On the quasisymmetry of quasiconformal mappings and its applications

Xiantao Wang xtwang@hunnu.edu.cn Department of Mathematics, Hunan Normal University, Changsha, Hunan, P. R. China.

Workshop on Modern Trends in Classical Analysis and Applications

The First Chinese-Finnish Seminar

August 17 2012 Xiantao Wang

Quasisymmetry of quasiconformal mappings

Based on paper:

M. Huang, S. Ponnusamy, A. Rasila and X. Wang, On the quasisymmetry of quasiconformal mappings and its applications.

्र व 2/33

lurun yliopisto Iniversity of Turkı

Heinonen's open problem

Heinonen's result: Theorem 6.1 in [1]

Theorem A Suppose that

- (1) both domains D and D' in \mathbb{R}^n are bounded;
- (2) $f: D \rightarrow D'$ is a *K*-quasiconformal mapping;
- (3) D is φ -broad;
- (4) $A \subset D$ is such that f(A) is b-LLC₂ with respect to $\delta_{D'}$ in D'.

Then the restriction $f|_A : A \to f(A)$ is weakly *H*-quasisymmetric in the metrics δ_D and $\delta_{D'}$.

Reference

[1] J. HEINONEN, Quasiconformal mappings onto John domains, *Rev. Math. Iber.*, **5** (1989), 97–123.

Heinonen's open problem

A remark

This is a generalization of a result of Väisälä Theorem 2.20 in [2].

Reference

[2] J. VÄISÄLÄ, Quasiconformal maps of cylindrical domains, *Acta Math.*, **162** (1989), 201–225.

Heinonen's open problem

Heinonen's result: Lemma 8.3 in [3]

Theorem B Suppose that

- (1) both domains D and D' in \mathbb{R}^n are bounded;
- (2) $f: D \rightarrow D'$ is a *K*-quasiconformal mapping;
- (3) D is φ -broad;
- (4) A ⊂ D is arcwise connected and f⁻¹|_{A'} : A' → A is weakly H-quasisymmetric in the metrics δ_{D'} and δ_D.

Then f(A) = A' is *b*-*LLC*₂ with respect to $\delta_{D'}$ in *D'*.

Reference

[3] J. HEINONEN, Quasiconformal distortion on arcs, *J. Analyse Math.*, **63** (1994), 19–53.

isto of Turku

Heinonen's open problem

The following result can be easily got from Theorems A and B.

A corollary

Theorem C Suppose that

- (1) both domains D and D' in \mathbb{R}^n are bounded;
- (2) $f: D \rightarrow D'$ is a *K*-quasiconformal mapping;
- (3) D is φ -broad.

Then the following statements are equivalent:

- (1) $A \subset D$ is arcwise connected and $f^{-1}|_{A'} : A' \to A$ is weakly *H*-quasisymmetric in the metrics $\delta_{D'}$ and δ_D ;
- (2) f(A) = A' is b-LLC₂ with respect to $\delta_{D'}$ in D'.

University of Turku

Heinonen's open problem

Definition of quasisymmetric mappings

Quasisymmetric mappings: Let (X, d) and (X', d') be two metric spaces, and let $\eta : [0, \infty) \to [0, \infty)$ be a homeomorphism. An embedding $f : X \to X'$ is η -quasisymmetric, or briefly η -QS, in the metrics d and d' if $d(a, x) \le td(a, y)$ implies

$$d'(a', x') \le \eta(t)d'(a', y')$$

for all $a, x, y \in X$, where a' = f(a), x' = f(x) and y' = f(y).

Xiantao Wang Quasisymmetry of quasiconformal mappings

Heinonen's open problem

Definition of weakly quasisymmetric mappings

Weakly quasisymmetric mappings: If there is a constant $\nu \ge 1$ such that $d(a, x) \le d(a, y)$ implies

$$d'(a',x') \leq \nu d'(a',y'),$$

then *f* is said to be *weakly* ν -*quasisymmetric*, or briefly weakly ν -QS, in the metrics *d* and *d'*.

