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1. Introduction
This graduate course is an introduction to functional analysis
based on

B.P. Rynne - M.A. Youngson: Linear Functional Analysis, 2nd
ed. 2001, Springer

Prerequisites: Topology of metric spaces.
Idea: Linear algebra for function spaces: norm, convergence,
subspaces, projection,
Goal is to build a unified framework for the theory of
diff./integral equations.
Norms chosen according to application (e.g. approximation
theory)
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Definition 1.1

A vector space over a field F is a non-empty set V together with two
functions, one from V × V to V and the other from F× V to V ,
denoted by x + y and αx respectively, for all x , y ∈ V and α ∈ F, such
that, for any α, β ∈ F, and any x , y , z ∈ V ,

(a) x + y = y + x , x + (y + z) = (x + y) + z;

(b) there exists a unique 0 ∈ V(independent of x) such that
x + 0 = x ;

(c) there exists a unique −x ∈ V such that x + (−x) = 0;

(d) 1x = x , α(β(x)) = (αβ)x ;

(e) α(x + y) = αx + αy , (α + β)x = αx + βx .
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Def. 1.1 cont’d
If F = R (respectively,F = C) then V is a real (respectively,
complex) vector space. Elements of F are called scalars, while
elements of V are called vectors. The operation x + y is called
vector addition, while the operation αx is called scalar
multiplication.

Definition 1.2

Let V be a vector space. A non-empty set U ⊂ V is a linear
subspace of V if U is itself a vector space (with the same vector
addition and scalar multiplication as in V ). This is equivalent to
the condition that αx + βy ∈ U, for all α, β ∈ F and x , y ∈ U
(which is called the subspace test).
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Definition 1.3

Let V be a vector space, let v = {v1, ..., vk} ⊂ V , k ≥ 1, be a
finite set and let A ⊂ V be an arbitrary non-empty set.
(a) A linear combination of the elements of v is any vector of

the form x = α1v1 + · · ·+ αkvk ∈ V , for any set of scalars
α1, . . . , αk .

(b) v is linearly independent if the following implication holds:
α1v1 + · · ·+ αkvk = 0⇔ α1 = · · · = αk = 0 .

(c) A is linearly independent if every finite subset of A is
linearly independent. If A is not linearly independent then it
is linearly dependent.
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Def. 1.3 cont’d
(d) The span of A (denoted SpA) is the set of all linear

combinations of all finite subsets of A. This set is a linear
subspace of V . Equivalently, SpA is the intersection of the
set of all linear subspaces of V which contain A. Thus,
SpA is the smallest linear subspace of V containing A (in
the sense that if A ⊂ B ⊂ V and B is a linear subspace of
V then SpA ⊂ B).

(e) If v is linearly independent and Spv = V , then v is called a
basis for V . It can be shown that if V has such a (finite)
basis then all bases of V have the same number of
elements. If this number is k then V is said to be
k-dimensional (or, more generally, finite-dimensional), and
we write dim V = k .
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Def. 1.3 cont’d
If V does not have such a finite basis it is said to be
infinitedimensional.

(f) If v is a basis for V then any x ∈ V can be written as a
linear combination of the above form, with a unique set of
scalars αj , j = 1, . . . , k . These scalars (which clearly
depend on x) are called the components of x with respect
to the basis v .

(g) The set Fk is a vector space over F and the set of vectors
e1 = (1,0,0, . . . ,0),e2 = (0,1,0, . . . ,0), . . . ,ek =
(0,0,0, . . . ,1), is a basis for Fk . This notation will be used
throughout the book, and this basis will be called the
standard basis for Fk .
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Definition 1.4

Let V ,W be vector spaces over Fk . The Cartesian product
V ×W is a vector space with the following vector space
operations. For any α ∈ F. and any (xj , yj) ∈ V ×W , j = 1,2, let
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), α(x1, y1) = (αx1, αy1)
(using the corresponding vector space operations in V and W).

Definition 1.5

Let S be a set and let V be a vector space over F. We denote
the set of functions f : S → V by F (S,V ). For any α ∈ F and
any f ,g ∈ F (S,V ), we define functions f + g and αf in F (S,V )
by (f + g)(x) = f (x) + g(x), (αf )(x) = αf (x), for all x ∈ S
(using the vector space operations in V ). With these definitions
the set F (S,V ) is a vector space over F.

fa20131018.tex 2013-11-1, 15.58 Functional Analysis 8/132



Introduction
Normed spaces

Inner product spaces
Linear Operators

Example 1.6

If S is the set of integers {1, . . . , k} then the set F (S,F) can be
identified with the space Fk (by identifying an element x ∈ Fk

with the function f ∈ F (S,F) defined by f (j) = xj ,1 ≤ j ≤ k).

Definition 1.7

Let V ,W be vector spaces over the same scalar field F. A function
T : V →W is called a linear transformation (or mapping) if, for all
α, β ∈ F and x , y ∈ V ,

T (αx + βy) = αT (x) + βT (y).

The set of all linear transformations T : V →W will be denoted by
L(V ,W ). With the scalar multiplication and vector addition defined in
Definition 1.1 the set L(V ,W ) is a vector space (it is a subspace of
F (V ,W )). When V = W we abbreviate L(V ,V ) to L(V ).
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Lemma 1.8

Let V ,W ,X be vector spaces and T ∈ L(V ,W ),S ∈ L(W ,X ).
Then the composition S ◦ T ∈ L(V ,X ).

Lemma 1.9

Let V be a vector space, R,S,T ∈ L(V ), and α ∈ F. Then:
(a) R ◦ (S ◦ T ) = (R ◦ S) ◦ T ;

(b) R ◦ (S + T ) = R ◦ S + R ◦ T ;

(c) (S + T ) ◦ R = S ◦ R + T ◦ R;

(d) IV ◦ T = T ◦ IV = T where IV (x) = x ,∀x ∈ V;
(e) (αS) ◦ T = α(S ◦ T ) = S ◦ (αT ).
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Lemma 1.10

Let V ,W be vector spaces and T ∈ L(V ,W ).

(a) T (0) = 0.
(b) If U is a linear subspace of V then the set T (U) is a linear

subspace of W and dim T (U) ≤ dim U (as either finite
numbers or∞).

(c) If U is a linear subspace of W then the set
{x ∈ V : T (x) ∈ U} is a linear subspace of V .

fa20131018.tex 2013-11-1, 15.58 Functional Analysis 11/132



Introduction
Normed spaces

Inner product spaces
Linear Operators

Definition 1.11

Let V ,W be vector spaces and T ∈ L(V ,W ).

(a) The image of T (often known as the range of T ) is the subspace
ImT = T (V ); the rank of T is the number r(T ) = dim(ImT ).

(b) The kernel of T (often known as the null-space of T ) is the
subspace KerT = {x ∈ V : T (x) = 0}; the nullity of T is the
number n(T ) = dim(KerT ). The rank and nullity, r(T ),n(T ), may
have the value∞.

(c) T has finite rank if r(T ) is finite.

(d) T is one-to-one if, for any y ∈W , the equation T (x) = y has at
most one solution x .
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Def. 1.11 cont’d
(e) T is onto if, for any y ∈W , the equation T (x) = y has at

least one solution x .
(f) T is bijective if, for any y ∈W , the equation T (x) = y has

exactly one solution x (that is, T is both one-to-one and
onto).
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Lemma 1.12

Let V ,W be vector spaces and T ∈ L(V ,W ).

(a) T is one-to-one if and only if the equation T (x) = 0 has
only the solution x = 0. This is equivalent to KerT = {0} or
n(T ) = 0.

(b) T is onto if and only if ImT = W . If dim W is finite this is
equivalent to r(T ) = dim W .

(c) T ∈ L(V ,W ) is bijective if and only if there exists a unique
transformation S ∈ L(W ,V ) which is bijective and
S ◦ T = IV and T ◦ S = IW .
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Lemma 1.12 cont’d
If V is k -dimensional then n(T ) + r(T ) = k (in particular, r(T ) is
necessarily finite, irrespective of whether W is
finitedimensional). Hence, if W is also k -dimensional then T is
bijective if and only if n(T ) = 0.
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Definition 1.13

Let V be a vector space and T ∈ L(V ). A scalar λ ∈ F is an
eigenvalue of T if the equation T (x) = λx has a non-zero
solution x ∈ V , and any such non-zero solution is an
eigenvector. The subspace Ker(T − λI) ⊂ V is called the
eigenspace (corresponding to λ) and the multiplicity of λ is the
number mλ = n(T − λI).

