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Abstract

First we give an introduction to theory of impulsive differential
equations.

Next we study the existence of solutions to the Duffing equation with
impulses. By means of the Poincaré-Birkhoff fixed point theorem
under given conditions, we obtain the sufficient condition of existence
of infinitely many solutions. Our results generalize those of T.R. Ding.
An example is presented to demonstrate applications of our main
result.

This presentation is based on the paper:
Existence of Periodic Solutions for the Duffing Equation with
Impulses by Xuxin Yang, Weibing Wang and Jianhua Shen ,
Mathematical Problems in Engineering Volume 2012, Article ID
903653, 13 pages doi:10.1155/2012/903653.
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Theory of impulsive differential equations 1/2

Many processes in the nature change their state abruptly. These
processes which are subject to short-time perturbations whose
duration is negligible in comparison with the duration of the process,
and it is natural to assume that perturbations act instantaneously,
that is, in the form of impulses.

For example, many biological phenomena involving thresholds, certain
models in medicine and biology, optimal control models in economics
and frequency modulated systems, do exhibit impulsive effects.

Thus impulsive differential equations are a natural description of
evolution phenomena observed in several real world problems.
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Theory of impulsive differential equations 2/2

The theory of impulsive differential equations is much richer than the
corresponding theory of differential equations without impulse effects.

For example, initial value problems may not, in general, have any
solutions at all even when the corresponding differential equation is
smooth enough, fundamental properties such as continuous
dependence relative to initial data may be violated, and qualitative
properties like stability may need a suitable new interpretation.

Moreover, a simple impulsive differential equation may exhibit several
new phenomena such as rhythmical beating, merging of solutions, and
noncontinuability of solutions.

Consequently, the theory of impulsive differential equations is
interesting in itself and it is likely to assume greater importance in the
near future as new applications to various fields arise.
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Background and motivation

Impulsive differential equations serve as basic models to study the
dynamics of processes that are subject to sudden changes in their
states. Thus impulsive differential equations, that is, differential
equations involving impulse effects, appear as a natural description of
observed evolution phenomena of several real world problems [1].
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Duffing equation

The Duffing equation is a non-linear second-order ODE which is used
in physics to model oscillators. It is an example of a system exhibiting
chaotic behavior. The equation is given by

x ′′ + δx ′ + αx + βx3 = γ cos(ωt), (1)

where x = x(t) is the displacement at time t, and numbers δ, α, β, γ
and ω are constants.

We study the Duffing type model given by W.Y. Ding [2]

x ′′ + g(x) = f (x , t). (2)

Clearly this equation contains the Duffing equation (1) without
friction (i.e. δ = 0) as a special case. In [3], T.R. Ding consider the
equation (2) in the case where g ∈ C (R, R) is superlinear at infinity

lim
x→∞

g(x)

x
= +∞,

and the function f ∈ C (R× R, R) is T -periodic in t.
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By using the Poincaré-Birkhoff fixed point theorem, Ding showed that
there exists infinitely many periodic solutions to this equation.

By using a similar technique, Ming, Wu and Liu [4] gave results
concerning existence of infinitely many periodic solutions to the
p-Laplace equation(

|x ′|p−2x ′)′ + g(x) = f (t, x), p > 1, (3)

where g ∈ C (R, R) is p-sublinear in the sense

lim
|x |→0

g(x)

|x |p−2x
= +∞, (4)

and f ∈ C (R× R, R) is 1-periodic in t. For this problem, only partial
results are known. For example, the conjecture is true if g is even and
superlinear at infinity and f ≡ 0 [5]. For f 6= 0, more restrictions on g
are required [6].
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By developing ideas of [5,7], we extend this technique to the situation
where x is allowed to have impulses at given points. We consider the
periodic solutions to the Duffing equation with impulses

x ′′ + g(x) = 0, t 6= tk ,
x(t+

k ) = akx(tk), k ∈ Z,
x ′(t+

k ) = bkx ′(tk), k ∈ Z,
(5)

where ak > 0, akbk = 1, ak+q = ak , tk+q = tk + T ,
0 < t1 < t2 < · · · < tq < T , g ∈ C (R, R), and Z denotes the set of
integers, x(t+