A relation Obviously, "quasisymmetry" implies "weak quasisymmetry".

Heinonen's open problem

In [1], Heinonen asked the following problem:

Heinonen's open problem

Whether is the word "weakly" in the conclusion " $f|_A : A \to f(A)$ being weakly *H*-QS in the metrics δ_D and $\delta_{D'}$ " in Theorem *A* is redundant or not?

See the paragraph next to the statement of Theorem 6.5 in [1].

Xiantao Wang Quasisymmetry of quasiconformal mappings

Main result

On Heinoinen's problem, our result is as follows.

The main result: Theorem HPRW1

Theorem HPRW1: Suppose that

(1) *D* and *D'* are bounded domains in \mathbb{R}^n , and *D* is φ -broad;

(2) $f: D \rightarrow D'$ is *K*-quasiconformal;

(3) $A \subset D$ is arcwise connected.

Then the following statements are equivalent:

(1) f(A) is b-LLC₂ with respect to $\delta_{D'}$ in D';

(2) The restriction $f|_A : A \to f(A)$ is η -QS in the metrics δ_D and $\delta_{D'}$ with η depending only on the data

$$\mu = \mu\left(n, K, b, \varphi, \frac{\delta_D(A)}{d_D(x_0)}, \frac{\delta_{D'}(f(A))}{d_{D'}(f(x_0))}\right)$$

Xiantao Wang

Quasisymmetry of quasiconformal mappings

isto of Turku

Main result

Some remarks on Theorem HPRW₁

- (1) Theorem *HPRW*₁ shows that the answer to Heinonen's problem mentioned as above is affirmative when the set *A* is arcwise connected.
- (2) Obviously, Theorem HPRW₁ is a generalization of Theorem C;
- (3) Theorem HPRW₁ is a generalization of Theorem 6.6 in [1]. In fact, Theorem HPRW₁ shows that the conditions "A being BT" and "D' being BT" in [1, Theorem 6.6] are redundant.

Turun yliopisto University of Turku

Main result

Theorem 6.6 in [1]

- Theorem D: Suppose that
- (1) D and D' are bounded domains in \mathbb{R}^n ;
- (2) $f: D \rightarrow D'$ is *K*-quasiconformal;
- (3) A ⊂ D is arcwise connected, b₁-LLC₂ with respect to δ_D and b₂-BT in D;
- (4) D' is φ -broad and b_3 -BT.

Then $f : A \to f(A)$ is η -QS in the metrics δ_D and $\delta_{D'}$ with η depending only on the data

$$\mu = \mu\left(n, K, b_1, b_2, b_3, \varphi, \frac{\delta_D(A)}{d_D(x_0)}, \frac{\delta_{D'}(f(A))}{d_{D'}(f(x_0))}\right)$$

isto of Turku

Main result

The sketch of the proof of Theorem HPRW₁

We first prove the following lemma.

- Lemma A: Suppose that
- (1) D and D' are bounded, and D is φ -broad;
- (2) $f: D \rightarrow D'$ is *K*-quasiconformal;
- (3) A ⊂ D is arcwise connected such that f|_A : A → A' is weakly H-QS in the metrics δ_D and δ_{D'}.
- For all $z_1, z_2, z_3 \in A$, if $\delta_D(z_1, z_3) \leq c \delta_D(z_1, z_2)$, then

$$\delta_{D'}(z'_1, z'_3) \leq \mu_1 \delta_{D'}(z'_1, z'_2),$$

where μ_1 is a constant.

iisto of Turku

Main result

The sketch of the proof of Theorem HPRW₁

By Lemma *A*, the main lemma follows. Lemma *B*: Suppose that

- (1) D and D' are bounded, and D is φ -broad;
- (2) $f: D \rightarrow D'$ is *K*-quasiconformal;
- (3) A ⊂ D is arcwise connected such that f|_A : A → A' is weakly H-QS in the metrics δ_D and δ_{D'}.

