 If 0 ∈ [x , y ], by Proposition 3.5(2) we have

kBn (x , y) = kBn (x ,0) + kBn (0, y) = log
1

(1− |x |)(1− |y |) ,

and hence
kBn (−w ,w) = 2 log

1
1− |w | .

We need to prove that

(1− |w |)2 ≥ (1− |x |)(1− |y |) .

It suffices to show that

|x |+ |y |
2

=
|x − y |

2
= |w | ≤ 1−

√
(1− |x |)(1− |y |) ,
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which is equivalent to (|x | − |y |)2 ≥ 0 .
If y ∈ [x ,0], then the proof goes in a similar way. Indeed, we
note that |x | − |y | = |x − y | = 2|w |. Then by Proposition 3.5(3)
we have

kBn (x , y) = log
1− |y |
1− |x | .

It is enough to show that

(1− |w |)2 ≥ 1− |x |
1− |y | = 1 +

|y | − |x |
1− |y | .

Substituting the value of |w | and then squaring we see that

(|x | − |y |)
(

1− 1
1− |y |

)
≤
( |x | − |y |

2

)2

,

which is trivial as the left hand term is ≤ 0. Equality holds if
y = −x .
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2 Choose y ′ ∈ Bn such that |x − y | = |x − y ′| = 2|w | with x and y ′

on a diameter of Bn (see figure below).

•
O

•
y′x

•y

•

Bn
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Then
kBn (x , y) ≥ kBn (x , y ′) ≥ kBn (−w ,w) ,

where the first inequality holds trivially and the second one holds
by (1).

3 Since G is a bounded domain, by Lemma 3.10, there exists
z ∈ Rn such that G ⊂ Bn(z, r). Denote B := Bn(z, r) . Then the
domain monotonicity property gives

kG(x , y) ≥ kB(x , y) .

Without loss of generality we may now assume that z = 0.
Choose u, v ∈ B in such a way that u = −v and
|u − v | = 2|u| = |x − y |. Hence by (2) we have

kG(x , y) ≥ kB(x , y) ≥ kB(−u,u) = 2 log
r

r − |u| .

This completes the proof.
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Corollary 3.13

1 For every x , y ∈ Bn we have

|x − y | ≤ 2(1− exp(−kBn (x , y)/2)) ≤ kBn (x , y) ,

where the first inequality becomes equality when y = −x.
2 If G  Rn is a domain with diam G <∞ and

r =
√

n/(2n + 2) diam G, then we have

|x − y |/r ≤ 2(1− exp(−kG(x , y)/2)) ≤ kG(x , y)

for all distinct x , y ∈ G with equality in the first step when
G = Bn(z, r) and z = (x + y)/2.

A counterpart of Lemma 3.11 for the metric jG is discussed below.
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Lemma 3.14

1 If x , y are on a diameter of Bn and w = |x − y |e1/2, then we have

jBn (x , y) ≥ jBn (−w ,w) = log
2 + t
2− t

≥ t = |x − y | ,

where the first inequality becomes equality when y = −x.

2 If x , y ∈ Bn are arbitrary and w = |x − y |e1/2, then

jBn (x , y) ≥ jBn (−w ,w) = log
2 + t
2− t

= 2artanh(t/2) ≥ t = |x − y | ,

where the first inequality becomes equality when y = −x.

3 Let G  Rn be a domain with diam G <∞ and r =
√

n/(2n + 2) diam G.
Then we have

jG(x , y) ≥ log
2 + t
2− t

≥ t = |x − y |/r ,

for all distinct x , y ∈ G with equality in the first step when G = Bn(z, r)
and z = (x + y)/2.
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Proof.
In the proof of (1) and (2), without loss of generality, we may
assume that |x | ≥ |y |.

1 If 0 ∈ [x , y ], we have

jBn (x , y) = log
(

1 +
|x − y |
1− |x |

)
= log

1 + |y |
1− |x |

and hence

jBn (−w ,w) = log
1 + |w |
1− |w | = log

2 + |x − y |
2− |x − y | ≥ |x − y | .

The inequality jBn (x , y) ≥ jBn (−w ,w) is clear due the fact that
2|w | = |x |+ |y | and |x | ≥ |y |. If y ∈ [x ,0], a similar reasoning
gives the conclusion.
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Proof (Continued...)
2 Choose y ′ ∈ Bn such that |x − y | = |x − y ′| = 2|w | with x and y ′

on a diameter of Bn. Then

jBn (x , y) = jBn (x , y ′) ≥ jBn (−w ,w) ,

where the lower bound holds by (1).
3 The proof is very similar to the proof of Lemma 3.11(3).

This completes the proof.
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Corollary 3.15
1 For every x , y ∈ Bn we have

|x − y | ≤ 2 tanh(jBn (x , y)/2) ≤ jBn (x , y) ,

where the first inequality becomes equality when y = −x.
2 If G  Rn is a domain with diam G <∞ and

r =
√

n/(2n + 2) diam G, then we have

|x − y |/r ≤ 2 tanh(jG(x , y)/2) ≤ jG(x , y) ,

for all distinct x , y ∈ G with equality in the first step when
G = Bn(z, r) and z = (x + y)/2.
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Remark 3.16

Let us denote the spherical chordal metric in Rn by q(x , y) . Starting
with the sharp inequality [AVV-book, 7.17 (3), p. 378]

|x − y | ≥ 2q(x , y)

