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Heinonen’s open problem

Heinonen’s result: Theorem 6.1 in [1]
Theorem A Suppose that
(1) both domains D and D′ in Rn are bounded;
(2) f : D → D′ is a K -quasiconformal mapping;
(3) D is ϕ-broad;
(4) A ⊂ D is such that f (A) is b-LLC2 with respect to δD′ in D′.

Then the restriction f |A : A→ f (A) is weakly H-quasisymmetric
in the metrics δD and δD′ .

Reference
[1] J. HEINONEN, Quasiconformal mappings onto John
domains, Rev. Math. Iber., 5 (1989), 97–123.
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Heinonen’s open problem

A remark
This is a generalization of a result of Väisälä Theorem 2.20 in
[2].

Reference
[2] J. VÄISÄLÄ, Quasiconformal maps of cylindrical domains,
Acta Math., 162 (1989), 201–225.
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Heinonen’s open problem

Heinonen’s result: Lemma 8.3 in [3]
Theorem B Suppose that
(1) both domains D and D′ in Rn are bounded;
(2) f : D → D′ is a K -quasiconformal mapping;
(3) D is ϕ-broad;
(4) A ⊂ D is arcwise connected and f−1|A′ : A′ → A is weakly

H-quasisymmetric in the metrics δD′ and δD.
Then f (A) = A′ is b-LLC2 with respect to δD′ in D′.

Reference
[3] J. HEINONEN, Quasiconformal distortion on arcs, J. Analyse
Math., 63 (1994), 19–53.
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Heinonen’s open problem

The following result can be easily got from Theorems A and B.

A corollary
Theorem C Suppose that
(1) both domains D and D′ in Rn are bounded;
(2) f : D → D′ is a K -quasiconformal mapping;
(3) D is ϕ-broad.

Then the following statements are equivalent:
(1) A ⊂ D is arcwise connected and f−1|A′ : A′ → A is weakly

H-quasisymmetric in the metrics δD′ and δD;
(2) f (A) = A′ is b-LLC2 with respect to δD′ in D′.
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Heinonen’s open problem

Definition of quasisymmetric mappings

Quasisymmetric mappings: Let (X ,d) and (X ′,d ′) be two
metric spaces, and let η : [0,∞)→ [0,∞) be a
homeomorphism. An embedding f : X → X ′ is
η-quasisymmetric, or briefly η-QS, in the metrics d and d ′ if
d(a, x) ≤ td(a, y) implies

d ′(a′, x ′) ≤ η(t)d ′(a′, y ′)

for all a, x , y ∈ X , where a′ = f (a), x ′ = f (x) and y ′ = f (y).
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Heinonen’s open problem

Definition of weakly quasisymmetric mappings

Weakly quasisymmetric mappings: If there is a constant ν ≥ 1
such that d(a, x) ≤ d(a, y) implies

d ′(a′, x ′) ≤ νd ′(a′, y ′),

then f is said to be weakly ν-quasisymmetric, or briefly weakly
ν-QS, in the metrics d and d ′.

A relation
Obviously, “quasisymmetry" implies “weak quasisymmetry".
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Heinonen’s open problem

In [1], Heinonen asked the following problem:

Heinonen’s open problem

Whether is the word “weakly" in the conclusion “f |A : A→ f (A)
being weakly H-QS in the metrics δD and δD′" in Theorem A is
redundant or not?

See the paragraph next to the statement of Theorem 6.5 in [1].
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Main result

On Heinoinen’s problem, our result is as follows.

The main result: Theorem HPRW1

Theorem HPRW1: Suppose that
(1) D and D′ are bounded domains in Rn, and D is ϕ-broad;
(2) f : D → D′ is K -quasiconformal;
(3) A ⊂ D is arcwise connected.

Then the following statements are equivalent:

(1) f (A) is b-LLC2 with respect to δD′ in D′;
(2) The restriction f |A : A→ f (A) is η-QS in the metrics δD and

δD′ with η depending only on the data

µ = µ

(
n,K ,b, ϕ,

δD(A)

dD(x0)
,
δD′(f (A))

dD′(f (x0))

)
.
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Main result

Some remarks on Theorem HPRW1

(1) Theorem HPRW1 shows that the answer to Heinonen’s
problem mentioned as above is affirmative when the set A
is arcwise connected.