Lemma 1.14

Let V be a vector space and let T ∈ L(V ). Let {λ1, . . . , λk} be a
set of distinct eigenvalues of T , and for each 1 ≤ j ≤ k let xj be
an eigenvector corresponding to λj . Then the set {x1, . . . , xk}
is linearly independent.
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Theorem 1.15

(a) The mapping T ∈ Mu
v (T ) is a bijective linear transformation

from L(U,V ) to Mmn(F ), that is, if S,T ∈ L(U,V ) and
α ∈ F, then

Mu
v (αT ) = αMu

v (T ),Mu
v (S + T ) = Mu

v (S) + Mu
v (T ).

(b) If T ∈ L(U,V ),S ∈ L(V ,W ) (where W is l-dimensional,
with basis w) then (again using standard matrix
multiplication here).

Mu
w (ST ) = Mv

w (S)Mu
v (T )
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Lemma 1.16

Let u be the standard basis of Fn and let v be the standard
basis of Fm. Let C ∈ Mmn(F) and T ∈ L(Fn,Fm). Then,

(a) Mu
v (TC) = C;

(b) TB = T (where B = Mu
v (T )).
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Definition 1.17

A metric on a set M is a function d : M ×M → R with the
following properties. For all x , y , z ∈ M,

(a) d(x , y) ≥ 0;

(b) d(x , y) = 0⇔ x = y ;

(c) d(x , y) = d(y , x);

(d) d(x , z) ≤ d(x , y) + d(y , z) (the triangle inequality).
If d is a metric on M, then the pair (M,d) is called a metric
space.
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Example 1.18

For any integer k ≥ 1, the function d : Fk × Fk → R defined by

d(x , y) =

 k∑
j=1

|xj − yj |2
1/2

is a metric on the set Fk . This metric will be called the standard metric
on Fk and, unless otherwise stated, Fk will be regarded as a metric
space with this metric. An example of an alternative metric on Fk is
the function d1 : Fk × Fk → R defined by

d1(x , y) =
k∑

j=1

|xj − yj |.
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Definition 1.19

Let (M,d) be a metric space and let N be a subset of M. Define
dN : N × N → R by dN(x , y) = d(x , y) for all x , y ∈ N (that is,
dN is the restriction of d to the subset N). Then dN is a metric
on N, called the metric induced on N by d

Example 1.20

Using the definition of a sequence as a function from N to F we
see that the space F (N,F) (see Definition 1.5) can be identified
with the space consisting of all sequences in F (compare this
with Example 1.6).
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Definition 1.21

A sequence {xn} in a metric space (M,d) converges to x ∈ M
(or the sequence {xn} is convergent) if, for every ε > 0, there
exists N ∈ N such that d(x , xn) < ε, for all n ≥ N. As usual, we
write

lim
n→∞

xn = x

or xn → x . A sequence {xn} in (M,d) is a Cauchy sequence if,
for every ε > 0, there exists N ∈ N such that d(xm, xn) < ε, for
all m,n ≥ N.
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Theorem 1.22

Suppose that {xn} is a convergent sequence in a metric space
(M,d). Then:

(a) the limit x = limn→∞ xn is unique;
(b) any subsequence of {xn} also converges to x ;

(c) {xn} is a Cauchy sequence.

Definition 1.23

Let (M,d) be a metric space. For any x ∈ M and any number
r > 0, the set Bx (r) = {y ∈ M : d(x , y) < r} will be called the
open ball with centre x and radius r . If r = 1 the ball Bx (1) is
said to be an open unit ball. The set {y ∈ M : d(x , y) ≤ r} will
be called the closed ball with centre x and radius r . If r = 1 this
set will be called a closed unit ball.
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Definition 1.24

Let (M,d) be a metric space and let A ⊂ M.

(a) A is bounded if there is a number b > 0 such that d(x , y) < b for
all x , y ∈ A.

(b) A is open if, for each point x ∈ A, there is an ε > 0 such that
Bx (ε) ⊂ A.

(c) A is closed if the set M \ A is open.

(d) A point x ∈ M is a closure point of A if, for every ε > 0, there is a
point y ∈ A with d(x , y) < ε (equivalently, if there exists a
sequence {yn} ⊂ A such that yn → x).

(e) The closure of A, denoted by A or A, is the set of all closure
points of A.

(f) A is dense (in M) if A = M.
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Theorem 1.25

Let (M,d) be a metric space and let A ⊂ M.

(a) A is closed and is equal to the intersection of the collection
of all closed subsets of M which contain A (so A is the
smallest closed set containing A).

(b) A is closed if and only if A = A.
(c) A is closed if and only if, whenever {xn} is a sequence in A

which converges to an element x ∈ M, then x ∈ A.
(d) x ∈ A if and only if

inf{d(x , y) : y ∈ A} = 0.
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Theorem 1.25 cont’d
(e) For any x ∈ M and r > 0, the "open" and "closed" balls in

Definition 1.23 are open and closed in the sense of
Definition 1.24. Furthermore,
Bx (r) ⊂ {y ∈ M : d(x , y) ≤ r}, but these sets need not be
equal in general (however, for most of the spaces
considered in this book these sets are equal, see Exercise
2.10).

(f) A is dense if and only if, for any element x ∈ M and any
number ε > 0, there exists a point y ∈ A with d(x , y) < ε
(equivalently, for any element x ∈ M there exists a
sequence {yn} ⊂ A such that yn → x).
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Example 1.26

Let M = R, with the standard metric, and let N = (0,1] ⊂ M. If
A = (0,1) then the closure of A in N is equal to N (so A is
dense in N), but the closure of A in M is [0,1].
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Definition 1.27

Let (M,dM) and (N,dN) be metric spaces and let f : M → N be
a function.
(a) f is continuous at a point x ∈ M if, for every ε > 0, there

exists δ > 0 such that, for y ∈ M,
dM(x , y) < δ ⇒ dN(f (x), f (y)) < ε.

(b) f is continuous (on M) if it is continuous at each point of M.

(c) f is uniformly continuous (on M) if, for every ε > 0, there
exists δ > 0 such that, for all x , y ∈ M,

dM(x , y) < δ ⇒ dN(f (x), f (y)) < ε

(that is, the number δ can be chosen independently of
x , y ∈ M).
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Theorem 1.28

Suppose that (M,dM), (N,dN), are metric spaces and that
f : M → N. Then:
(a) f is continuous at x ∈ M if and only if, for every sequence
{xn} in (M,dM) with xn → x , the sequence {f (xn)} in
(N,dN) satisfies f (xn)→ f (x);

(b) f is continuous on M if and only if either of the following
conditions holds:
(i) for any open set A ⊂ N, the set f−1(A) ⊂ M is open;
(ii) for any closed set A ⊂ N, the set f−1(A) ⊂ M is closed
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Corollary 1.29

Suppose that (M,dM), (N,dN), are metric spaces, A is a dense
subset of M and f ,g : M → N are continuous functions with the
property that f (x) = g(x) for all x ∈ A. Then f = g (that is,
f (x) = g(x) for all x ∈ M).

Definition 1.30

A metric space (M,d) is complete if every Cauchy sequence in
(M,d) is convergent. A set A ⊂ M is complete (in (M,d)) if
every Cauchy sequence lying in A converges to an element of
A.

Theorem 1.31

For each k ≥ 1, the space Fk with the standard metric is
complete.
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Theorem 1.32

(Baire’s Category Theorem) If (M,d) is a complete metric
space and M = ∪∞j=1Aj , where each Aj ⊂ M, j = 1,2, ..., is
closed, then at least one of the sets Aj contains an open ball.

Definition 1.33

Let (M,d) be a metric space. A set A ⊂ M is compact if every
sequence {xn} in A contains a subsequence that converges to
an element of A. A set A ⊂ M is relatively compact if the
closure A is compact. If the set M itself is compact then we say
that (M,d) is a compact metric space.
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Note. Compactness can also be defined in terms of "open
coverings", and this definition is more appropriate in more
general topological spaces, but in metric spaces both
definitions are equivalent, and the above sequential definition is
the only one that will be used in what follows.