1 +
√

1− q(x , y)2

we deduce that
q(x , y) ≤ |x − y |

1 + (|x − y |/2)2

with equality for y = −x . Therefore, we see that the identity mapping

id : (Rn
, | · |)→ (Rn

,q)

has the sharp modulus of continuity ω(t) = t/(1 + (t/2)2) for t ∈ (0,2) .
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3.17 Existence of kG geodesics

1 In the case of Rn \ {0} Martin and Osgood (see [MO-86]) have
determined the geodesics. Their result states that given
x , y ∈ Rn \ {0}, |x | ≤ |y | , the geodesic segment can be
obtained as follows: let ϕ be the angle between the segments
[0, x ] and [0, y ], 0 < ϕ < π. The triple 0, x , y clearly determines
a 2-dimensional plane Σ, and the geodesic segment
connecting x to y is the logarithmic spiral in Σ with polar
equation

r(ω) = |x | exp
(
ω

ϕ
log
|y |
|x |

)
.

In this punctured space the quasihyperbolic distance is given
by the formula

kRn\{0}(x , y) =

√
ϕ2 + log2 |x |

|y | .
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1 [Lin-05] Let ϕ ∈ (0, π] and x , y ∈ Sϕ = {(r , θ) ∈ R2 : 0 < θ < ϕ},
the angular domain. Then the quasihyperbolic geodesic
segment is a curve consisting of line segments and circular
arcs orthogonal to the boundary. If ϕ ∈ (π,2π), then the
geodesic segment is a curve consisting of line segments,
logarithmic spirals and circular arcs orthogonal to the
boundary.

2 [Lin-05] In the punctured ball Bn \ {0}, the quasihyperbolic
geodesic segment is a curve consisting of logarithmic spirals
and geodesic segments of the quasihyperbolic metric of Bn.
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3.18 Diameter problems

There exists a domain G  Rn and x ∈ G such that
j(∂Bj(x ,M)) 6= 2M for all M > 0. Indeed, let G = Bn. Choose
x ∈ (0,e1) and consider the j-sphere ∂Bj(0,M) for M = jG(x ,0).
Now, Bj(0,M) is a Euclidean ball with radius |x | = 1− e−M . The
diameter of the j-sphere ∂Bj(0,M) is

jG(x ,−x) = log
(

1 +
|2x |
d(x)

)
= log

(
1 +

2− 2e−M

e−M

)
= log(2eM − 1) .

We are interested in knowing whether jG(x ,−x) = 2M holds,
equivalently in this case, (eM − 1)2 = 0 which is not true for any
M > 0. Therefore, we always have jG(x ,−x) < 2M and the
diameter of ∂Bj(0,M) is less than twice the radius M.
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Open problem 3.19 ([Vu-IWQCMA05], [Kle-09])
Does there exist a number M0 > 0 such that for all M ∈ (0,M0] we
have k(∂Bk (x ,M)) = 2M.

For a convex domain G, it is known by Martio and Väisälä [MV-08]
that k(∂Bk (x ,M)) = 2M.
The same question, but for the hyperbolic metric of a twice
punctured plane, was solved in the negative by Beardon and
Minda during the ROMFIN2009 meeting [BM-09].
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4 Particular Cases, Examples

4.1 Bounded and convex domains

1 [Se-99, Theorem 4.1] If G  Rn is bounded and d(∂G)
represents diameter of ∂G, then we have

δG(x , y) ≥ log
(

1 +
d(∂G)

d(∂G)−max{d(x),d(y)}
|x − y |

min{d(x),d(y)}

)
for all x , y ∈ G.

2 In [Be-98], it has been proved that if G is a simply connected
domain bounded plane domain such that the inequalities
αG ≤ ρG or jG ≤ ρG holds, then G is convex.

3 [Se-99, Theorem 4.2] If G  Rn be a convex domain, then
jG ≤ αG.
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4.2 The Apollonian and its inner metric

In this section, we present some materials from [HPS-06]. In order
to state the results in a succinct manner we define some relations
on the set of metrics in G.

Definition 4.3
Let d and d ′ be metrics on G.

1 We write d . d ′ if there exists a constant K > 0 such that d ≤ Kd ′.
2 We write d ≈ d ′ if d . d ′ and d & d ′.
3 We write d � d ′ if d . d ′ and d 6& d ′.
4 We write d ≶ d ′ if d 6. d ′ and d 6& d ′.
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Let us first of all note that the following inequalities hold in every
domain G  Rn:

αG . jG . kG and αG . α̃G . kG. (0)

The first two are from [Be-98, Theorem 3.2] and the second two
from [Ha-03, Remark 5.2 and Corollary 5.4]. We see that of the
four metrics to be considered, the Apollonian is the smallest and
the quasihyperbolic is the largest.
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# Inequality A B # Inequality A B
1. α ≈ j ≈ α̃ ≈ k + + 7. α ≈ j � α̃� k - -
2. α� j ≈ α̃ ≈ k - - 8. α� j � α̃� k - -
3. α ≈ j ≈ α̃� k - - 9. α ≈ α̃� j ≈ k - +
4. α� j ≈ α̃� k - - 10. α� α̃� j ≈ k - +
5. α ≈ j � α̃ ≈ k + + 11. α ≈ α̃� j � k - ?
6. α� j � α̃ ≈ k + + 12. α� α̃� j � k - ?