(2) Obviously, Theorem HPRW1 is a generalization of
Theorem C;

(3) Theorem HPRW1 is a generalization of Theorem 6.6 in [1].
In fact, Theorem HPRW1 shows that the conditions “A
being BT" and “D′ being BT" in [1, Theorem 6.6] are
redundant.
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Main result

Theorem 6.6 in [1]

Theorem D: Suppose that

(1) D and D′ are bounded domains in Rn;
(2) f : D → D′ is K -quasiconformal;
(3) A ⊂ D is arcwise connected, b1-LLC2 with respect to δD

and b2-BT in D;
(4) D′ is ϕ-broad and b3-BT.

Then f : A→ f (A) is η-QS in the metrics δD and δD′ with η
depending only on the data

µ = µ

(
n,K ,b1,b2,b3, ϕ,

δD(A)

dD(x0)
,
δD′(f (A))

dD′(f (x0))

)
.
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The sketch of the proof of Theorem HPRW1

We first prove the following lemma.
Lemma A: Suppose that
(1) D and D′ are bounded, and D is ϕ-broad;
(2) f : D → D′ is K -quasiconformal;
(3) A ⊂ D is arcwise connected such that f |A : A→ A′ is

weakly H-QS in the metrics δD and δD′ .
For all z1, z2, z3 ∈ A, if δD(z1, z3) ≤ cδD(z1, z2), then

δD′(z ′1, z
′
3) ≤ µ1δD′(z ′1, z

′
2),

where µ1 is a constant.

Xiantao Wang Quasisymmetry of quasiconformal mappings 13/33



Heinonen’s open problem
Main result

Application I: The equivalence of John domains
Application II: The Hölder continuity of quasiconformal mappings

Main result

The sketch of the proof of Theorem HPRW1

By Lemma A, the main lemma follows.
Lemma B: Suppose that
(1) D and D′ are bounded, and D is ϕ-broad;
(2) f : D → D′ is K -quasiconformal;
(3) A ⊂ D is arcwise connected such that f |A : A→ A′ is

weakly H-QS in the metrics δD and δD′ .
Then δD(a, x) ≤ δD(a, y) implies

δD′(a′, x ′)
δD′(a′, y ′)

≤ ψ
(δD(a, x)

δD(a, y)

)
for all a, x , y ∈ A, where ψ : (0,1]→ (0,+∞) is an increasing
homeomorphism.

Xiantao Wang Quasisymmetry of quasiconformal mappings 14/33



Heinonen’s open problem
Main result

Application I: The equivalence of John domains
Application II: The Hölder continuity of quasiconformal mappings

Main result

The sketch of the proof of Theorem HPRW1

Based on Lemma B, we can construct a homeomorphism from
[0,∞) to [0,∞) which is the required. The proof of Theorem
HPRW1 is finished.
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Main result

The next result easily follows from Theorem HPRW1.

The main result: Theorem HPRW2

Theorem HPRW2: Suppose that
(1) f : D → D′ is a K -quasiconformal mapping onto a ϕ-broad

D′;
(2) A is an arcwise connected subset of D.

Then the following statements are equivalent:

(1) A is c-LLC2 with respect to δD in D;
(2) f |A : A→ A′ is weakly H-QS in the metrics δD and δD′ ;
(3) f |A : A→ f (A) is η-QS in the metrics δD and δD′ .
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Application I: The equivalence of John domains

Definition of uniform domains
Uniform domains: A domain D in Rn is said to be c-uniform if
there exists a constant c with the property that each pair of
points z1, z2 in D can be joined by a rectifiable arc γ in D
satisfying
(1) minj=1,2 `(γ[zj , z]) ≤ c dD(z) for all z ∈ γ, and
(2) `(γ) ≤ c |z1 − z2|,

where `(γ) denotes the arc length of γ, γ[zj , z] the part of γ
between zj and z, and dD(z) is the distance from z to the
boundary ∂D of D.
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Application I: The equivalence of John domains

Definition (1) of John domains

John domains: A domain D in Rn is said to be a c-John domain
if it satisfies the condition (1) in the definition of uniform
domains, but not necessarily (2).