k ) and x ′(t+
k ) are right limits of x(t) and x ′(t) at t = tk ,

respectively. Let PC (R) = {x : R → R; x(t) is continuous
everywhere except for tk at which x(t+

k ) and x(t−k ) exist and
x(t−k ) = x(tk), k ∈ Z}; PC 1(R) = {x ∈ PC (R); x ′(t) is continuous
differentiable everywhere except for tk at which x ′(t+

k ) and x ′(t−k )
exist and x ′(t−k ) = x ′(tk), k ∈ Z}.
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Existence of Periodic
Solutions for the Duffing
Equation with Impulses
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Preliminary Lemmas

The Poincaré-Birkhoff fixed point theorem is a powerful tool in
studying periodic solutions for the planar ODE’s of the second order.
There are several versions of this theorem, see [4, 6,8,9].
Let (r , θ) be a polar coordinates on R2 and
A = {x ∈ R2 : r1 ≤ |x | ≤ r2} an annulus on R2.
Definition 2.1 A mapping T is called as twist map if

T : (r , θ) → (h(r , θ), θ + l(r , θ)),

where h(r , θ), l(r , θ) are continuous on A, 2π-periodic in θ, and
l(r1, θ)l(r2, θ) < 0.

The proof of our main results is based on the following version of the
Poincaré-Birkhoff theorem, due to W.Y. Ding [2] (see also [7]).
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Preliminary Lemmas

Lemma 2.2 [2] Let R > r > 0. Suppose that T : R2 → R2 is an area
preserving homeomorphism, such that T is a twist map in an annulus

A = {x ∈ R2 : r ≤ |x | ≤ R},

and 0 ∈ T (D), and D = {x : |x | < r}. Then T has at least two fixed
points in A.

For our convenience, we introduce the following condition:
(H1) g(x)x > 0 for x 6= 0 and

lim
x→0

g(x)

x
= +∞. (6)
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Preliminary Lemmas

Lemma 2.3 Assume that g ∈ C (R, R) and (H1) holds. Then for
given M > 0, there exists a constant δ = δ(M) such that for any
ε > 0 there is a continuous function gε such that
(i)

|gε(x)− g(x)| ≤ ε, (7)

(ii) gε has a form gε(x) = Mx near x = 0, i.e., there exists δ > 0 such
that

gε(x)

x
≥ M for 0 < |x | ≤ δ, (8)

and gε ∈ C 1([−T ,T ]\{0},R), where 0 < T < +∞.
(iii) For a fixed λ > 0,

lim
x→0

G (λx)

G (x)
= λ2, (9)

where G (x) =
∫ x
0 gε(s)ds.
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Preliminary Lemmas

Let g ∈ C (R, R) and satisfies the condition (H1), and let gε be as
Lemma 2.3. Consider the initial value problem for the following
system: 

x ′ = −y ,
y ′ = gε(x), t 6= tk ,
x(t+

k ) = akx(tk),
y(t+

k ) = bky(tk), k = 1, 2, · · · ,
x(0) = x0, y(0) = y0.

(10)
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Preliminary Lemmas

Lemma 2.4 For any sufficiently small (x0, y0) the system (10) has a
unique solution pair x(t) = x(t, x0, y0), y(t) = y(t, x0, y0). Moreover,
the functions x , y continuously depend on x0, y0.
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Main results

Our main result is the following theorem. This result generalizes Theorem
2.1 of T.R. Ding [3].

Theorem 3.1

Under the assumption (H1), the Duffing equation (5) has an infinite
sequence of solutions {xn} and ‖xn‖PC1[0,T ] → 0, as n →∞, where

‖xn‖PC1[0,T ] = max{ sup
t∈[0,T ]

{|xn(t)|}, sup
t∈[0,T ]

{|x ′
n(t)|}}.
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Main results

In order to prove the main result, we need the following lemmas. First we
construct the twist map. Next we consider the system (10), our goal is to
control the behavior of the norms r(t) =

√
x(t)2 + y(t)2 at the points

p(t) =
(
x(t), y(t)

)
∈ R2.