Theorem 1.34

Suppose that (M,d) is a metric space and A ⊂ M. Then:
(a) if A is complete then it is closed;
(b) if M is complete then A is complete if and only if it is closed;
(c) if A is compact then it is closed and bounded;
(d) (Bolzano-Weierstrass theorem) every closed, bounded

subset of Fk is compact.
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Theorem 1.35

Suppose that (M,d) is a compact metric space and f : M → F
is continuous. Then there exists a constant b > 0 such that
|f (x)| ≤ b for all x ∈ M (we say that f is bounded). In particular,
if F = R then the numbers sup{f (x) : x ∈ M} and
inf{f (x) : x ∈ M}, exist and are finite. Furthermore, there exist
points xs, xi ∈ M such that

f (xs) = sup{f (x) : x ∈ M}, f (xi) = inf{f (x) : x ∈ M}.
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Definition 1.36

Let (M,d) be a compact metric space. The set of continuous
functions f : M → F will be denoted by CF(M). We define a
metric on CF(M) by

d(f ,g) = sup{|f (x)− g(x)| : x ∈ M}

(it can easily be verified that for any f ,g ∈ CF(M), the function
|f − g| is continuous so d(f ,g) is well-defined, by Theorem
1.35, and that d is a metric on CF(M)). This metric will be
called the uniform metric and, unless otherwise stated, CF(M)
will always be assumed to have this metric.
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Notation. Most properties of the space CF(M) hold equally well
in both the real and complex cases so, except where it is
important to distinguish between these cases, we will omit the
subscript and simply write C(M). A similar convention will be
adopted below for other spaces with both real and complex
versions. Also, when M is a bounded interval [a,b] ⊂ R we
write C[a,b].

Definition 1.37

Suppose that (M,d) is a compact metric space and {fn} is a
sequence in C(M), and let f : M → F be a function.
(a) {fn} converges pointwise to f if |fn(x)− f (x)| → 0 for all

x ∈ M.

(b) {fn} converges uniformly to f if
sup{|fn(x)− f (x)| : x ∈ M} → 0.
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Theorem 1.38

The metric space C(M) is complete.

Theorem 1.39

(The Stone-Weierstrass Theorem) For any compact set M ⊂ R,
the set of polynomials PR is dense in CR(M).

Definition 1.40

A set X is countable if it contains either a finite number of
elements or infinitely many elements and can be written in the
form X = {xn : n ∈ N}; in the latter case X is said to be
countably infinite. A metric space (M,d) is separable if it
contains a countable, dense subset. The empty set is regarded
as separable.
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Example 1.41

The space R is separable since the set of rational numbers is
countably infinite (see Topology) and dense in R.

Theorem 1.42

Suppose that (M,d) is a metric space and A ⊂ M.

(a) If A is compact then it is separable.
(b) If A is separable and B ⊂ A then B is separable.
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Definition 1.43

A σ-algebra (also known as a σ-field) is a class Σ of subsets of
a set X with the properties:
(a) ∅,X ∈ Σ;

(b) S ∈ Σ⇒ X \ S ∈ Σ;

(c) Sn ∈ Σ,n = 1,2, · · · ⇒ ∪∞n=1Sn ∈ Σ .

A set S ∈ Σ is said to be measurable.
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Definition 1.44

Let X be a set and let Σ be a σ-algebra of subsets of X . A
function µ : Σ→ R+ is a measure if it has the properties:
(a) µ(∅) = 0;

(b) µ is countably additive, that is, if Sj ∈ Σ, j = 1,2, ..., are
pairwise disjoint sets then

µ(∪∞j=1Sj) =
∞∑

j=1

µ(Sj).

The triple (X ,Σ, µ) is called a measure space.
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Definition 1.45

Let (X ,Σ, µ) be a measure space. A set S ∈ Σ with µ(S) = 0 is
said to have measure zero (or is a null set). A given property
P(x) of points x ∈ X is said to hold almost everywhere if the set
{x : P(x) is false} has measure zero; alternatively, the property
P is said to hold for almost every x ∈ X . The abbreviation a.e.
will denote either of these terms.

Example 1.46
(Counting Measure) Let X = N, let Σc be the class of all
subsets of N and, for any S ⊂ N, define µc(S) to be the number
of elements of S. Then is Σc a σ-algebra and µc is a measure
on Σc . This measure is called counting measure on N. The only
set of measure zero in this measure space is the empty set.
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Example 1.47

(Lebesgue Measure) There is a σ-algebra ΣL in R and a
measure µL on ΣL such that any finite interval I = [a,b] ∈ ΣL
and µL(I) = `(I). The sets of measure zero in this space are
exactly those sets A with the following property: for any ε > 0
there exists a sequence of intervals Ij ⊂ R, j = 1,2, . . . , such
that

A ⊂ ∪∞j=1Ij and
∞∑

j=1

`(Ij) < ε.

This measure is called Lebesgue measure and the sets in σL
are said to be Lebesgue measurable.
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Example 1.48

(Counting Measure) Suppose that (X ,Σ, µ) = (N,Σc , µc) (see
Example 1.47). Any function f : N→ F can be regarded as an
F-valued sequence {an} (with an = f (n),n ≥ 1), and since all
subsets of N are measurable, every such sequence {an} can
be regarded as a measurable function. It follows from the
above definitions that the sequence {an} is integrable (with
respect to µc) if and only if

∑∞
n=1 |an| <∞, and then the

integral of {an} is simply the sum
∑∞

n=1 |an|. Instead of the
general notation L1(N), the space of such sequences will be
denoted by `1 (or `1F ).
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Definition 1.49

(Lebesgue integral) Let (X ,Σ, µ) = (Rk ,ΣL, µL) , for some
k ≥ 1. If f ∈ L1(Rk ) (or f ∈ L1(S), with S ∈ ΣL) then f is said to
be Lebesgue integrable.

Theorem 1.50

If I = [a,b] ⊂ R is a bounded interval and f : I → R is bounded
and Riemann integrable on I, then f is Lebesgue integrable on
I, and the values of the two integrals of f coincide. In particular,
continuous functions on I are Lebesgue integrable.
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Theorem 1.51

Let (X ,Σ, µ) be a measure space and let f ∈ L1(X ).

(a) If f (x) = 0 a.e., then f ∈ L1(X ) and
∫

X fdµ = 0.

(b) If α ∈ R and f ,g ∈ L1(X ) then the functions f + g and αf (see
Definition 1.5) belong to L1(X ) and∫

X
(f + g)dµ =

∫
X

fdµ+

∫
X

gdµ,
∫

X
αfdµ = α

∫
X

fdµ.

In particular, L1(X ) is a vector space.
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Theorem 1.51 cont’d

(c) If f ,g ∈ L1(X ) and f (x) ≤ g(x) for all x ∈ X , then∫
X

fdµ ≤
∫

X
gdµ.

If, in addition, f (x) < g(x) for all x ∈ S, with µ(S) > 0, then∫
X

fdµ <
∫

X
gdµ.
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Definition 1.52

Suppose that f is a measurable function and there exists a
number b such that f (x) ≤ b a.e. Then we can define the
essential supremum of f to be

ess sup f = inf{b : f (x) ≤ b a.e.}.

It is a simple (but not completely trivial) consequence of this
definition that f (x) ≤ ess sup f a.e. The essential infimum of f
can be defined similarly. A measurable function f is said to be
essentially bounded if there exists a number b such that
|f (x)| ≤ b a.e.
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Definition 1.53

Define the spaces

Lp(X ) = {f : f is measurable and (

∫
X
|f |pdµ)1/p <∞},1 ≤ p <∞;

L∞(X ) = {f : f is measurable and ess sup |f | <∞}.

We also define the corresponding sets Lp(X ) by identifying
functions in Lp(X ) which are a.e. equal and considering the
corresponding spaces of equivalence classes (in practice, we
again simply refer to representative functions of these
equivalence classes rather than the classes themselves).
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Theorem 1.54

Suppose that f and g are measurable functions. Then the
following inequalities hold (infinite values are allowed).
Minkowski’s inequality (for 1 ≤ p <∞):(∫

X
|f + g|pdµ

)1/p

≤
(∫

X
|f |pdµ

)1/p

+

(∫
X
|g|pdµ

)1/p

ess sup |f + g| ≤ ess sup |f |+ ess sup |g|.

