Matematiikan ja tilastotieteen laitos Funktionaalianalyysin perusteet Harjoitus 2 19.9.2013

- 1. For each $n \in \mathbb{N}$ let $f_n : [0, 1] \to \mathbb{R}$ be defined by $f_n(x) = x^n$. Find the norm of f_n in the following cases:
 - (a) in the normed space $C_{\mathbb{R}}([0,1])$;
 - (b) in the normed space $L^1[0, 1]$.
- 2. Let X be a vector space with norm $|| \cdot ||_1$ and let Y be a vector space with norm $|| \cdot ||_2$. Let $Z = X \times Y$ have the norm $||(x, y)|| = ||x||_1 + ||y||_2$. Let $\{(x_n, y_n)\}$ be a sequence in Z. (a) Show that $\{(x_n, y_n)\}$ converges to (x, y) in Z if and only if $\{x_n\}$ converges to x in X and $\{y_n\}$ converges in y in Y. (b) Show that $\{(x_n, y_n)\}$ is Cauchy in Z if and only if $\{x_n\}$ is Cauchy in X and $\{y_n\}$ is Cauchy in Y.
- 3. Let \mathcal{P} be the (infinite dimensional) vector space of polynomials defined on [0, 1]. Since \mathcal{P} is a linear subspace of $C_{\mathbb{F}}([0, 1])$ it has a norm $||p||_1 = \sup\{|p(x)| : x \in [0, 1]\}$, and since \mathcal{P} is a linear subspace of $L^1[0, 1]$ it has another norm $||p||_2 = \int_0^1 |p(x)| \, dx$. Show that $||p||_1$ and $||p||_2$ are not equivalent on \mathcal{P} .
- 4. If

$$S = \{\{x_n\} \in \ell^2 : \exists N \in \mathbb{N} \text{ such that } x_n = 0 \text{ for } n \ge N\},\$$

so that S is a linear subspace of ℓ^2 consisting of sequences having only finitely many non-zero terms, show that S is not closed.

- 5. Let X be a normed linear space and, for any $x \in X$ and r > 0, let $T = \{y \in X : ||y x|| \le r\}$ and $S = \{y \in X : ||y x|| < r\}$.
 - (a) Show that T is closed.

(b) If $z \in T$ and $z_n = (r - 1/n)z$, for $n \in \mathbb{N}$, show that $\lim_{n \to \infty} z_n = z$ and hence show that $\overline{S} = T$.

6. An inversion in the sphere $S^{n-1}(a,r) \subset \mathbb{R}^n$ is defined by

$$f(x) = a + \frac{r^2(x-a)}{|x-a|^2}, f(a) = \infty, f(\infty) = a.$$

(a) Show that for $x, y \in \mathbb{R}^n \setminus \{a\}$

$$|f(x) - f(y)| = \frac{r^2 |x - a|}{|x - a||y - a|}.$$

(b) Next show that the formula

$$m(x,y) = |f(x) - f(y)|$$

defines a metric.

(c) Show also that for $a = e_n, r = 1$ we have

$$|f(x) - f(y)| = \frac{|x - y|}{\sqrt{1 + |x|^2}\sqrt{1 + |y|^2}}$$

File: fa13h2.tex, printed: 2013-9-13, 7.33