Then $\delta_D(a, x) \leq \delta_D(a, y)$ implies

$$\frac{\delta_{D'}(a',x')}{\delta_{D'}(a',y')} \le \psi\Big(\frac{\delta_{D}(a,x)}{\delta_{D}(a,y)}\Big)$$

for all *a*, *x*, *y* \in *A*, where ψ : (0, 1] \rightarrow (0, + ∞) is an increasing homeomorphism.

Xiantao Wang

isto of Turku २९९९

Main result

The sketch of the proof of Theorem HPRW₁

Based on Lemma *B*, we can construct a homeomorphism from $[0, \infty)$ to $[0, \infty)$ which is the required. The proof of Theorem *HPRW*₁ is finished.

run yliopisto iversity of Turki

Main result

The next result easily follows from Theorem *HPRW*₁.

The main result: Theorem HPRW₂

Theorem HPRW2: Suppose that

- (1) $f: D \rightarrow D'$ is a *K*-quasiconformal mapping onto a φ -broad D';
- (2) A is an arcwise connected subset of D.

Then the following statements are equivalent:

(1) A is c-LLC₂ with respect to δ_D in D;

(2) $f|_A : A \to A'$ is weakly *H*-QS in the metrics δ_D and $\delta_{D'}$;

(3) $f|_A : A \to f(A)$ is η -QS in the metrics δ_D and $\delta_{D'}$.

W/ University of Turku

Definition of uniform domains

Uniform domains: A domain D in \mathbb{R}^n is said to be *c*-uniform if there exists a constant *c* with the property that each pair of points z_1, z_2 in D can be joined by a rectifiable arc γ in D satisfying

(1)
$$\min_{j=1,2} \ell(\gamma[z_j, z]) \leq c d_D(z)$$
 for all $z \in \gamma$, and

(2)
$$\ell(\gamma) \leq c |z_1 - z_2|,$$

where $\ell(\gamma)$ denotes the arc length of γ , $\gamma[z_j, z]$ the part of γ between z_j and z, and $d_D(z)$ is the distance from z to the boundary ∂D of D.

Turun yliopisto University of Turku

Definition (1) of John domains

John domains: A domain D in \mathbb{R}^n is said to be a *c*-John domain if it satisfies the condition (1) in the definition of uniform domains, but not necessarily (2).

Definition of Carrot property

A domain D in \mathbb{R}^n is said to have the *c*-carrot property with center $x_0 \in \overline{D}$ if there exists a constant *c* with the property that for each point z_1 in A, z_1 and x_0 can be joined by a rectifiable arc γ in D satisfying

$\ell(\gamma[z_1, z]) \leq c d_D(z)$

for all $z \in \gamma$.

isto

of Turku

Definition (2) of John domains

A domain D in $\overline{\mathbb{R}}^n$ is said to be a *c*-John domain with center x_0 in \overline{D} if it has the *c*-carrot property with center $x_0 \in \overline{D}$.

Equivalence of the definitions for John domains

Definitions (1) and (2) for John domains stated as above are quantitatively equivalent for bounded domains.

In [1], Heinonen studied the quasiconformal mappings of the unit ball \mathbb{B} in \mathbb{R}^n onto John domains D in \mathbb{R}^n . The main aim of the paper of Heinonen [1] was to provide nine equivalent conditions for D to be John. In fact, by using Theorem A, Heinonen proved the following.

The equivalence of John domains: Henonen's result

Theorem E: Suppose that

- (1) $f: \mathbb{B} \to D$ is a *K*-quasiconformal mapping, where *D* is bounded;
- (2) $f: \overline{\mathbb{B}} \to \overline{D}$ is continuous.

Then the following statements are equivalent.