Hölder’s inequality (for 1 < p <∞ and 1
p + 1

q = 1) :

∫
X
|fg|dµ. ≤

(∫
X
|f |pdµ

)1/p (∫
X
|g|qdµ

)1/q

∫
X
|fg|dµ ≤ ess sup |f |

∫
X
|g|dµ.
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Corollary 1.55

Suppose that 1 ≤ p ≤ ∞ .

(a) Lp(X ) is a vector space (essentially, this follows from
Minkowski’s inequality together with simple properties of
the integral).

(b) The function

dp(f ,g) =

(∫
X
|f − g|pdµ

)1/p

,1 ≤ p <∞,

d∞(f ,g) = ess sup |f − g|,

is a metric on Lp(X ) (condition (b) in Definition 1.7 follows
from properties (a) and (c) in Theorem 1.51, together with
the construction of the spaces Lp(X ), while Minkowski’s
inequality shows that dp satisfies the triangle inequality).
This metric will be called the standard metric on Lp(X )
and, unless otherwise stated, Lp(X ) will be assumed to
have this metric.

fa20131018.tex 2013-11-1, 15.58 Functional Analysis 49/132



Introduction
Normed spaces

Inner product spaces
Linear Operators

Example 1.56

(Counting Measure) Suppose that 1 ≤ p ≤ ∞. In the special
case where (X ,Σ, µ) = (N,Σc , µc), the space Lp(N) consists of
the set of sequences {an} in F with the property that( ∞∑

n=1

|an|p
)1/p

<∞ , for 1 ≤ p <∞

sup{|an| : n ∈ N} <∞, for p =∞.

These spaces will be denoted by `p(or `pF ). Note that since
there are no sets of measure zero in this measure space, there
is no question of taking equivalence classes here. By Corollary
1.55, the spaces `p are both vector spaces and metric spaces.
The standard metric on `p is defined analogously to the above
expressions in the obvious manner.
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Corollary 1.57

Minkowski’s inequality (for 1 ≤ p <∞): ∞∑
j=1

|xj + yj |p
1/p

≤

 ∞∑
j=1

|xj |p
1/p

+

 ∞∑
j=1

|yj |p
1/p

.

Hölder’s inequality (for 1 < p <∞ and 1
p + 1

q = 1):

∞∑
j=1

|xjyj | ≤

 ∞∑
j=1

|xj |p
1/p ∞∑

j=1

|yj |q
1/q

Here, k and the values of the sums may be∞.
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Corollary 1.58

∞∑
j=1

|xjyj | ≤

 ∞∑
j=1

|xj |2
1/2 ∞∑

j=1

|yj |2
1/2

.

Definition 1.59

Let ẽ1 = (1,0,0, ...), ẽ2 = (0,1,0, ...), . . . . For any n ∈ N the
sequence ẽn ∈ `p for all 1 ≤ p <∞.

Theorem 1.60

Suppose that 1 ≤ p ≤ ∞. Then the metric space Lp(X ) is
complete. In particular, the sequence space `p is complete.
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Theorem 1.61

Suppose that [a,b] is a bounded interval and 1 ≤ p <∞. Then
the set C[a,b] is dense in Lp[a,b].
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2. Normed spaces

Definition 2.1

(a) Let X be a vector space over F. A norm on X is a function
|| · || : X → R such that for all x , y ∈ X and α ∈ F,
(i) ||x || ≥ 0;
(ii) ||x || = 0 if and only if x = 0;
(iii) ||αx || = |α|||x ||;
(iv) ||x + y || ≤ ||x ||+ ||y || .

(b) A vector space X on which there is a norm is called a
normed vector space or just a normed space.

(c) If X is a normed space, a unit vector in X is a vector x
such that ||x || = 1.
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Example 2.2

The function || · || : Fn → R defined by

||(x1, ..., xn)|| =

 n∑
j=1

|xj |2
1/2

is a norm on Fn called the standard norm on Fn.
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Example 2.3

Let X be a finite-dimensional vector space over F with basis
{e1,e2, . . . ,en}. Any x ∈ X can be written as x =

∑n
j=1 λjej for

unique λ1, λ2, . . . , λn ∈ F. Then the function || · || : X → R
defined by

||x || =

 n∑
j=1

|λj |2
1/2

is a norm on X .
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Example 2.4

Let M be a compact metric space and let CF(M) be the vector
space of continuous, F-valued functions defined on M. Then the
function || · || : CF(M)→ R defined by

||f || = sup{|f (x)| : x ∈ M}

is a norm on CF(M) called the standard norm on CF(M).
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Example 2.5

Let (X ,Σ, µ) be a measure space.
(a) If 1 ≤ p <∞ then

||f ||p =

(∫
X
|f |pdµ)

)1/p

is a norm on Lp(X ) called the standard norm on Lp(X ).

(b) ||f ||∞ = ess sup{|f (x)| : x ∈ X} is a norm on L∞(X ) called
the standard norm on L∞(X ) .
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Example 2.6

(a) If 1 ≤ p <∞ then ||{xn}||p = (
∑∞

n=1 |xn|p)1/p is a norm on
`p called the standard norm on `p.

(b) ||{xn}||∞ = sup{|xn| : n ∈ N} is a norm on `∞ called the
standard norm on `∞.

Example 2.7

Let X be a vector space with a norm || · || and let S be a linear
subspace of X . Let || · ||S be the restriction of || · || to S. Then
|| · ||S is a norm on S.
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Example 2.8

Let X and Y be vector spaces over F and let Z = X × Y be the
Cartesian product of X and Y . This is a vector space by
Definition 1.4. If || · ||1 is a norm on X and || · ||2 is a norm on Y
then ||(x , y)|| = ||x ||1 + ||y ||2 defines a norm on Z .

Lemma 2.9

Let X be a vector space with norm || · ||.If d : X × X → R is
defined by d(x , y) = ||x − y || then (X ,d) is a metric space.

Notation. If X is a vector space with norm || · || and d is the
metric defined by d(x , y) = ||x − y || then d is called the metric
associated with || · ||.
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Whenever we use a metric or a metric space concept, for
example, convergence, continuity or completeness, in a
normed space then we will always use the metric associated
with the norm even if this is not explicitly stated. The metrics
associated with the standard norms are already familiar.

Example 2.10

The metrics associated with the standard norms on the
following spaces are the standard metrics.
(a) Fn;
(b) CF(M) where M is a compact metric space;
(c) Lp(X ) for 1 ≤ p <∞ where (X ,Σ, µ) is a measure space;
(d) L∞(X ) where (X ,Σ, µ) is a measure space.
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Theorem 2.11

Let X be a vector space over F with norm || · ||. Let {xn} and
{yn} be sequences in X which converge to x , y in X
respectively and let {αn} be a sequence in F which converges
to α in F. Then:
(a) |||x || − ||y ||| ≤ ||x − y ||;
(b) limn→∞ ||xn|| = ||x ||;
(c) limn→∞(xn + yn) = x + y ;

(d) limn→∞ αn xn = α x .
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Definition 2.12

Let X be a vector space and let || · ||1 and || · ||2 be two norms
on X . The norm || · ||2 is equivalent to the norm || · ||1 if there
exists M,m > 0 such that for all x ∈ X

m||x ||1 ≤ ||x ||2 ≤ M||x ||1.

Lemma 2.13

Let X be a vector space and let || · ||1 ,|| · ||2, || · ||3 be three
norms on X . Let || · ||2 be equivalent to || · ||1 and let || · ||3 be
equivalent to || · ||2.
(a) || · ||1 is equivalent to || · ||2.
(b) || · ||3 is equivalent to || · ||1.
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Lemma 2.14

Let X be a vector space and let || · || and || · ||1 be norms on X .
Let d and d1 be the metrics defined by d(x , y) = || · || and
d1(x , y) = || · ||1. Suppose that there exists K > 0 such that
||x || ≤ K ||x ||1 for all x ∈ X . Let {xn} be a sequence in X .
(a) If {xn} converges to x in the metric space (X ,d1) then {xn}

converges to x in the metric space (X ,d).

(b) If {xn} is Cauchy in the metric space (X ,d1) then {xn} is
Cauchy in the metric space (X ,d).
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Corollary 2.15

Let X be a vector space and let || · || and || · ||1 be equivalent
norms on X . Let d and d1 be the metrics defined by
d(x , y) = ||x − y || and d1(x , y) = ||x − y ||1. Let {xn} be a
sequence in X .