Table: Inequalities between the metrics αG, jG, α̃G and kG. The subscripts are
omitted for clarity with the understanding that every metric is defined in the
same domain. The A-column refers to whether the inequality can occur in
simply connected planar domains, the B-column to whether it can occur in
proper subdomains of Rn.
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We will undertake a systematic study of which of the inequalities
in (0) can hold in the strong form with� and which of the
relations jG � α̃G, jG ≈ α̃G and jG � α̃G can hold. Thus we are led
to twelve inequalities, which are given along with the results in
Table 1, where we have indicated in column A whether the
inequality can hold in simply connected planar domains and in
column B whether it can hold in an arbitrary proper subdomains
of Rn. From the table we see that most of the cases cannot occur,
which means that there are many restrictions on which
inequalities can occur together. For instance, we deduce from
items 1–4 that jG ≈ α̃G implies that αG ≈ kG and from items 9–12
that the inequality α̃G � jG cannot occur in simply connected
planar domains.
Items 11 and 12 in Table 1, were solved recently in [HPWS-09] for
general domains of Rn and the answers are negative. The main
tool to solve this question was the concept of uniform domains
which is described in the next section.
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4.4 Definitions of uniform domains

In this section we shall consider several versions of uniform
domains, in terms of hyperbolic type metrics, which are
equivalent to the uniform domains originally defined in the sense
of Martio and Sarvas [MS-79].
The following form is interesting because it gives a direct
comparison between the quasihyperbolic and the j-metrics.

Definition 4.5

A domain G  Rn is called uniform, if there exists a number A ≥ 1
such that

kG(x , y) ≤ A jG(x , y) (1)

for all x , y ∈ G. Furthermore, the best possible number

AG := inf{A ≥ 1 : A satisfies (1)}

is called the uniformity constant of G.
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We now collect constants of uniformity in specific domains
[Lin-05].

1 For the domain Rn \ {0}, the uniformity constant is given by

ARn\{0} = π/ log 3 ≈ 2.8596 .

2 Constant of uniformity in the punctured ball Bn \ {0} is same
as that in Rn \ {0}.

3 For the angular domain Sϕ, the uniformity constant is given
by

ASϕ
=

1
sin ϕ

2
+ 1

when ϕ ∈ (0, π].
Using the case of small angles we also get bounds for the
case of large angles ϕ ∈ (π,2π). However, these are not
sharp. Indeed, we have

max
{

2,
2 log tan(ϕ/4) + ϕ− π

log(1− 2 cos(ϕ/2))

}
≤ ASϕ

≤ 4
(

ϕ

2π − ϕ

)2( 1
sin(ϕ/2)

+ 1
)
.
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Since jG ≤ δG ≤ 2jG and kG ≤ σG ≤ 2kG, in the sense of
Seittenranta [Se-99], we have the following alternative definition

Definition 4.6

A domain G  Rn is called c-uniform, c ≥ 1, if

σG(x , y) ≤ c δG(x , y)

for all x , y ∈ G.

Remarks 4.7
1 Definitions 4.5 and 4.6 have the following connection: if a domain

G is uniform in the sense of Definition 4.5 with constant c, then it
is 2c-uniform in the sense of Definition 4.6. Conversely, if a
domain G is c-uniform in the sense of Definition 4.6 then it is
uniform in the sense of Definition 4.5 with constant 2c.

2 The domains Bn and Hn are 1-uniform, whereas the best possible
constant c for Bn and Hn in Definition 4.5 is 2.
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In [HPWS-09] the approach to solve items 11 and 12 of Table 1,
generates another concept of uniformity in terms of α̃G and jG as
follows:

Definition 4.8

A domain G  Rn is called C-uniform, C ≥ 1, if

α̃G(x , y) ≤ C jG(x , y)

for all x , y ∈ G.

Remarks 4.9
1 Since jG ≤ δG ≤ 2jG, in a similar fashion, it is also interesting to

define uniformity in terms of α̃G and δG.
2 Constants of uniformity in the sense of Definition 4.8 are not

known, however it is not difficult to obtain the constants C for Bn

and Hn.
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Open problem 4.10
What can we say about sharp constants of uniformity in the sense of
Definitions 4.6 and 4.8 for the domains Bn \ {0}, Rn \ {0} and Sϕ?

4.11 ϕ-uniform domains

As indicated in Section 1, the notion of ϕ-uniformity comes from
that of uniformity. In this section we mainly concentrate on the
recent work [KSV-09] and [HKSV-09].
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Examples of ϕ-uniform domains

1 Uniform domains are ϕ-uniform as indicated before.
2 Consider domains G satisfying the following property [Vu-85,

2.50]: there exists a constant C ≥ 1 such that each pair of
points x , y ∈ G can be joined by a rectifiable path γ ∈ G with

`(γ) ≤ C |x − y | and d(γ, ∂G) ≥ min{δ(x), δ(y)}/C .

Then G is ϕ-uniform with ϕ(t) = C2t .
3 In particular, every convex domain is ϕ-uniform with ϕ(t) = t .
4 However, in general, convex domains need not be uniform

(for example parallel strips).
5 There exist ϕ-uniform domains with "arbitrary” ϕ(t)
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Characterization of ϕ-uniform domains

Theorem 4.12

The identity mapping id : (G, jG)→ (G, kG) is uniformly continuous if
and only if G is ϕ-uniform.

Proof.
Sufficiency part is trivial. Indeed, for x , y ∈ G we have

kG(x , y) ≤ ϕ(exp(jG(x , y))− 1) = ω(jG(x , y))

where ω(t) = ϕ(et − 1). Conversely, define ϕ : (0,∞)→ (0,∞) by

ϕ(t) = sup{kG(x , y) : jG(x , y) ≤ t} .