Lemma 3.2

Suppose that p(t) =
(
x(t), y(t)

)
, where t ∈ [0,T ] is a solution to the

system (10). There exists a constant R0 > 0 and functions
d1, d2, ε : (0,R0] → R+ such that if ε ≤ ε(R), and r(0) = R < R0,
then

(1)
d1(R) ≤ r(t) ≤ d2(R),

(2)
lim
R→0

d1(R) = lim
R→0

d2(R) = 0.
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Proof (idea)
Define the Liapunov function by

F (x , y) =
1

2
y2 +

∫ x

0
gε(s) ds.

From Lemma 2.3, we see that for a fixed λ > 0, there exist
c1(λ) ≥ 0, c2(λ) ≥ 0 such that

c2(λ)G (x) ≤ G (λx) ≤ c1(λ)G (x),

where G (x) =
∫ x
0 gε(s)ds, when |x | is sufficiently small.

By using an impulsive integer inequality, we obtain

F (p(0))
∏

0<tk<t

min{b2
k , c2(ak)} ≤ F (p(tk)) ≤ F (p(0))

∏
0<tk<t

max{b2
k , c1(ak)}.

Then here exist positive constants d1(R), d2(R) such that

d1(R) ≤ r(t) ≤ d2(R).

Furthermore, we have

lim
R→0

d1(R) = lim
R→0

d2(R) = 0.
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Furthermore, we have

lim
R→0

d1(R) = lim
R→0

d2(R) = 0.
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Proof (idea)
Define the Liapunov function by

F (x , y) =
1

2
y2 +

∫ x

0
gε(s) ds.

From Lemma 2.3, we see that for a fixed λ > 0, there exist
c1(λ) ≥ 0, c2(λ) ≥ 0 such that

c2(λ)G (x) ≤ G (λx) ≤ c1(λ)G (x),

where G (x) =
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Main results

Consider the following system:
x ′ = −y ,
y ′ = g(x), t 6= tk ,
x(t+

k ) = akx(tk),
y(t+

k ) = bky(tk), k = 1, 2, . . . .

(11)

Use the Poincaré map φ:

(x0, y0) 7→
(
x(T , x0, y0), y(T , x0, y0)

)
= (xT , yT ), (12)

where (x(t, x0, y0), y(t, x0, y0) is the solution of (11) corresponding to
the initial data (x0, y0).
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Main results

Denote by r(t), θ(t) the norm and the polar angle of
p(t) =

(
x(t), y(t)

)
∈ R2, r(t) =

√
x(t)2 + y(t)2, respectively. Then

cos θ(t) =
x(t)√

x2(t) + y2(t)
, sin θ(t) =

y(t)√
x2(t) + y2(t)

, t 6= tk ,

(13)
and

cos θ(t+
k ) =

x(t+
k )√

x(t+
k )2+y(t+

k )2
= akx(tk )√

a2
kx(tk )2+b2

ky(tk)2
,

sin θ(t+
k ) =

y(t+
k )√

x(t+
k )2+y(t+

k )2
= bky(tk )√

a2
kx(tk )2+b2

ky(tk)2
, k = 1, 2, · · · .

(14)
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Main results

Write (r0, θ0) = (r(0), θ(0)) and (rT , θT ) = (r(T ), θ(T )). Then, the
map φ can be expressed in the polar coordinates as

rT = h(r0, θ0), θT = θ0 + l(r0, θ0), (15)

where h and l are continuous and 2π-periodic in θ0. In order to apply
the Poincaré-Birkhoff fixed point theorem, we need to estimate the
difference θT − θ0.
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Main results

Lemma 3.3

For R > 0 there is a constant K (R), and r0 = R, then
θT − θ0 = l(R, θ0) ≤ K (R).
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Main results

Lemma 3.4

There is r < R such that

θT − θ0 + 2mπ = l(r , θ0) + 2mπ > 0, for all θ0 ∈ [0, 2π].

