Matematiikan ja tilastotieteen laitos Funktionaalianalyysin perusteet Harjoitus 5 10.10.2013

1. If $T: C_{\mathbb{R}}[0,1] \to \mathbb{R}$ is the linear transformation defined by

$$T(f) = \int_0^1 f(x) \, dx \, dx$$

show that T is continuous.

- 2. Let $h \in L^{\infty}[0, 1]$. (a) If f is in $L^{2}[0, 1]$, show that $fh \in L^{2}[0, 1]$. (b) Let $T : L^{2}[0, 1] \to L^{2}[0, 1]$ be the linear transformation defined by T(f) = hf. Show that T is continuous.
- 3. Let \mathcal{H} be a complex Hilbert space and let $y \in \mathcal{H}$. Show that the linear transformation $f : \mathcal{H} \to \mathbb{C}$ defined by f(x) = (x, y) is continuous.
- 4. (a) If $(x_1, x_2, x_3, x_4, \dots) \in \ell^2$, show that $(0, 4x_1, x_2, 4x_3, x_4, \dots) \in \ell^2$. (b) Let $T : \ell^2 \to \ell^2$ be the linear transformation defined by

$$T(x_1, x_2, x_3, x_4, \dots) = (0, 4x_1, x_2, 4x_3, x_4, \dots).$$

Show that T is continuous.

5. A person	runs the	same track for	r five consecuti	ve days and is	timed as follow	vs
day	(x)	1	2	3	4	5
time	(y)	15.50	15.10	15.00	14.50	14.00

make a least square fit to the above data using a function $a + b/x + c/x^2$.

6. Obtain an approximation in the sense of least squares in the form of a polynomial of degree 2 to the function $1/(1 + x^2)$ on the interval [-1, 1].

File: fa13h5.tex, printed: 2013-10-4, 8.05