(a) {xn} converges to x in the metric space (X ,d) if and only if
{xn} converges to x in the metric space (X ,d1).

(b) {xn} is Cauchy in the metric space (X ,d) if and only if {xn}
is Cauchy in the metric space (X ,d1).

(c) (X ,d) is complete if and only if (X ,d1) is complete.
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Theorem 2.16

Let X be a finite-dimensional vector space with norm || · || and
let {e1,e2, . . . ,en} be a basis for X . Another norm on X was
defined in Example 2.3 by

||
n∑

j=1

λjej ||1 =

 n∑
j=1

|λj |2
1/2

.

The norms || · || and || · ||1 are equivalent.

Corollary 2.17

If || · || and || · ||2 are any two norms on a finite-dimensional
vector space X then they are equivalent.
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Lemma 2.18

Let X be a finite-dimensional vector space over F and let
{e1,e2, . . . ,en} be a basis for X . If || · || : X → R is the norm on
X defined in Theorem 2.16 then X is a complete metric space.

Corollary 2.19

If || · || is any norm on a finite-dimensional space X then X is a
complete metric space.

Corollary 2.20

If Y is a finite-dimensional subspace of a normed vector space
X, then Y is closed.
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Example 2.21

Let

S = {{xn} ∈ `∞ : there exists N ∈ N such that xn = 0 for n ≥ N},

so that S is the linear subspace of `∞ consisting of sequences
having only finitely many non-zero terms. Then S is not closed.

Lemma 2.22

If X is a normed vector space and S is a linear subspace of X
then S is a linear subspace of X .
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Definition 2.23

Let X be a normed vector space and let E be any non-empty
subset of X . The closed linear span of E , denoted by Sp E , is
the intersection of all the closed linear subspaces of X which
contain E .

Lemma 2.24

Let X be a normed space and let E be any non-empty subset
of X .

(a) Sp E is a closed linear subspace of X which contains E .
(b) Sp E = Sp E , that is, Sp E is the closure of Sp E .
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Theorem 2.25

(Riesz’ Lemma) Suppose that X is a normed vector space, Y is
a closed linear subspace of X such that Y 6= X and α is a real
number such that 0 < α < 1. Then there exists xα ∈ X such
that ||xα|| = 1 and ||xα − y || > α for all y ∈ Y .

Theorem 2.26

If X is an infinite-dimensional normed vector space then neither
D = {x ∈ X : ||x || ≤ 1} nor K = {x ∈ X : ||x || = 1} is compact.

Definition 2.27

A Banach space is a normed vector space which is complete
under the metric associated with the norm.
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Theorem 2.28

(a) Any finite-dimensional normed vector space is a Banach
space.

(b) If X is a compact metric space then CF(X ) is a Banach
space.

(c) If (X ,Σ, µ) is a measure space then Lp(X ) is a Banach
space for 1 ≤ p ≤ ∞.

(d) `p is a Banach space for 1 ≤ p ≤ ∞.
(e) If X is a Banach space and Y is a linear subspace of X

then Y is a Banach space if and only if Y is closed in X .
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Definition 2.29

Let X be a normed space and let {xk} be a sequence in X . For
each positive integer n let sn =

∑n
k=1 xk be the nth partial sum

of the sequence. The series
∑∞

k=1 xk is said to converge if
limn→∞ sn exists in X and, if so, we define

∞∑
k=1

xk = lim
n→∞

sn .

Theorem 2.30

Let X be a Banach space and let {xn} be a sequence in X . If
the series

∑∞
k=1 ||xk || converges then the series

∑∞
k=1 xk

converges.
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Inner product spaces

Definition 3.1

Let X be a real vector space. An inner product on X is a function
(·, ·) : X × X → R such that for all x , y , z ∈ X and α, β ∈ R,

(a) (x , x) ≥ 0;

(b) (x , x) = 0 if and only if x = 0;

(c) (αx + βy , z) = α(x , z) + β(y , z);

(d) (x , y) = (y , x).

Example 3.2

The function (·, ·) : Rk × Rk → R defined by (x , y) =
∑k

n=1 xn yn, is an
inner product on Rk . This inner product will be called the standard
inner product on Rk .
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Definition 3.3

Let X be a complex vector space. An inner product on X is a
function (·, ·) : X ×X → C such that for all x , y , z ∈ X , α, β ∈ C,
(a) (x , x) ∈ R and (x , x) ≥ 0;

(b) (x , x) = 0 if and only if x = 0;

(c) (αx + βy , z) = α(x , z) + β(y , z);

(d) (x , y) = (y , x).

Example 3.4

The function (·, ·) : Ck × Ck → C defined by
(x , y) =

∑k
n=1 xnyn, is an inner product on Ck . This inner

product will be called the standard inner product on Ck .
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Definition 3.5

A real or complex vector space X with an inner product (·, ·) is called
an inner product space.

Example 3.6

Let X be a k-dimensional vector space with basis {e1, . . . ,ek}. Let
x , y ∈ X have the representation x =

∑k
n=1 λn en, y =

∑k
n=1 µn en.

The function (·, ·) : X × X → F defined by (x , y) =
∑k

n=1 λn µn, is an
inner product on X .

Example 3.7

If f ,g ∈ L2(X ) then fg ∈ L1(X ) and the function
(·, ·) : L2(X )× L2(X )→ F defined by (f ,g) =

∫
X f g dµ is an inner

product on L2(X ). This inner product will be called the standard inner
product on L2(X ).
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Example 3.8

If a = {an},b = {bn} ∈ `2, then the sequence {anbn} ∈ `1 and
the function (·, ·) : Fk × Fk → F defined by (a,b) =

∑∞
n=1 an bn

is an inner product on `2. This inner product will be called the
standard inner product on `2.

Example 3.9

Let X be an inner product space with inner product (·, ·) and let
S be a linear subspace of X . Let (·, ·)S be the restriction of (·, ·)
to S. Then (·, ·)S is an inner product on S.
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Example 3.10

Let X and Y be inner product spaces with inner products (·, ·)1
and (·, ·)2 , respectively, and let Z = X × Y be the Cartesian
product space (see Definition 1.4). Then the function
(·, ·) : Z × Z → F defined by ((u, v), (x , y)) = (u, x)1 + (v , y)2 is
an inner product on Z .
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Remark 3.11

We should note that, although the definitions in Examples 2.8
and 3.10 are natural, the norm induced on Z by the above inner

product has the form
√
||x ||21 + ||y ||22 (where || · ||1, || · ||2 are the

norms induced by the inner products (·, ·)1, (·, ·)2), whereas the
norm defined on Z in Example 2.8 has the form ||x ||1 + ||y ||2.
These two norms are not equal, but they are equivalent so in
discussing analytic properties it makes no difference which one
is used. However, the induced norm is somewhat less
convenient to manipulate due to the square root term. Thus, in
dealing with Cartesian product spaces one generally uses the
norm in Example 2.8 if only norms are involved, but one must
use the induced norm if inner products are also involved.
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Lemma 3.12

Let X be an inner product space, x , y , z ∈ X and α, β ∈ F.
Then,
(a) (0, y) = (x ,0) = 0;

(b) (x , αy + βz) = α(x , y) + β(x , z);

(c) (αx + β y , α x + β y) =
|α|2(x , x) + αβ(x , y) + βα(y , x) + |β|2(y , y).

Lemma 3.13

Let X be an inner product space and let x , y ∈ X . Then:

(a) |(x , y)|2 ≤ (x , x)(y , y), x , y ∈ X ;

(b) the function || · || : X → R defined by ||x || = (x , x)1/2, is a
norm on X .
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Lemma 3.14

Let X be an inner product space with inner product (·, ·). Then
for all u, v , x , y ∈ X :

(a) (u + v , x + y)− (u − v , x − y) = 2(u, y) + 2(v , x);

(b) 4(u, y) =
(u+v , x +y)−(u−v , x−y)+ i(u+ iv , x + iy)− i(u− iv , x− iy)
(for complex X).
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Theorem 3.15

Let X be an inner product space with inner product (·, ·) and
induced norm || · ||. Then for all x , y ∈ X :

(a)
||x + y ||2 + ||x − y ||2 = 2

(
||x ||2 + ||y ||2

)
(the parallelogram rule);

(b) if X is real then

4(x , y) = ||x + y ||2 − ||x − y ||2;

(c) if X is complex then

4(x , y) = ||x + y ||2 − ||x − y ||2 + i ||x + iy ||2 − i ||x − iy ||2

(the polarization identity).
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Example 3.16

The standard norm on the space C[0,1] is not induced by an
inner product.

