Matematiikan ja tilastotieteen laitos Funktionaalianalyysin perusteet Harjoitus 3 26.9.2013

1. (Viimeksi käsittelemättä jäänyt) An inversion in the sphere $S^{n-1}(a,r) \subset \mathbb{R}^n$ is defined by

$$f(x) = a + \frac{r^2(x-a)}{|x-a|^2}, f(a) = \infty, f(\infty) = a.$$

(a) Show that for $x, y \in \mathbb{R}^n \setminus \{a\}$

$$|f(x) - f(y)| = \frac{r^2 |x - y|}{|x - a||y - a|}$$

(b) Next show that the formula

$$m(x,y) = |f(x) - f(y)|$$

defines a metric.

(c) Show also that for $a = e_n, r = 1$ we have for all $x \in \mathbb{R}^{n-1}$

$$|f(x) - f(y)| = \frac{|x - y|}{\sqrt{1 + |x|^2}\sqrt{1 + |y|^2}}.$$

- 2. Use the Gram-Schmidt algorithm to find an orthonormal basis for $Sp\{1, x, x^2\}$ in $L^2[-1, 1]$.
- 3. If $A = \{\{x_n\} \in \ell^2 : x_{2n} = 0 \text{ for all } n \in \mathbb{N}\}$, find A^{\perp} .
- 4. Let X be an inner product space and let $A \subset X$. Show that $A^{\perp} = \overline{A}^{\perp}$.
- 5. Let X and Y be linear subspaces of a Hilbert space H. Recall that $X + Y = \{x + y : x \in X, y \in Y\}$. Prove that $(X + Y)^{\perp} = X^{\perp} \cap Y^{\perp}$.
- 6. Recall that analytic functions are open maps. We say that a map $f : G \to G', G, G' \subset \mathbb{C}$, is closed if it maps all sets F closed in G to sets closed in G'. Show that the function exp(z) is not a closed map from the left half plane $\{z : Rez < 0\}$ onto $\mathbb{B}^2 \setminus \{0\}$, where \mathbb{B}^2 is the unit disk $\{z \in \mathbb{C} : |z| < 1\}$.

File: fa13h3.tex, printed: 2013-9-25, 8.01