By assumption ϕ(t) exists. Also, ϕ(t) is continuous, strictly
increasing and fixes the origin. Since log(1 + t) ≤ t for all t ≥ 0, it
follows that G is ϕ-uniform.
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Complement of ϕ-uniform domains

Because simply connected uniform domains in plane are
quasidisks [MS-79], it follows that the complement of such a
uniform domain also is uniform.
Since the half-strip defined by
S = {(x , y) ∈ R2 : x > 0, −1 < y < 1} is convex, by the above
discussion we observe that it is ϕ-uniform with ϕ(t) = t . On
the other hand, by considering the points zn = (n,−2) and
wn = (n,2) we see that G := R2 \ S is not a ϕ-uniform domain.
Indeed, we have jG(zn,wn) = log 5 and for some
m ∈ R ∩ JG[zn,wn]

kG(zn,wn) ≥ kG(m,wn) ≥ log
(

1 +
|m − wn|
δ(wn)

)
≥ log(1 + n)→∞ as n→∞.
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Consider the domain

D =
{

(x , y) ∈ R2 : −exp(−1− x) < y < exp(−1− x), x > 0
}
.

It is clear by previous investigation that D is ϕ-uniform with
ϕ(t) = 4t . We next show that its complementary domain
G := R2 \ D is not ϕ-uniform. We see that the points
zn = (n,−e−n) and wn = (n,e−n) are in G, and jG(zn,wn) = log 3.
On the other hand, let m ∈ JG[zn,wn] ∩ R. Then

kG(zn,wn) ≥ kG(zn,m) ≥ log
(

1 +
|zn −m|

e−n

)
≥ log(1 + nen) > n→∞ as n→∞ .

(Question!) Are there any bounded ϕ-uniform domains whose
complement is not ϕ-uniform ?
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Let T be the triangle with vertices (1,−1), (0,0) and (1,1).
Consider the domain D bounded by the surface of revolution
generated by revolving T about the vertical axis.
Then we see that D is ϕ-uniform. Indeed, let x , y ∈ D be arbitrary.
Without loss of generality we assume that |x | ≥ |y |. Consider the
path γ = [x , x ′] ∪ C joining x and y , where x ′ ∈ S1(|y |) is chosen so
that |x ′ − x | = d(x ,S1(|y |)); and C is the smaller circular arc of
S1(|y |) joining x ′ to y . For z ∈ D, we write δ(z) := d(z, ∂D).
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Uniform domain D, R3 \ D not ϕ-uniform for any ϕ
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Figure: A double cone domain with two-sided drillings. This picture provides a
schematic view of the simply-connected domain D ⊂ R3 constructed in
[KSV-09]. The domain is uniform but its complement is not ϕ-uniform for any
ϕ.
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Then for all x , y ∈ D we have

kD(x , y) ≤
∫
γ

|dz|
δ(z)

=

∫
[x ,x ′]

|dz|
δ(z)

+

∫
C

|dz|
δ(z)

≤ |x − y |
min{δ(x), δ(y)} +

∫
C

|dz|
δ(z)

≤
(

1 +
π

2

) |x − y |
min{δ(x), δ(y)} ,

where the last inequality follows by the fact that `(C) ≤ π|x − y |/2 .
On the other hand, its complement G = R3 \ D is not ϕ-uniform.
Because for the point zt = te2 ∈ G, 0 < t < 1, we have
jG(−zt , zt ) = log(1 + 2

√
2); and by a similar argument as in the

previous example we have

kG(−zt , zt ) ≥ log

(
1 +

√
2

t

)
→∞ as t → 0 .
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Quasiconvexity and ϕ-uniformity

A domain G ⊂ Rn is said to be quasiconvex if there exists a
constant c > 0 such that any pair of points x , y ∈ G can be
joined by a rectifiable path γ ⊂ G satisfying `(γ) ≤ c |x − y |.
We see from the above examples that the complementary
domains are not quasiconvex.
There exist quasiconvex domains which are not ϕ-uniform
and also conversely (for example, see the figure below).

A quasiconvex domain which is not ϕ-uniform

• •

•

• • •••
•
•

•
• • ••

•

••

••

•
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•
•

•••
•

•
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A ϕ-uniform plane domain which is not quasiconvex
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Properties of ϕ-uniform domains

1 Let G  Rn be a ϕ1-uniform domain and z0 ∈ G. Then G \ {z0}
is ϕ-uniform for some ϕ depending on ϕ1 only.

2 Let f : Rn → Rn be an L-bilipschitz mapping, that is

|x − y |/L ≤ |f (x)− f (y)| ≤ L|x − y |

for all x , y ∈ Rn. If G  Rn is ϕ-uniform, then f (G) is
ϕ1-uniform with ϕ1(t) = L2ϕ(L2t).

3 Let z0 ∈ Rn and R > 0 be arbitrary. Denote by h an inversion
in Sn−1(z0,R). For 0 < m < M, if G ⊂ Bn(z0,M) \ B

n
(z0,m) is a

ϕ-uniform domain, then h(G) is ϕ1-uniform with
ϕ1(t) = (M/m)2ϕ(M2t/m2).

4 Suppose that G  Rn is a ϕ-uniform domain and f is a
quasiconformal map of Rn which maps G onto G′  Rn. Then
G′ is ϕ1-uniform for some ϕ1 as well.