WW University of Turk

The equivalence of John domains: Henonen's result

- (1) *D* is a *b*-John domain with center f(0);
- (2) D is φ -broad;
- (3) $f : \mathbb{B} \to (D, \delta_D)$ is η -QS;
- (4) For all $x \in \mathbb{B}$ and each $l(x) \in \Phi(x)$, $diam(f(l(x))) \le b_1 d_D(f(x));$
- (5) For all $w \in \mathbb{S}$ and $x \in [0, w]$, $diam(f[x, w]) \leq b_2 d_{D'}(f(x))$;
- (6) For all $w \in \mathbb{S}$ and $0 \le \rho \le r < 1$,

$$a_f(rw)(1-r)^{1-\alpha} \le b_3 a_f(\rho w)(1-\rho)^{1-\alpha};$$

Turun yliopisto University of Turku

The equivalence of John domains: Henonen's result

Xiantao Wang

- (7) $\frac{diam(f(I))}{diam(f(J))} \le b_4 \left(\frac{diam(I)}{diam(Q)}\right)^{\alpha}$ for all boundary caps $I \subset J \subset \mathbb{S}$; (8) *D* is b_5 -*LLC*₂;
- (9) *D* is b_6 -*LLC*₂ with respect to δ_D ;
- (10) $f : \mathbb{B} \to (D, \delta_D)$ is weakly *H*-QS.

The constants *b*, *b*₁, *b*₂, *b*₃, *b*₄, *b*₅, *b*₆, α , *H* and the functions φ , η depend only on each other and the data

$$v = v(c, n, k, \frac{diam(D)}{d_D(f(0))}).$$

Quasisymmetry of quasiconformal mappings

Turun yliopisto University of Turki

Heinonen's remarks on [1]

In [1], Heinonen specially pointed out that the requirement "*D* is quasiconformally equivalent to \mathbb{B} " in Theorem *E* cannot be replaced e.g. by "*D* is homeomorphic to \mathbb{B} " or "*D* is a John domain".

23/33

The equivalence of John domains: Theorem HPRW₃

Theorem HPRW₃: Suppose that

- (1) *D* and *D'* are bounded domains in \mathbb{R}^n and *D* is *c*-uniform;
- (2) $f: D \to D'$ is a *K*-quasiconformal mapping and $f: \overline{D} \to \overline{D'}$ is continuous.

Then the following statements are equivalent.

- (1) D' is a *b*-John domain with center $f(x_0)$;
- (2) D' is φ -broad;

(3)
$$f: (D, \delta_D) \rightarrow (D', \delta_{D'})$$
 is η -QS;

Xiantao Wang

Turun yliopisto University of Turkı

The equivalence of John domains: Theorem HPRW₃

(4) For
$$x \in D$$
 and each $I(x) \in \Phi(x)$,
 $diam(f(I(x))) \leq b_1 d_{D'}(f(x));$

(5) For
$$x, w \in D$$
, if $|x - w| \le 8cd_D(x)$, then $\delta_{D'}(f(x), f(w)) \le b_2d_{D'}(f(x))$;

(6) For
$$x, w \in D$$
, if $|x - w| \le 8cd_D(x)$ and $d_D(w) \le 2cd_D(x)$,
then $a_f(w) \le b_3 a_f(x) \left(\frac{d(x)}{d(w)}\right)^{1-\alpha}$;

(7)
$$\frac{diam(f(P))}{diam(f(Q))} \le b_4 \left(\frac{diam(P)}{diam(Q)}\right)^{\alpha}$$
 for all continua $P \subset Q \subset \partial D$;
(8) D' is b_5 -LLC₂;

University of Turku

The equivalence of John domains: Theorem HPRW₃

(9) D' is b_6 -LLC₂ with respect to $\delta_{D'}$;

(10) $f: (D, \delta_D) \to (D', \delta_{D'})$ is weakly *H*-QS. The constants *b*, *b*₁, *b*₂, *b*₃, *b*₄, *b*₅, *b*₆, α and the functions φ , η depend only on each other and the data

$$v = v\left(c, n, k, \frac{diam(D)}{d_D(x_0)}, \frac{diam(D')}{d_{D'}(f(x_0))}\right).$$

Xiantao Wang

26/33

Remarks on Theorem HPRW₃

- (1) The ball "B" in the requirement "*D* being quasiconformally equivalent to B" in Theorem *E* is replaced by the one "*D* being a uniform domain". We remark that every ball in ℝⁿ is uniform.
- (2) Theorem *HPRW*₃ is a generalization of Theorem 1 in Pommerenke's paper [4].