Definition of Carrot property

A domain D in Rn is said to have the c-carrot property with
center x0 ∈ D if there exists a constant c with the property that
for each point z1 in A, z1 and x0 can be joined by a rectifiable
arc γ in D satisfying

`(γ[z1, z]) ≤ c dD(z)

for all z ∈ γ.
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Definition (2) of John domains

A domain D in Rn is said to be a c-John domain with center x0
in D if it has the c-carrot property with center x0 ∈ D.

Equivalence of the definitions for John domains

Definitions (1) and (2) for John domains stated as above are
quantitatively equivalent for bounded domains.
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Application I: The equivalence of John domains

In [1], Heinonen studied the quasiconformal mappings of the
unit ball B in Rn onto John domains D in Rn. The main aim of
the paper of Heinonen [1] was to provide nine equivalent
conditions for D to be John. In fact, by using Theorem A,
Heinonen proved the following.

The equivalence of John domains: Henonen’s result
Theorem E : Suppose that
(1) f : B→ D is a K -quasiconformal mapping, where D is

bounded;
(2) f : B→ D is continuous.

Then the following statements are equivalent.
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The equivalence of John domains: Henonen’s result

(1) D is a b-John domain with center f (0);
(2) D is ϕ-broad;
(3) f : B→ (D, δD) is η-QS;
(4) For all x ∈ B and each I(x) ∈ Φ(x),

diam
(
f (I(x))

)
≤ b1dD(f (x));

(5) For all w ∈ S and x ∈ [0,w ], diam(f [x ,w ]) ≤ b2dD′(f (x));
(6) For all w ∈ S and 0 ≤ ρ ≤ r < 1,

af (rw)(1− r)1−α ≤ b3af (ρw)(1− ρ)1−α;
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The equivalence of John domains: Henonen’s result

(7) diam(f (I))
diam(f (J)) ≤ b4

(
diam(I)
diam(Q)

)α
for all boundary caps I ⊂ J ⊂ S;

(8) D is b5-LLC2;
(9) D is b6-LLC2 with respect to δD;

(10) f : B→ (D, δD) is weakly H-QS.

The constants b, b1, b2, b3, b4, b5, b6, α, H and the functions ϕ,
η depend only on each other and the data

v = v
(

c,n, k ,
diam(D)

dD(f (0))

)
.
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Application I: The equivalence of John domains

Heinonen’s remarks on [1]

In [1], Heinonen specially pointed out that the requirement “D is
quasiconformally equivalent to B" in Theorem E cannot be
replaced e.g. by “D is homeomorphic to B" or “D is a John
domain".
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Application I: The equivalence of John domains

The equivalence of John domains: Theorem HPRW3

Theorem HPRW3: Suppose that

(1) D and D′ are bounded domains in Rn and D is c-uniform;
(2) f : D → D′ is a K -quasiconformal mapping and f : D → D′

is continuous.

Then the following statements are equivalent.
(1) D′ is a b-John domain with center f (x0);
(2) D′ is ϕ-broad;
(3) f : (D, δD)→ (D′, δD′) is η-QS;
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The equivalence of John domains: Theorem HPRW3

(4) For x ∈ D and each I(x) ∈ Φ(x),
diam

(
f (I(x))

)
≤ b1dD′(f (x));

(5) For x ,w ∈ D, if |x − w | ≤ 8cdD(x), then
δD′(f (x), f (w)) ≤ b2dD′(f (x));

(6) For x ,w ∈ D, if |x − w | ≤ 8cdD(x) and dD(w) ≤ 2cdD(x),

then af (w) ≤ b3af (x)
(

d(x)
d(w)

)1−α
;

(7) diam(f (P))
diam(f (Q)) ≤ b4

(
diam(P)
diam(Q)

)α
for all continua P ⊂ Q ⊂ ∂D;

(8) D′ is b5-LLC2;
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The equivalence of John domains: Theorem HPRW3

(9) D′ is b6-LLC2 with respect to δD′ ;
(10) f : (D, δD)→ (D′, δD′) is weakly H-QS.