Lemma 3.17

Let X be an inner product space and suppose that {xn} and
{yn} are convergent sequences in X , with
limn→∞ xn = x , limn→∞ yn = y . Then

lim
n→∞

(xn, yn) = (x , y).

Definition 3.18

Let X be an inner product space. The vectors x , y ∈ X are said
to be orthogonal if (x , y) = 0.
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Definition 3.19

Let X be an inner product space. The set {e1, . . . ,ek} ⊂ X is
said to be orthonormal if ||en|| = 1 for 1 ≤ n ≤ k , and
(em,en) = 0 for all 1 ≤ m,n ≤ k with m 6= n.
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Lemma 3.20

(a) An orthonormal set {e1, . . . ,ek} in any inner product space
X is linearly independent. In particular, if X is
k-dimensional then the set {e1, . . . ,ek} is a basis for X
and any vector x ∈ X can be expressed in the form

x =
k∑

n=1

(x ,en)en

(in this case {e1, . . . ,ek} is usually called an orthonormal
basis and the numbers (x ,en) are the components of x
with respect to this basis).

(b) Let {v1, . . . , vk} be a linearly independent subset of an
inner product space X , and let S = Sp{v1, . . . , vk}. Then
there is an orthonormal basis {e1, . . . ,ek} for S.
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Remark 3.21

The inductive construction of the basis in part (b) of Lemma
3.20, using the formulae

bk+1 = vk+1 −
k∑

n=1

(vk+1,en)en,ek+1 =
bk+1

||bk+1||
,

is called the Gram–Schmidt algorithm, and is described in more
detail in Linear algebra.
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Theorem 3.22

Let X be a k-dimensional inner product space and let
{e1, . . . ,ek} be an orthonormal basis for X . Then, for any
numbers αn ∈ F, n = 1, . . . , k ,

||
k∑

n=1

αn en||2 =
k∑

n=1

|αn|2.

Definition 3.23

An inner product space which is complete with respect to the
metric associated with the norm induced by the inner product is
called a Hilbert space.
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Example 3.24

(a) Every finite-dimensional inner product space is a Hilbert
space.

(b) L2(X ) with the standard inner product is a Hilbert space.
(c) `2 with the standard inner product is a Hilbert space.

Lemma 3.25

If H is a Hilbert space and Y ⊂ H is a linear subspace, then Y
is a Hilbert space if and only if Y is closed in H.
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Definition 3.26

Let X be an inner product space and let A be a subset of X .
The orthogonal complement of A is the set

A⊥ = {x ∈ X : (x ,a) = 0 for all a ∈ A}.

Thus

Example 3.27

If X = R3 and A = {(a1,a2,0) : a1,a2 ∈ R}, then

A⊥ = {(0,0, x3) : x3 ∈ R} = {(0,0, x3) : x3 ∈ R}.
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Example 3.28

Suppose that X is a k-dimensional inner product space, and
{e1, . . . ,ek} is an orthonormal basis for X . If
A = Sp{e1, . . . ,ep}, for some 1 ≤ p < k , then
A⊥ = Sp{ep+1, . . . ,ek}.
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Lemma 3.29

If X is an inner product space and A ⊂ X then:
(a) 0 ∈ A⊥.
(b) If 0 ∈ A then A ∩ A⊥ = {0}, otherwise A ∩ A⊥ = ∅ .
(c) 0⊥ = X ; X⊥ = {0}.
(d) If A contains an open ball Ba(r), for some a ∈ X and some

positive r > 0, then A⊥ = {0}; in particular, if A is a
non-empty open set then A⊥ = {0}.

(e) If B ⊂ A then A⊥ ⊂ B⊥. .
(f) A⊥ is a closed linear subspace of X .

(g) A ⊂ (A⊥)⊥.
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Lemma 3.30

Let Y be a linear subspace of an inner product space X . Then

x ∈ Y⊥ ⇔ ||x − y || ≥ ||x ||, ∀y ∈ Y .

Definition 3.31

A subset A of a vector space X is convex if, for all x , y ∈ A and
all α ∈ [0,1], αx + (1− α)y ∈ A.

Theorem 3.32

Let A be a non-empty, closed, convex subset of a Hilbert space
H and let p ∈ H. Then there exists a unique q ∈ A such that

||p − q|| = inf{||p − a|| : a ∈ A}.
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Remark 3.33

Theorem 3.32 shows that if A is a non-empty, closed, convex
subset of a Hilbert space H and p is a point in H, then there is a
unique point q in A which is the closest point in A to p. In finite
dimensions, even if the set A is not convex the existence of the
point q can be proved in a similar manner (using the
compactness of closed bounded sets to give the necessary
convergent sequence). However, in this case the point q need
not be unique (for example, let A be a circle in the plane and p
be its centre, then q can be any point on A). In infinite
dimensions, closed bounded sets need not be compact (see
Theorem 2.26), so the existence question is more difficult and q
may not exist if A is not convex.
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Theorem 3.34

Let Y be a closed linear subspace of a Hilbert space H. For
any x ∈ H, there exists a unique y ∈ Y and z ∈ Y⊥ such that
x = y + z. Also,

||x ||2 = ||y ||2 + ||z||2.

Notation. Suppose that Y is a closed linear subspace of a
Hilbert space H and x ∈ H. The decomposition x = y + z, with
y ∈ Y and z ∈ Y⊥, will be called the orthogonal decomposition
of x with respect to Y .

Corollary 3.35

If Y is a closed linear subspace of a Hilbert space H then
Y⊥⊥ = Y .
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Corollary 3.36

If Y is any linear subspace of a Hilbert space H then Y⊥⊥ = Y .

Definition 3.37

Let X be an inner product space. A sequence {en} ⊂ X is said
to be an orthonormal sequence if ||en|| = 1 for all n ∈ N, and
(em,en) = 0 for all m,n ∈ N with m 6= n.

Example 3.38

The sequence {ẽn} (see Definition 1.59) is an orthonormal
sequence in `2. Note that each of the elements of this
sequence (in `2 ) is itself a sequence (in F). This can be a
source of confusion, so it is important to keep track of what
space a sequence lies in.
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Example 3.39

The set of functions {en}, where en(x) = (2π)−1/2einx for
n ∈ Z, is an orthonormal sequence in the space L2

C[−π, π].

Theorem 3.40

Any infinite-dimensional inner product space X contains an
orthonormal sequence.
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Lemma 3.41

(Bessel’s Inequality) Let X be an inner product space and let
{en} be an orthonormal sequence in X . For any x ∈ X the
(real) series

∑∞
n=1 |(x ,en)|2 converges and

∞∑
n=1

|(x ,en)|2 ≤ ||x ||2.

fa20131018.tex 2013-11-1, 15.58 Functional Analysis 97/132



Introduction
Normed spaces

Inner product spaces
Linear Operators

Theorem 3.42

Let H be a Hilbert space and let {en} be an orthonormal
sequence in H. Let {αn} be a sequence in F. Then the series

∞∑
n=1

αnen

converges if and only if
∑∞

n=1 |αn|2 <∞. If this holds, then

||
∞∑

n=1

αnen||2 =
∞∑

n=1

|αn|2.
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Remark 3.43

The result of Theorem 3.42 can be rephrased as: the series

∞∑
n=1

αn en

converges if and only if the sequence {αn} ∈ `2.

Corollary 3.44

Let H be a Hilbert space and let {en} be an orthonormal
sequence in H. For any x ∈ H the series

∑∞
n=1(x ,en)en

converges.
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Example 3.45

In R3, consider the orthonormal set {ê1, ê2}, and let
x = (3,0,4), say. Then (x , ê1)ê1 + (x , ê2)ê2 6= x .