5 If the identity map id : (G, jG)→ (G, kG) is η-QS, then G is
ϕ-uniform for some ϕ depending on η only.
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4.13 Convexity problem [Vu-IWQCMA05]

Fix a domain G ( Rn and neohyperbolic metric m in a collection
of metrics (e.g. quasihyperbolic, Apollonian, jG, hyperbolic metric
of a plane domain etc.). Does there exist constant T0 > 0 such
that the ball Bm(x ,T ) = {z ∈ G : m(x , z) < T}, is convex (in
Euclidean geometry) for all T ∈ (0,T0)?
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Theorem 4.14 ([Kle-08])
For a domain G ( Rn and x ∈ G the j-balls Bj(x ,M) are convex if and
only if M ∈ (0, log 2].
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Diversity of shapes of j-disks, Klen [Kle-08]

Domain G is a rectangle with one puncture. The red curves are
boundaries of j disks of constant radius with centers marked with

a dot.
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j-disks with same center, varying radii
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Figure: Boundaries (nonsmooth!) of j-disks BjR2\{0}
(x ,M) with

radii M = −0.1 + log 2, M = log 2 and M = 0.1 + log 2.

Theorem 4.15 ([Kle-07], [MO-86])

For x ∈ R2 \ {0} the quasihyperbolic disk Bk (x ,M) is strictly convex for
M ∈ (0,1] and it is not convex for M > 1.
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Figure: Boundaries of quasihyperbolic disks BkR2\{0}
(x ,M) with

radii M = 0.7, M = 1.0 and M = 1.3.
An example of an unsmooth boundary of Bk (x , r).

Figure: Boundary of BkR2\{0}
(1,3.2).
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5 Conformal invariants µG, λ−1
G

5.1 The modulus of a curve family

Definition 5.2
The modulus of a curve family Γ of curves in G ⊂ Rn is defined as
M(Γ) = infρ∈F (Γ)

∫
G ρ

n dm where

F (Γ) = {ρ : G→ R ∪ {∞} : ρ ≥ 0, ρ is Borel,
∫
γ ρds ≥ 1 ∀ γ ∈ Γ}

g

G

Ahlfors-Beurling 1950, Väisälä 1961
Kühnau handbook 2002-2005
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5.3 Conformal invariance

M(Γ) = M(gΓ) if g is conformal.

∆(E ,F ; G) = {curves in G joining E and F}

Remark 5.4
Let G,G′ ⊂ Rn be domains and f : G→ G′ a homeomorphism. f is
K -quasiconformal (in the sense of Väisälä) if for all Γ ⊂ G :

M(Γ)/K ≤ M(f Γ) ≤ KM(Γ) .
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5.5 Conformally invariant extremal problem: Grötzsch

The Grötzsch and Teichmüller rings arise from extremal problems
of the following type, which were first posed for the case of the
plane: Among all ring domains which separate two given closed
sets E1 and E2, E1 ∩ E2 = ∅, find one whose modulus has the
greatest value.
Let E1 be a continuum and E2 consist of two points not separated
by E1. By the conformal invariance of the modulus one may then
suppose that E1 = S1(circle) and E2 = {0, r}, 0 < r < 1. Then the
extremal problem is solved by the bounded Grötzsch ring
R(R2 \ B2, [0, r ]).
N.B. R(E ,F ) stands for the ring domain with the complementary
components E ,F .
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Figure: The extremal problem of Teichmüller
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5.6 Conformally invariant extremal problem

Teichmüller’s problem asks to determine for x ∈ Rn \ {0,e1}, n ≥ 2,
in terms of well-known special functions,

p(x) = inf
E ,F

M(4(E ,F )),

where the infimum is taken over all pairs of continua E and F in
Rn with 0,e1 ∈ E , x ,∞ ∈ F .
For a proper subdomain G of Rn and for all x , y ∈ G define

µG(x , y) = inf
Cxy

M
(
∆(Cxy , ∂G; G)

)
where the infimum is taken over all continua Cxy such that
Cxy = γ[0,1] and γ is a curve with γ(0) = x and γ(1) = y . It is clear
that µG is a conformal invariant. It is easy to show that µG is a
metric if cap ∂G > 0. If cap ∂G > 0, we call µG the modulus metric
or conformal metric of G. (G = Bn ⇔ Grötzsch)
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5.7 Conformal invariants
If G is a proper subdomain of Rn, then for x , y ∈ G with x 6= y we define
(following J. Ferrand)

λG(x , y) = inf
Cx ,Cy

M
(
∆(Cx ,Cy ; G)

)
where Cz = γz [0,1) and γz : [0,1)→ G is a curve such that z ∈ |γz | and
γz(t)→ ∂G when t → 1, z = x , y . Clearly, λG is invariant under conformal
mappings of G. That is, λfG(f (x), f (y)) = λG(x , y), if f : G→ fG is
conformal and x , y ∈ G are distinct. (For n = 2, ∂G = {0,∞} ⇔
Teichmüller.)

m l

Figure: The conformal invariants λG and µG .
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5.8 Ferrand’s metric

J. Ferrand has proved that λG(x , y)1/(1−n) defines a metric [Fe-97].
For the case G = Bn, with ρ(x , y) = ρBn (x , y) we have

λBn (x , y) = 2n−1τn(1/ sinh2(ρ(x , y)/2)) ,

µBn (x , y) = τn(sinh2(ρ(x , y)/2)) .