The constants b, b1, b2, b3, b4, b5, b6, α and the functions
ϕ, η depend only on each other and the data

v = v
(

c,n, k ,
diam(D)

dD(x0)
,

diam(D′)
dD′(f (x0))

)
.
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Application I: The equivalence of John domains

Remarks on Theorem HPRW3

(1) The ball “B" in the requirement “D being quasiconformally
equivalent to B" in Theorem E is replaced by the one “D
being a uniform domain". We remark that every ball in Rn

is uniform.
(2) Theorem HPRW3 is a generalization of Theorem 1 in

Pommerenke’s paper [4].

Reference
[4] CH. POMMERENKE, One-sided smoothness conditions and
conformal mapping, J. London Math. Soc., 26 (1982), 77–88.
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Application II: The Hölder continuity of quasiconformal
mappings

Definition of Hölder continuity

A mapping f of a set A in a metric space (X1,d1) into another
metric space (X2,d2) is said to be Hölder continuous with
exponent α ∈ (0,1] at a point x in A if there is a constant M
such that

d2(f (x), f (y)) ≤ Md1(x , y)α

for all y in A.
Further, if the above inequality holds for all points x and y in

A with fixed M and α, then we say that f is uniformly Hölder
continuous with exponent α in A or that f belongs to the
Lipschitz class in A with exponent α. We use the notation
Lipα(A) to denote this class.
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Application II: The Hölder continuity of quasiconformal
mappings

Näkki and Palka’s result: [5, Theorem 10]
Theorem F : Suppose f : B→ D is a K -quasiconformal
mapping. If D is bounded and c-uniform, then f belongs to
Lipα(D) and f−1 belongs to Lipβ(B), where the constants α ≤ 1
and β ≤ 1 depend only on the outer dilation of f , the
uniformality coefficient c of D and the dimension n.

Reference
[5] R. NÄKKI AND B. PALKA, Lipschitz conditions and
quasiconformal mappings, Indiana. Univ. Math. J., 29 (1980),
41–66.

Xiantao Wang Quasisymmetry of quasiconformal mappings 29/33



Heinonen’s open problem
Main result

Application I: The equivalence of John domains
Application II: The Hölder continuity of quasiconformal mappings

Application II: The Hölder continuity of quasiconformal
mappings

Our results: Theorem HPRW4

Theorem HPRW4: Suppose that
(1) both D and D′ are bounded domains in Rn;
(2) D is a c-uniform domain and D′ is a c1-John domain;
(3) f : D → D′ is a K -quasiconformal mapping.

Then f belongs to Lipα(D), where α = α(c, c1,K ,n) ≤ 1.
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Application II: The Hölder continuity of quasiconformal
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Our results: Theorem HPRW5

Theorem HPRW5: Suppose that
(1) both D and D′ are bounded domains in Rn;
(2) D is a c-uniform domain and D′ is a c1-uniform domain;
(3) f : D → D′ is a K -quasiconformal mapping.

Then f belongs to Lipα(D) and f−1 belongs to Lipα(D′), where
α = α(c, c1,K ,n) ≤ 1.
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Remarks
(1) Theorem HPRW4 shows that for the assertion

“f ∈ Lipα(D)”, the ball “B" in the assumption of Theorem F
can be replaced by “a John domain".

(2) Theorem HPRW5 shows that the ball “B" in the assumption
of Theorem F can be replaced by “a uniform domain".

Xiantao Wang Quasisymmetry of quasiconformal mappings 32/33



Heinonen’s open problem
Main result

Application I: The equivalence of John domains
Application II: The Hölder continuity of quasiconformal mappings

THANK YOU

Xiantao Wang Quasisymmetry of quasiconformal mappings 33/33


	Heinonen's open problem
	Main result
	Application I: The equivalence of John domains
	Application II: The Hölder continuity of quasiconformal mappings