Example 3.46

Let {en} be an orthonormal sequence in a Hilbert space H, and
let S be the subsequence S = {e2n},n ∈ N (that is, S consists
of just the even terms in the sequence {en}). Then S is an
orthonormal sequence in H with infinitely many elements, but,
for instance, e1 6=

∑∞
n=1 α2ne2n, for any numbers α2n.
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Theorem 3.47

Let H be a Hilbert space and let {en} be an orthonormal
sequence in H. The following conditions are equivalent:
(a) {en : n ∈ N}⊥ = {0};
(b) Sp{en : n ∈ N} = H;

(c) ||x ||2 =
∑∞

n=1 |(x ,en)|2 for all x ∈ H;

(d) x =
∑∞

n=1(x ,en)en for all x ∈ H;
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Remark 3.48

The linear span (Sp{en}) of the set {en} consists of all possible
finite linear combinations of the vectors in {en}, that is, all
possible finite sums in the above expansion. However, for the
expansion to hold for all x H it is necessary to also consider
infinite sums in the expansion. This corresponds to considering
the closed linear span (Sp{en}). In finite dimensions the linear
span is necessarily closed, and so equals the closed linear
span, so it is not necessary to distinguish between these
concepts in finite-dimensional linear algebra.

Definition 3.49

Let H be a Hilbert space and let {en} be an orthonormal
sequence in H. Then {en} is called an orthonormal basis for H
if any of the conditions in Theorem 3.47 hold.
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Remark 3.50

Some books call an orthonormal basis {en} a complete
orthonormal sequence - the sequence is "complete" in the
sense that there are enough vectors in it to span the space (as
in Theorem 3.47). We prefer not to use the term "complete" in
this sense to avoid confusion with the previous use of
"complete" to describe spaces in which all Cauchy sequences
converge.

Example 3.51

The orthonormal sequence {en} in `2 given in Example 3.38 is
an orthonormal basis. This basis will be called the standard
orthonormal basis in `2.
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Theorem 3.52

(a) Finite dimensional normed vector spaces are separable.
(b) An infinite-dimensional Hilbert space H is separable if and

only if it has an orthonormal basis.

Example 3.53

The Hilbert space `2 is separable.

Theorem 3.54

The set of functions

C =
{

c0(x) = (1/π)1/2, cn(x) = (2/π)1/2 cos nx : n ∈ N
}

is an orthonormal basis in L2[0, π].
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Corollary 3.55

The space L2[0, π] is separable.

Theorem 3.56

The set of functions

S =
{

sn(x) = (2/π)1/2 sin nx : n ∈ N
}

is an orthonormal basis in L2[0, π].
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Corollary 3.57

The sets of functions

E = {en(x) = (2π)−1/2einx : n ∈ Z}, F = {2−1/2c0,2−1/2cn,2−1/2sn : n ∈ N},

are orthonormal bases in the space L2
C[−π, π]. The set F is also

an orthonormal basis in the space L2
R[−π, π] (the set E is

clearly not appropriate for the space L2
R[−π, π] since the

functions in E are complex).
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4. Linear Operators

Lemma 4.1

Let X and Y be normed linear spaces and let T : X → Y be a
linear transformation. The following are equivalent:
(a) T is uniformly continuous;
(b) T is continuous;
(c) T is continuous at 0;

(d) there exists a positive real number k such that ||T (x)|| ≤ k
whenever x ∈ X and ||x || ≤ 1;

(e) there exists a positive real number k such that
||T (x)|| ≤ k ||x || for all x ∈ X .
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Example 4.2

The linear transformation T : CF[0,1]→ F defined by
T (f ) = f (0) is continuous.

Lemma 4.3

If {cn} ∈ `∞ and {xn} ∈ `p, where 1 ≤ p <∞, then {cn xn} ∈ `p
and

∞∑
n=1

|cn xn|p ≤ ||{cn}||p∞
∞∑

n=1

|xn|p.
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Example 4.4

If {cn} ∈ `∞, then the linear transformation T : `1 → F defined
by

T ({xn}) =
∞∑

n=1

cn xn

is continuous.

Example 4.5

If {cn} ∈ `∞, then the linear transformation T : `2 → `2 defined
by

T ({xn}) = {cn xn}

is continuous.
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Definition 4.6

Let X and Y be normed linear spaces and let T : X → Y be a
linear transformation. T is said to be bounded if there exists a
positive real number k such that ||T (x)|| ≤ k ||x || for all x ∈ X .

Notation. Let X and Y be normed linear spaces. The set of all
continuous linear transformations from X to Y is denoted by
B(X ,Y ). Elements of B(X ,Y ) are also called bounded linear
operators or linear operators or sometimes just operators.
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Example 4.7

Let a,b ∈ R, let k : [a,b]× [a,b]→ C be continuous and let
M = sup{|k(s, t)| : (s, t) ∈ [a,b]× [a,b]}. (a) If g ∈ C[a,b], then
f : [a,b]→ C defined by

f (s) =

∫ b

a
k(s, t) g(t) dt

is in C[a,b]. (b) If the linear transformation K : C[a,b]→ C[a,b] is
defined by

(K (g))(s) =

∫ b

a
k(s, t) g(t) dt

then K ∈ B(C[a,b],C[a,b]) and

||K (g)|| ≤ M(b − a)||g||.
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Example 4.8

Let P be the linear subspace of CC[0,1] consisting of all
polynomial functions. If T : P → P is the linear transformation
defined by T (p) = p′, where p′ is the derivative of p, then T is
not continuous.

Theorem 4.9

Let X be a finite-dimensional normed space, let Y be any
normed linear space and let T : X → Y be a linear
transformation. Then T is continuous.
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Example 4.10

Let P be the linear subspace of CC[0,1] consisting of all
polynomial functions. If T : P → C is the linear transformation
defined by

T (p) = p′(1),

where p′ is the derivative of p, then T is not continuous.

Lemma 4.11

If X and Y are normed linear spaces and T : X → Y is a
continuous linear transformation then Ker(T ) is closed.
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Definition 4.12

If X and Y are normed spaces and T : X → Y is a linear
transformation, the graph of T is the linear subspace G(T ) of
X × Y defined by

G(T ) = {(x ,Tx) : x ∈ X}.

Lemma 4.13

If X and Y are normed spaces and T : X → Y is a continuous
linear transformation then G(T ) is closed.
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Lemma 4.14

Let X and Y be normed linear spaces and let S,T ∈ B(X ,Y )
with ||S(x)|| ≤ k1||x || and ||T (x)|| ≤ k2||x || for all x ∈ X . Let
λ ∈ F. Then
(a) ||(S + T )(x)|| ≤ (k1 + k2)||x || for all x ∈ X ;

(b) ||(λS)(x)|| ≤ |λ|k1||x || for all x ∈ X ;

(c) B(X ,Y ) is a linear subspace of L(X ,Y ) and so B(X ,Y ) is
a vector space.

Lemma 4.15

Let X and Y be normed spaces. If ||E || : B(X ,Y )→ R is
defined by

||T || = sup{||T (x)|| : ||x || ≤ 1}

then ||E || is a norm on B(X ,Y ).
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Definition 4.16

Let X and Y be normed linear spaces and let T ∈ B(X ,Y ). The norm
of T is defined by

||T || = sup{||T (x)|| : ||x || ≤ 1}.

Definition 4.17

Let Fp have the standard norm and let A be a m × n matrix with
entries in F. If T : Fn → Fm is the bounded linear transformation
defined by T (x) = Ax then the norm of the matrix A is defined by
||A|| = ||T ||.

Example 4.18

If T : CF[0,1]→ F is the bounded linear operator defined by
T (f ) = f (0) then ||T || = 1.
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Theorem 4.19

Let X be a normed linear space and let W be a dense
subspace of X . Let Y be a Banach space and let S ∈ B(W ,Y ).

(a) If x ∈ X and {xn} and {yn} are sequences in W such that
limn→∞ xn = limn→∞ yn = x then {S(xn)} and {S(yn)} both
converge and limn→∞ S(xn) = limn→∞ S(yn).

(b) There exists T ∈ B(X ,Y ) such that ||T || = ||S|| and
Tx = Sx for all x ∈W .

Definition 4.20

Let X and Y be normed linear spaces and let T ∈ L(X ,Y ). If
||T (x)|| = ||x || for all x ∈ X then T is called an isometry.
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Example 4.21

If X is a normed space and I is the identity linear transformation
on X then I is an isometry.