For n = 2 we have

τ2(t) = π/µ(1/
√

1 + t), µ(r) =
π

2
K (
√

1− r2 )

K (r)
,

where

K (r) =

∫ 1

0
[(1− x2)(1− r2x2)]−1/2dx

for 0 < r < 1. In particular, we have

µB2(x , y)λB2(x , y) = 4 .
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Figure: Some spheres {y ∈ R2 : λG(1, y)−1 = c},
G = R2 \ {0} of the Ferrand metric.
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5.9 Generalized Lipschitz problem (GLP)

Consider a category of maps F (e.g. qc, bilip, isometries, even
identity map), a class of domains D (including quasidisks,
uniform domains, . . . ) and neohyperbolic metricsM.

Problem 5.10
Suppose that f : (X ,d1)→ (Y ,d2) is lipschitz. Is it true that f is qc?

N.B. Here f ∈ F , X ,Y ∈ D, dj ∈M are allowed to vary
independently. Therefore this problem alone yields several
dozens of problems for moderately small categories F , D,M.
J. Ferrand [LF-73] posed this question for the metric λ1/(1−n)

G and
it was solved in the negative in [FMV-91].
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5.11 Ramifications of Lipschitz’s problem

We can ask similar questions for many combinations of the
metrics letting dj be one of the neohyperbolic metrics we have
seen so far.
There are numerous ramifications of this problem. E.g. for
X = Y = Bn we can ask to determine the modulus of continuity of
the identity mapping from (Bn, ρ)→ (Bn, |.|). We have the sharp
nontrivial inequality for x , y ∈ Bn

|x − y | ≤ 2 tanh(ρ(x , y)/4) .

A particular case of the above problem is to characterize
isometries f : (X ,d1)→ (Y ,d2). This interesting special case is
largely open, but thanks to the recent work of Hästö, Ibragimov,
Lindén in some cases the solution is known.
The study of these problems offers topics for PhD theses...
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For example, the phd thesis of R. Klén [Kle-09] focused mainly on
similar problems for the metrics m ∈ {q, k , j} where they together
well-defined. The following is one such

Theorem 5.12

For R > 1, consider the annulus
G = A(1/R,R) := {z ∈ Rn : 1/R < |z| < R}. Let mG ∈ {kG, jG}. Then
there exists a constant C(R) ≥ 1 such that C(R)→ 1 as R →∞ and

mG(x , y) ≤ c(R) mRn\{0}(x , y)

for all x , y ∈ A(1/
√

R,
√

R).
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6 Comparison of geometries[Vu-85],[Se-99],[Man-09]

6.1 Relations among jG, kG, λG and µG

The the following table we shall list some relations among the metrics
jG, kG, λG and µG. If a and b are positive functions in G ×G then we write
al b if and only if there exists a strictly increasing continuous function
ζ : (0,∞)→ (0,∞) such that a(x , y) ≤ ζ(b(x , y)) for all x , y ∈ G and
ζ(t)→ 0 as t → 0.

jG kG µG λG
jG = ≤ l jG l 1/λG
kG l = l kG l 1/λG

ϕ-unif. ∂G conn., ϕ-unif. ϕ-unif.
µG l l = µG l 1/λG

ϕ-unif. ϕ-unif.
λG λG l jG λG l kG λG l 1/µG =

ϕ-unif. ∂G conn., ϕ-unif.
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6.2 Open problems

Assume that G ⊂ Rn is a proper subdomain. For what follows, we
will be interested mainly in the cases when the domain is a
member of some well-known class of domains. Some examples
are uniform domains, QED-domains, domains with uniformly
perfect (in the sense of Pommerenke [Su-03]) boundaries and
quasiballs, i.e. domains G of the form G = fBn for quasiconformal
f : Rn → Rn. We denote the class of domains with D . Let us
consider collection of metrics
M = {αG,hG, jG, kG, λ

1/(1−n)
G , µG,q, | · |} where hG refers to the

hyperbolic metric when n = 2. Interesting categories of
mappings, we denote them by C, are Hölder, Lipschitz, isometries,
quasiisometries and identity mappings.
The problems that we list below are just examples. There are a
great many variations, by letting the domain, mapping and metric
independently vary over the categories D , C , andM .
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6.3 Convexity of balls and smoothness of spheres

Fix m ∈M . Does there exist constant T0 > 0 such that
Dm(x ,T ) = {z ∈ G : m(x , z) < T}, is convex (in Euclidean
geometry) for all T ∈ (0,T0)? Is ∂Gm(x ,T ) smooth for T < T0?
For instance, in the case m = kG both of these problems seem to
be open. In passing, we remark that it follows from (4.4) and
Theorem 4.7 (2) that when the radius tends to 0, quasihyperbolic
balls become more and more round. The quasihyperbolic metric
is used as a tool for many applications, but very little about the
metric itself is known. See the theses [Mar-85] and [Lin-05] and
also [Lin-iwqcma05].
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6.4 Lipschitz-constant of identity mapping

For x , y ∈ B, x 6= y , the following inequality holds [Vu-book, (2.27)]

|x − y | ≤ 2 tanh
ρB(x , y)

4
<
ρB(x , y)

2
.