Reference

[4] CH. POMMERENKE, One-sided smoothness conditions and conformal mapping, *J. London Math. Soc.*, **26** (1982), 77–88.

Xiantao Wang

urun yiiopisto University of Turku

Application II: The Hölder continuity of quasiconformal mappings

Definition of Hölder continuity

A mapping *f* of a set *A* in a metric space (X_1, d_1) into another metric space (X_2, d_2) is said to be *Hölder continuous* with exponent $\alpha \in (0, 1]$ at a point *x* in *A* if there is a constant *M* such that

$$d_2(f(x), f(y)) \leq M d_1(x, y)^{\alpha}$$

for all y in A.

Further, if the above inequality holds for all points *x* and *y* in *A* with fixed *M* and α , then we say that *f* is *uniformly Hölder continuous* with exponent α in *A* or that *f* belongs to the Lipschitz class in *A* with exponent α . We use the notation $\operatorname{Lip}_{\alpha}(A)$ to denote this class.

isto

of Turku

Application II: The Hölder continuity of quasiconformal mappings

Näkki and Palka's result: [5, Theorem 10]

Theorem *F*: Suppose $f : \mathbb{B} \to D$ is a *K*-quasiconformal mapping. If *D* is bounded and *c*-uniform, then *f* belongs to $\operatorname{Lip}_{\alpha}(D)$ and f^{-1} belongs to $\operatorname{Lip}_{\beta}(\mathbb{B})$, where the constants $\alpha \leq 1$ and $\beta \leq 1$ depend only on the outer dilation of *f*, the uniformality coefficient *c* of *D* and the dimension *n*.

Reference

[5] R. NÄKKI AND B. PALKA, Lipschitz conditions and quasiconformal mappings, *Indiana. Univ. Math. J.*, **29** (1980), 41–66.

isto .y of Turku

Application II: The Hölder continuity of quasiconformal mappings

Our results: Theorem HPRW₄

Theorem *HPRW*₄: Suppose that

- (1) both *D* and *D'* are bounded domains in \mathbb{R}^n ;
- (2) *D* is a *c*-uniform domain and D' is a c_1 -John domain;
- (3) $f: D \rightarrow D'$ is a *K*-quasiconformal mapping.

Then *f* belongs to $\operatorname{Lip}_{\alpha}(D)$, where $\alpha = \alpha(c, c_1, K, n) \leq 1$.

Xiantao Wang Qua

Quasisymmetry of quasiconformal mappings

30/33

Application II: The Hölder continuity of quasiconformal mappings

Our results: Theorem HPRW₅

Theorem HPRW₅: Suppose that

- (1) both *D* and *D'* are bounded domains in \mathbb{R}^n ;
- (2) *D* is a *c*-uniform domain and *D*' is a c_1 -uniform domain;
- (3) $f: D \rightarrow D'$ is a *K*-quasiconformal mapping.

Then *f* belongs to $\operatorname{Lip}_{\alpha}(D)$ and f^{-1} belongs to $\operatorname{Lip}_{\alpha}(D')$, where $\alpha = \alpha(c, c_1, K, n) \leq 1$.

un vliopisto

Application II: The Hölder continuity of quasiconformal mappings

Remarks

- (1) Theorem $HPRW_4$ shows that for the assertion " $f \in \operatorname{Lip}_{\alpha}(D)$ ", the ball " \mathbb{B} " in the assumption of Theorem F can be replaced by "a John domain".
- (2) Theorem $HPRW_5$ shows that the ball "B" in the assumption of Theorem *F* can be replaced by "a uniform domain".

THANK YOU

Xiantao Wang Quasisymmetry of quasiconformal mappings

Image: A matrix and a matrix

-2

=

∢) م 33/33