Example 4.22

(a) If x = (x1, x2, x3, . . . ) ∈ `2 then y = (0, x1, x2, x3, . . . ) ∈ `2.
(b) The linear transformation S : `2 → `2 defined by

S(x1, x2, x3, . . . ) = (0, x1, x2, x3, . . . ) is an isometry.

Lemma 4.23

Let X and Y be normed linear spaces and let T ∈ L(X ,Y ). If T
is an isometry then T is bounded and ||T || = 1.
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Definition 4.24

If X and Y are normed linear spaces and T is an isometry from
X onto Y then T is called an isometric isomorphism and X and
Y are called isometrically isomorphic.

Theorem 4.25

Let H be an infinite-dimensional Hilbert space over F with an
orthonormal basis {en}. Then there is an isometry T of H onto
`2F such that T (en) = ẽn for all n ∈ N.

Corollary 4.26

Any infinite-dimensional, separable Hilbert space H over F is
isometrically isomorphic to `2F.
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Theorem 4.27

If X is a normed linear space and Y is a Banach space then
B(X ,Y ) is a Banach space.

Definition 4.28

Let X be a normed space. Linear transformations from X to F
are called linear functionals. The space B(X ,F) is called the
dual space of X and denoted X ′.

Corollary 4.29

If X is a normed vector space then X ′ is a Banach space.

fa20131018.tex 2013-11-1, 15.58 Functional Analysis 120/132



Introduction
Normed spaces

Inner product spaces
Linear Operators

Lemma 4.30

If X ,Y and Z are normed linear spaces and T ∈ B(X ,Y ) and
S ∈ B(Y ,Z ) then S ◦ T ∈ B(X ,Z ) and

||S ◦ T || ≤ ||S||||T ||.

Definition 4.31

Let X ,Y and Z be normed linear spaces and T ∈ B(X ,Y ) and
S ∈ B(Y ,Z ). The composition S ◦ T of S and T will be denoted
by ST and called the product of S and T .

Notation. If X is a normed linear space the set B(X ,X ) of all
bounded linear operators from X to X will be denoted by B(X ).
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Theorem 4.32

Let X be a normed linear space.
(a) B(X ) is an algebra with identity and hence a ring with

identity.
(b) If {Tn} and {Sn} are sequences in B(X ) such that

limn→∞ Tn = T and limn→∞ Sn = S , then
limn→∞ Sn Tn = S T .

Notation. Let X be a normed space and let T ∈ B(X ).

(a) TT will be denoted by T 2,TTT will be denoted by T 3, and
more generally the product of T with itself n times will be
denoted by T n.

(b) If a0,a1, . . . ,an ∈ F and p : F→ F is the polynomial defined
by p(x) = a0 + a1 x + · · ·+ an xn, then we define p(T ) by
p(T ) = a0 I + a1 T + · · ·+ an T n.
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Lemma 4.33

Let X be a normed linear space and let T ∈ B(X ). If p and q
are polynomials and λ, µ ∈ C, then
(a) (λp + µq)(T ) = λp(T ) + µq(T );

(b) (pq)(T ) = p(T )q(T ).

Definition 4.34

Let X ,Y be normed linear spaces. An operator T ∈ B(X ,Y ) is
said to be invertible if there exists S ∈ B(Y ,X ) such that
ST = IX ,TS = IY , in which case S is the inverse of T and is
denoted by T−1.
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Lemma 4.35

If X ,Y ,Z are normed linear spaces and
T1 ∈ B(X ,Y ),T2 ∈ B(Y ,Z ) are invertible, then:
(a) T−1

1 is invertible with inverse T1;

(b) T2 T1 is invertible with inverse T−1
1 T−1

2 .

Remark 4.36

If X = Y we have seen that B(X ) has additional algebraic
properties compared with the space B(X ,Y ). In particular, if
T ∈ B(X ) then powers T n,n = 1,2, . . . , are well-defined.
Similarly, if T is invertible, then inverse powers
T−n = (T−1)n,n = 1,2, . . . , are well-defined.
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Definition 4.37

Let X ,Y be normed linear spaces. If an invertible operator
T ∈ B(X ,Y ) exists then X ,Y are isomorphic, and T is an
isomorphism (between X and Y ).

Lemma 4.38

If the normed linear spaces X ,Y , are isomorphic, then:
(a) dimX <∞ if and only if dimY <∞, in which case

dim X = dim Y ;

(b) X is separable if and only if Y is separable;
(c) X is complete (i.e., Banach) if and only if Y is complete

(i.e., Banach).
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Example 4.39

For any h ∈ C[0,1] let Th ∈ B(L2[0,1]) be defined by

(Thu)(t) = h(t)u(t),u ∈ L2[0,1].

If f ∈ C[0,1] is defined by f (t) = 1 + t , then Tf is invertible.

Theorem 4.40

Let X be a Banach space. If T ∈ B(X ) is an operator with
||T || < 1 then I − T is invertible and the inverse is given by

(I − T )−1 =
∞∑

n=0

T n .
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Notation. The series in Theorem 4.40 is sometimes called the
Neumann series.

Example 4.41

Let A ∈ C and let k : [a,b]× [a,b]→ R,a,b ∈ R, be defined by
k(x , y) = A sin(x − y). Show that if |A| < 1 then for any
f ∈ C[a,b] there exists g ∈ C[a,b] such that

g(x) = f (x) +

∫ 1

0
k(x , y)g(y) dy .

Corollary 4.42

Let X ,Y be Banach spaces. The set A of invertible operators in
B(X ,Y ) is open.
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Theorem 4.43

(Open Mapping Theorem) Suppose that X and Y are Banach spaces
and T ∈ B(X ,Y ) is surjective. Let

L = {T (x) : x ∈ X and ||x || ≤ 1},

with closure L. Then:

(a) there exists r > 0 such that {y ∈ Y : ||y || ≤ r} ⊂ L;

(b) {y ∈ Y : ||y || ≤ r/2} ⊂ L;

(c) if, in addition, T is one-to-one then T is invertible.

Corollary 4.44

(Closed Graph Theorem) If X and Y are Banach space and T is a
linear transformation from X into Y such that G(T ), the graph of T , is
closed, then T is continuous.
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Corollary 4.45

(Banach’s Isomorphism Theorem) If X ,Y are Banach spaces
and T ∈ B(X ,Y ) is bijective, then T is invertible.

Lemma 4.46

If X ,Y are normed linear spaces and T ∈ B(X ,Y ) is invertible
then, for all x ∈ X , ||Tx || ≥ ||T−1||−1||x ||.

Lemma 4.47

Suppose that X is a Banach space, Y is a normed space and
T ∈ B(X ,Y ). If there exists α > 0 such that ||Tx || ≥ α||x || for all
x ∈ X , then Im(T ) is closed.
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Theorem 4.48

Suppose that X ,Y are Banach spaces, and T ∈ B(X ,Y ). The
following are equivalent:
(a) T is invertible;
(b) Im(T ) is dense in Y and there exists α > 0 such that
||Tx || ≥ α||x || for all x ∈ X .

Corollary 4.49

Suppose that X ,Y are Banach spaces, and T ∈ B(X ,Y ). The
operator T is not invertible if and only if Im(T ) is not dense in Y
or there exists a sequence {xn} in X with ||xn|| = 1 for all n ∈ N
but limn→∞ T (xn) = 0.
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Example 4.50

For any h ∈ C[0,1], let Th ∈ B(L2[0,1]) be defined as above. If
f ∈ C[0,1] is defined by f (t) = t , then Tf is not invertible.

Example 4.51

For any h ∈ C[0,1], let Th ∈ B(L2[0,1]) be defined as above. If
f ∈ C[0,1] is defined by f (t) = 1 + t , then Tf is invertible.

Theorem 4.52

(Uniform Boundedness Principle) Let U,X be Banach spaces.
Suppose that S is a non-empty set and, for each
s ∈ S,Ts ∈ B(U,X ). If, for each u ∈ U, the set
{||Ts(u)|| : s ∈ S} is bounded then the set {||Ts|| : s ∈ S} is
bounded.
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Corollary 4.53

Let U,X be Banach spaces and Tn ∈ B(U,X ),n = 1,2, . . . .
Suppose that, limn→∞ Tnu exists, for each u ∈ U, and define
Tu = limn→∞ Tn u. Then T ∈ B(U,X ).

The End
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