We may now regard this result as an inequality for the modulus of
continuity of id : (B, ρB)→ (B, | · |) . Instead of considering the
identity mapping we could now take any mapping in our category
of mappings and consider the problem of estimating the modulus
of continuity between any two metric spaces in our category of
metric spaces, see [Vu-85], [Se-99]. We list several particular
cases of our problem.
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For G = Rn \ {0} does there exist constants A or B such that for
all x , y ∈ G

q(x , y) ≤ AkG(x , y),

and
q(x , y) ≤ Bλ1/(1−n)

G (x , y) ?

For G = C \ {0,1} does there exist constant C such that for all
x , y ∈ G

q(x , y) ≤ ChG(x , y) ,

For G = Rn \ {0} does there exist a constant E such that for all
x , y ∈ G

λ
1/(1−n)
G (x , y) ≤ EjG(x , y) ?
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6.5 Characterization of isometries and quasiisometries

Given two metric spaces in our category of spaces, does there
exist a quasiisometry, mapping the one space onto the other
space? Again, we could consider, in place of quasiisometries,
any other map in our category of maps.
What is the modulus of continuity of id : (G, µG)→ (G, λ1/(1−n)

G )?
Is a quasiisometry f : (G, λ1/(1−n)

G )→ (fG, λ1/(1−n)
fG ) quasiconformal?

J. Lelong-Ferrand raised this question in [LF-73] and the question
was answered in the negative in [FMV-91] . There it was also
shown that the answer is affirmative under the stronger
requirement that f : (D, λ1/(1−n)

D )→ (fD, λ1/(1−n)
fD ) be uniformly

continuous for all subdomains D of G . However, it is not known
what the isometries are.
Are isometries f : (G, αG)→ (fG, αfG) Möbius transformations?
(see Beardon [Be-98], Hästö and Ibragimov [HI-05] and also
[Ha-iwqcma05].
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6.6 Conformal invariants

The conformal invariant p(x) is relatively well-known. See [HV-03]
for further information. However, much less is known about the
invariants µG and λG . For domains whose boundaries are
uniformly perfect (in the sense of Pommerenke), there are some
inequalities for µG in terms of jG , see [Vu-87] and [JV-96]. Some
results for λG when G = B \ {0} , were proved in [Hei-01] and
[BV-00]. But even the basic question of finding a formula for
λB2\{0}(x , y) is open.
Some of these problems may be hard, some are very easy.
Because of the very general setup, it would require some effort
even to single out the interesting combinations of domains in D ,
mappings in C , and metrics inM .

6.7 KMV generalization

(I am not sure about it!)
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7 Addendum

Theorem 7.1

For all x , y ∈ Rn \ {0}
(i) 2q(x , y) ≤ k(x , y) ≤ π

log 3
j(x , y),

(ii) q(x , y) log 3 ≤ j(x , y) ≤ k(x , y).
The constant in the first inequality of (i) is the best possible and the
second inequality of (i) holds with equality for x = −y. The first
inequality of (ii) holds with equality for x = −y, |x | = 1, and the second
inequality of (ii) holds with equality for ](x ,0, y) = 0.
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Theorem 7.2 (Law of Cosines)

Let x , y , z ∈ R2 \ {0}.
(i) For the quasihyperbolic triangle 4k (x , y , z)

k(x , y)2 = k(x , z)2 + k(y , z)2 − 2k(x , z)k(y , z) cos ]k (y , z, x).

(ii) For the quasihyperbolic trigon 4∗k (x , y , z)

k(x , y)2 = k(x , z)2+k(y , z)2−2k(y , z)k(z, x) cos ]k (y , z, x)−4π(π−α),

where α = ](x ,0, y).
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Figure: An example of a quasihyperbolic triangle (left) and a quasihyperbolic
trigon (right).
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Lemma 7.3

Let x , y , z ∈ H2 be distinct points. Then

kH2(x , y)2 ≥ kH2(x , z)2 + kH2(y , z)2 − 2kH2(y , z)kH2(x , z) cos γ,

where γ is the Euclidean angle between geodesics Jk [z, x ] and
Jk [z, y ].

Theorem 7.4

Let 4k (x , y , z) be a quasihyperbolic triangle. Then the quasihyperbolic
area of 4k (x , y , z) is√

s
(
s − k(x , y)

)(
s − k(y , z)

)(
s − k(z, x)

)
,

where s =
(
k(x , y) + k(y , z) + k(z, x)

)
/2.
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Theorem 7.5

Let m ∈ {k , j}, R > 1 and G = A(1/R,R). Then there exists a constant
c(R) ≥ 1 such that c(R)→ 1 as R →∞ and

mG(x , y) ≤ c(R)mRn\{0}(x , y)

for all x , y ∈ A(1/
√

R,
√

R).
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If a metric space is geodesic, then all metric balls are connected.
For nongeodesic metric spaces the connectivity of metric balls
depends on the setting. For example, spherical balls are always
connected while j-balls need not be connected [Kle-08, Remark
4.9 (2)]. We construct next such a domain that for any m ∈ N the
j-ball has exactly m components.
Let us first consider the planar case n = 2. The generalization to
n > 3 is straightforward. We denote by m the number of
components of the j-ball we want to construct. We assume first
m ≥ 9 and denote the (m − 1)th roots of unity by e1, . . . ,em−1. Let
Ep = {z ∈ R2 : |z| ≤ 2, ](z,ep,2ep) ≤ π/(m − 1)} for all
p = 1, . . . ,m − 1 and

Gm = R2 \
m−1⋃
p=1

Ep. (2)

The set G12 is illustrated in Figure 3.
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Lemma 7.6

For m ≥ 9 and Gm as in (2) the j-ball Bj(0, log 4) has exactly m
components.