So the map φ is the twist map in the annular region
A = {(x , y) : r ≤

√
x2 + y2 ≤ R}.
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Proof of Theorem 3.1 (idea)

Let φ be the map defined (12), or equivalently by (15). Define the
mappings

Φ0 : (x0, y0) → (x(t1, x0, y0), y(t1, x0, y0)) = (x1, y1),

Φ∗
0 : (x1, y1) → (a1x(t1, x0, y0), b1y(t1, x0, y0)) = (x∗1 , y∗1 ),

Φi : (x∗i , y∗i ) → (x(ti+1, x0, y0), y(ti+1, x0, y0)) = (xi+1, yi+1),

Φ∗
i : (xi+1, yi+1) → (ai+1xi+1, bi+1yi+1) = (x∗i+1, y

∗
i+1), i = 1, . . . , q−1,

Φq : (x∗q , y∗q ) → (x(T , x0, y0), y(T , x0, y0)).
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Proof of Theorem 3.1 (idea)

When akbk = 1, Φi (0 ≤ i ≤ q), Φ∗
j (0 ≤ j ≤ q − 1) are

area-preserving mappings. Since

φ = Φq ◦ Φ∗
q−1 ◦ Φq−1 ◦ · · · ◦ Φ∗

0 ◦ Φ0,

φ is an area-preserving mapping. Obviously,
φ(0, 0) = (0, 0) ∈ D = {(x , y) : x2 + y2 < r2}. Lemmas 3.3, 3.4
imply that φ is a twist map on the annulus
A = {(x , y) : r2 ≤ x2 + y2 ≤ R2} for sufficiently small ε. Now it
follows from the result of Ding, Lemma 2.2 given in the introduction,
that φ has at least two fixed points in A. Let (xεi (t), yεi (t)) be one of
the corresponding periodic solutions of (11). By Lemma 3.2, we have

d1(r) ≤
√

x2
εi
(t) + y2

εi
(t) ≤ d2(R). (16)
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Proof of Theorem 3.1 (idea)

By the Arzela-Ascoli theorem, a sequence of {xεi (t), yεi (t)} converges
to (x(t), y(t)) as εi → 0. Then, (x(t), y(t)) satisfies (11), and
(x(t), y(t)) is a periodic solution for the system (5) with
d1(r) ≤

√
x2(t) + y2(t) ≤ d2(R). Since R is arbitrary, we obtain an

infinite sequence of periodic solutions for system (5) with small
amplitudes.
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Example

Example 4.1

Our main result expands the applied scope of the work of T.R. Ding
[3] by allowing the equation to have impulses.

Consider the equation{
x ′′(t) + 3

√
x(t) = 0, t 6= tk ,

x(t+
k ) = akx(tk), x ′(t+

k ) = bkx ′(tk), k ∈ Z,
(17)

where ak > 0, akbk = 1, ak+q = ak , tk+q = tk + T ,
0 < t1 < t2 < · · · < tq < T .

In fact, in (17), g(x) = 3
√

x . Then, xg(x) ≥ 0 and
lim
x→0

x−1g(x) = +∞. The condition (H1) is satisfied and by Theorem

3.1, equation (17) has an infinite sequence of periodic solutions.
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One-dimensional Wave Equation

Consider the one-dimensional Wave Equation
∂2u
∂t2 = c2 ∂2u

∂x2 , c2 = T
ρ > 0,

∆u(x , tk) = u(x , t+
k )− u(x , t−k ) = cku(x , tk),

∆ut(x , tk) = ut(x , t+
k )− ut(x , t−k ) = dkut(x , tk)

(18)

which arises from the standard mathematical model for a vibrating string.
Let x = 0 and x = L, yielding the boundary conditions u(0, t) = 0,
u(L, t) = 0 for all t. Here ck and dk are constants,
0 = t0 < t1 < t2 < · · · < tq < · · · < +∞, u(x , t+

k ) and ut(x , t+
k ) are right

limits of u(x , t) and ut(x , t) at t = tk , respectively. Let
PC (R) = {u : R → R; u(x , t) is continuous everywhere except for tk at
which u(x , t+

k ) and u(x , t−k ) exist and u(x , t−k ) = u(x , tk), k ∈ Z};
PC 1(R) = {u ∈ PC (R); ut(x , t) is continuous differentiable everywhere
except for tk at which ut(x , t+

k ) and ut(x , t−k ) exist and
ut(x , t−k ) = ut(x , tk), k ∈ Z}.
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Thank you for your
attention!
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