Figure: Examples of the domain G12 (left) and G5. The gray area represents
the complement of the domain.

Lemma 7.7

Let G ⊂ Rn be a domain, x ∈ G, and r > 0. Then for each connected
component D of Bj(x , r) we have

diamk (D) ≤ c(r ,n).
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8 Recent Progress

Theorem 8.1
For a domain G ( Rn and x ∈ G the j-metric ball Bj(x , r) is
close-to-convex, if r ∈ (0, log(1 +

√
3)].

For y ∈ Rn \ {0} the quasihyperbolic ball Bk (y , r) is close-to-convex, if
r ∈ (0, λ], where λ has a numerical approximation λ ≈ 2.97169.
Moreover, the constants log(1 +

√
3) and λ are sharp in the case n = 2.
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Theorem 8.2
Let G be a proper subdomain of Rn, x ∈ G and denote
rq(x) = min{1/

√
1 + |x |2, |x |/

√
1 + |x |2}.

1) Let G = Rn \ {0} and r ∈ (0, π/2). Then

Bj(x ,m1) ⊂ Bk (x , r),

where
m1 = log

(
1 + 2 sin

r
2

)
.

2) For G = Rn \ {0} and r ∈ (0, rq(x)) we have

Bj(x ,m2) ⊂ Bq(x , r) and Bk (x ,m2) ⊂ Bq(x , r),

where

m2 = log
(

1 +
2r2

√
1− r2

)
.
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Theorem...
3) Let G = Hn and r > 0. Then

Bj(x ,m3) ⊂ Bk (x , r),

where
m3 = log

(
1 +
√

2
√

cosh r − 1
)
.

4) For G = Hn, r ∈ (0, rq(x)) and x with x1 = x2 = · · · = xn−1 = 0
we have

Bj(x ,m4) ⊂ Bq(x , r) and Bk (x ,m5) ⊂ Bq(x , r),

where

m4 = log
(

1 +
2r

1− r2

)
, m5 = log

(
1 +

2r2
√

1− r2

)
.
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Theorem 8.3
Let G = Bn, x ∈ G and r > 0. Then

Bj(x ,m1) ⊂ Bρ(x , r),

Bj(x ,m2) ⊂ Bk (x , r),

Bj(x ,m3) ⊂ Bq(x , r), r < (1− |x |)/
√

2(1 + |x |2)

where
m1 = log

(
1 + 2 sinh

r
2

)
,

m2 = log
(

1 + 2 sinh
r
4

)
,

m3 = log
(

1 +
r√

1− r2

)
.
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Circles passing through x , y with centers in P(x+y)/2(x − y)

Let x , y ∈ Rn and 0 < α < π. Let Pxy = Pm(x − y) with
m = (x + y)/2. Let C = S(z, r) ⊂ Rn be a circle centered at z with
radius r = |x − y |/(2 sinα) such that x , y ∈ C. Denote

Cαxy = {C = S(z, r) :

z ∈ Pxy , d(z, [x , y ]) =
|x − y |
2 tanα

, r =
|x − y |
2 sinα

}
,

where x 6= y .

α-envelope
We define the α-envelope of the pair (x , y) to be

Eα
xy = [x , y ] ∪

(⋃{
compα(C) : C ∈ Ct

xy , α < t < π
})

if 0 < α < π, E0
xy = Rn \ (ray(x , x − y)∪ ray(y , y − x)) and Eπ

xy = [x , y ].
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The visual angle metric
Let G ( Rn and x , y ∈ G. We define a distance function vG by

vG(x , y) = sup
{
α : Eα

xy ∩ ∂G 6= ∅
}
.

The function vG : G ×G→ [0, π] is a similarity invariant
pseudometric for every domain G ( Rn. It is a metric unless ∂G is
a proper subset of a line and will be called the visual angle metric.
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Theorem 8.4

For G ∈ {Bn,Hn} and x , y ∈ G, let ρ∗G(x , y) = arctan(shρG(x ,y)
2 ). Then

ρ∗G(x , y) ≤ vG(x , y) ≤ 2ρ∗G(x , y).

The left-hand side of the inequality is sharp and the constant 2 in the
right-hand side of the inequality is best possible.

Theorem 8.5
Let f : Bn → Bn be a Möbius transformation. Then

sup
f∈GM(Bn),

x 6=y∈Bn

vBn (f (x), f (y))

vBn (x , y)
= 2.
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Theorem 8.6
Let f : H2 → B2 be a Möbius transformation. Then for all x , y ∈ H2

vH2(x , y)/2 ≤ vB2(f (x), (y)) ≤ 2vH2(x , y),

and the constants 1/2 and 2 are both best possible.

Theorem 8.7
Let a ,b , c ,d ∈ R and ad − bc = 1 and c 6= 0. Let f : H2 → H2 be a
Möbius transformation with f (z) = az+b

cz+d . Then

sup
x 6=y∈H2

vH2(f (x), f (y))

vH2(x , y)
= 2.
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Theorem 8.8
Let f : Bn → Bn be an L-bilipschitz map with respect to the visual angle
metric. Then H(x , f ) ≤ 16L2 for all x ∈ Bn.

Theorem 8.9
Let f : Bn → Bn be an L-bilipschitz map with respect to the visual angle
metric. Then f is a 4L-bilipschitz map with respect to the hyperbolic
metric.
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